首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In a microspectrophotometric study, photographic emulsions and a computer are used for measuring the hemoglobin content of a large number (about 50,000) of erythroid cells in fetal mice. Histograms of the hemoglobin content in erythroid cells illustrate the kinetics of erythropoiesis in yolk sac derived nucleated cells in the fetal peripheral blood, in fetal liver, and in fetal spleen. After the occasional extrusion of their nucleus, yolk sac derived erythrocytes remain as “macrocytes” in fetal circulation two or three days longer than the nucleated yolk sac derived erythrocytes do. Erythrocytes in fetal liver have a constant hemoglobin content of 28 pg 2 until day 17 of gestation. During further erythropoiesis in liver and then in the spleen, this amount is gradually adapted to the normal hemoglobin content in red blood cells of 16 pg.  相似文献   

2.
3.
A single hematocytoblast in the yolk sac of the chick embryo has been shown previously to give rise on the average to a clone of 128 erythrocytes. Furthermore, in any given generation the erythroid cell synthesizes a characteristic amount of hemoglobin (Hb). In these experiments day 4 embryos were treated with FUdR for 12 hours, and then reversed with thymidine. We have monitored both the passage of these erythroblasts through the cell cycle, and the effect of this perturbation on the Hb content of single cells. As a result of this disruption the amount of Hb synthesized in a given generation can be varied, but the final amount of Hb/cell in the mature erythrocyte is the same as in the untreated controls. Apparently the total amount of the Hb/cell does not in itself influence the passage of the cell through the cycle. The coefficients of variation of the Hb values in the mature erythrocytes from both normal an perturbed embryos are similar.  相似文献   

4.
Abstract. The A6 antigen - a surface-exposed component shared by mouse oval and biliary epithelial cells - was examined during prenatal development of mouse in order to elucidate its relation to liver progenitor cells. Immunohistochemical demonstration of the antigen was performed at the light and electron microscopy level beginning from the 9.5 day of gestation (26–28 somite pairs).
Up to the 11.5 day of gestation A6 antigen is found only in the visceral endoderm of yolk sac and gut epithelium, while liver diverticulum and liver are A6-negative. In the liver epithelial lineages A6 antigen behaves as a strong and reliable marker of biliary epithelial cells where it is found beginning from their emergence on the 15th day of gestation. It was not revealed in immature hepato-cytes beginning from the 16th day of gestation. However weak expression of the antigen was observed in hepato-blasts on 12–15 days of gestation possibly reflecting their ability to differentiate along either hepatocyte or biliary epithelial cell lineages.
Surprisingly, A6 antigen turned out to be a peculiar marker of the crythroid lineage: in mouse fetuses it distinguished A6 positive liver and spleen erythroblasts from A6 negative early hemopoietic cells of yolk sac origin. Moreover in the liver, A6 antigen probably distinguishes two waves of erythropoiesis: it is found on the erythroblasts from the 11.5 day of gestation onward while first extravascular erythroblasts appear in the liver on the 10th day of gestation. Both fetal and adult erythrocytes are A6-negative.
In the process of organogenesis A6 antigen was revealed in various mouse fetal organs. Usually it was found on plasma membranes of mucosal or ductular epithelial cells. Investigation of A6 antigen's physiological function would probably explain such specific localization.  相似文献   

5.
Macrophages are multifunctional cells that participate in numerous biological processes; they actively phagocytose foreign particles and cell debris. Embryonic tissue macrophages are present at early stages of mammalian development; their ontogeny and function is still under investigation. Our study used immunohistochemistry and electron microscopy to investigate early rat yolk sac macrophages using mouse antirat macrophage monoclonal antibodies (mAb) Mar 1 and Mar 3 produced by our laboratory. Mar 3 mAb revealed the first emergence of immature macrophages in the rat yolk sac at fetal day nine coinciding with the beginning of yolk sac haemopoiesis that consisted mainly of erythropoiesis, while Mar 1 mAb detected specifically rat yolk sac macrophages at about the 13th to 14th day of gestation. Immunoreactivity against Mar mAbs was mainly located in the yolk sac endodermal cell layer, which may signify endodermal origin of the yolk sac macrophages. Ultrastructurally mature yolk sac macrophages contained numerous endocytic vesicles or vacuoles, well-developed Golgi saccules and many electron dense granules in their cytoplasm and a number of microvillous projections from the cell surface. After establishment of the circulation between yolk sac and embryo, Mar 3 positive cells were also demonstrated inside fetal undifferentiated mesenchymal tissue at fetal day 12. The study demonstrated the first emergence of immature yolk sac macrophages being among the earliest haemopoietic cells formed in mammalian development. Thus, Mar mAbs managed to detect macrophage differentiation antigens through their development early in the rat yolk sac.  相似文献   

6.
A method of definitive identification of mutant (S1/S1d) and wild-type (+/+) mouse embryos in segregating litters is described, based on the total number of circulating erythrocytes in a unit volume of embryonic blood and the relative proportion of nonnucleated vs. nucleated red blood cells. Evidence is presented that from days 13–17 of gestation, S1/S1d embryos have many fewer fetal liver derived nonnucleated erythrocytes whereas the number of yolk sac-derived nucleated red blood cells is similar between S1/S1d and +/+. Erythroid precursor cells at various stages of maturation in mutant fetal livers are studied by light and electron microscopy, and their fine structure is found to be identical to those present in normal embryos. The number of hemoglobin-containing mature erythroblasts in mutant fetal livers is far fewer than that of the normal, whereas the number of immature erythroid precursors present in a unit area of fetal liver is not significantly different between S1/S1d and +/+. It is suggested that the mutant S1 gene product(s) interferes with or fails to support the differentiation of immature erythroid precursors into hemoglobin synthesizing cells.  相似文献   

7.
Cloning of a new mouse foetal beta-globin mRNA sequence.   总被引:2,自引:2,他引:0       下载免费PDF全文
A novel globin cDNA recombinant (pFG5) has been isolated from a 14-15 day Porton mouse foetal liver cDNA library. It codes for a beta-like globin mRNA expressed in foetal liver-derived erythroblasts and erythrocytes but not in adult reticulocytes nor in yolk sac derived nucleated erythrocytes. It is also found in Friend cells induced to differentiate by DMSO. The nucleotide sequence of pFG5 confirms that it does not code for the beta major or beta minor globin chains nor the embryonic epsilon Y2 globin chain; but it is identical to the published partial sequence of the epsilon Y3 globin gene over the region of overlap (78 nucleotides).  相似文献   

8.
M H Feuston  W J Scott 《Teratology》1985,32(3):407-419
We have attempted to elucidate the mechanism of cadmium teratogenesis utilizing inbred mouse strains sensitive (C57BL/6J) or resistant (SWV) to the embryotoxic effect of this common heavy metal contaminant. Carbonic anhydrase activity of whole-embryo homogenates was moderately depressed in C57BL/6J mice compared to a slight and transient decrease in the resistant SWV mice. Embryonic erythrocytes were similarly examined, and the cadmium did not have any effect on carbonic anhydrase activity in either strain. Likewise, histochemical examination of carbonic anhydrase activity did not reveal any effect of cadmium in the embryos of their strain. Generally, the zinc concentration of embryos was not affected by cadmium administration. However, increased levels of zinc were observed in cadmium-exposed yolk sacs of both strains suggesting that cadmium produces an adverse effect on yolk sac function. Untreated C57BL/6J units (embryo plus surrounding extraembryonic membranes), embryos, and yolk sacs had much lower hemoglobin concentrations than those observed in untreated SWV units, embryos, and yolk sacs. Additionally, cadmium exposure significantly decreased C57BL/6J embryonic hemoglobin levels on gestation day 10 (PM) and increased C57BL/6J yolk sac hemoglobin levels on gestation days 10 (AM) and 10 (PM). No difference in hemoglobin concentration was observed between untreated and cadmium-treated SWV embryos or yolk sacs. We propose that cadmium induces forelimb ectrodactyly by creating an acidotic embryonic environment and that the primary site at which cadmium exerts its teratogenic effect might be the yolk sac.  相似文献   

9.
A stromal cell clone, ST2, which can support both myelopoiesis and B lymphopoiesis of adult bone marrow was used as an in vitro microenvironment for investigating the ontogeny of the B cell progenitor in murine embryos. The B cell progenitor clonable on an ST2 layer first become detectable in the embryonal body rather than in the yolk sac around day 9.5 of gestation. As soon as it develops in the embryo, it enters the blood circulation and becomes detectable both in the developing fetal liver and the yolk sac of the 10 day embryo. On the other hand, mast cell and polymorphonuclear cell progenitors, which are also generated on the ST2 layer, develop first in the yolk sac and migrate to the fetal liver around day 10-11 of gestation. At the late stage of embryonal development, day 15-16 of gestation, the B cell progenitor enters the femur as vascularization of the femur starts. These results suggest that the localization of the committed stem cells for various hemopoietic cell lineages differs in the early embryo, although the localization of the pluripotent stem cells is yet to be determined.  相似文献   

10.
Differentiation of primitive erythroid cells derived from the yolk sac of the chick embryo is accompanied by changes in the morphology of and in the physicochemical properties of the nucleus. Microfluorimetry of individual nuclei stained with acridine orange was performed on thermally denatured cells. Measurements were made at 530 nm (green fluorescence) and 590 nm (redfluorescence). The ratio of these two measurements was used to monitor the susceptibility of chromatin to thermal denaturation. Differences were found (a) between mature erythrocytes and dividing erythroblasts, and (b) between dividing erythroblasts from successive cell generations of the erythroid series. There were differential characteristics of AO binding during thermal denaturation as signified by F530 and F590 measurements. The temperature at which the increase of the ratio (F590/F530) was 50% of its maximum was approximately 70° C for erythroblasts from the fifth generation (day 4), 80–85° C for the sixth generation (day 5), and 85–90° C for the nondividing erythrocytes (day 8). Interpretation of these differences may be complicated by changes in the sensitivity of nuclear proteins to the interactive effects of 0.15 M NaCl and thermal denaturation.  相似文献   

11.
Line-restricted hemoglobin synthesis in chick embryonic erythrocytes   总被引:1,自引:0,他引:1  
The presence of embryonic hemoglobin in early definitive erythrocytes was checked by indirect immunofluorescence assay, using specific antibodies raised against embryonic Hb P. As positive control we used anti-Hb A which reacted with the alpha A chain shared by the minor embryonic Hb E and the adult Hb A. The assay was performed using blood smears from embryos between 6 and 15 days of incubation and yolk sac sections from embryos between 4 and 6 days. Hb P was never detected in the definitive line in circulating erythrocytes or in maturing erythroblasts still sequestered in the blood islands of the yolk sac. The expression of the 'specific' embryonic genes is thus restricted to the primitive line (as the 'specific' adult beta gene is restricted to the definitive line), and the hemoglobin switch is the result of the progressive substitution of the primitive line by the definitive one.  相似文献   

12.
Using lectin and colloidal iron (CI) stainings in combination with neuraminidase digestion, glycoconjugates on the surface of erythropoietic cells of the yolk sac and liver in fetal mice were examined. Fetal hepatic macrophages were capable of distinguishing between phagocytozed and non-phagocytozed erythroid elements as described in our previous study. Marked differences between these two elements could be ultrahistochemically detected on their cell surface. The phagocytozed elements, such as nuclei expelled from erythroblasts and degenerating primitive erythroblasts, faintly bound neuraminidase-sensitive CI, and neuraminidase digestion imparted a weak peanut agglutinin (PNA) binding. In contrast, erythroblasts at various maturation stages, erythrocytes and normal primitive erythroblasts heavily bound neuraminidase-sensitive CI, and neuraminidase digestion imparted a moderate PNA binding. No differences in binding of either concanavalin agglutinin,Ricinus communis agglutinin-I or PNA were noted between phagocytozed and non-phagocytozed erythroid elements. Desialylation appears to be one of the most important signs for the recognition mechanism of fetal macrophage phagocytosis. During maturation of hepatic erythroblasts, sialic acid changes its affinity forLimax flavus agglutinin from strong to weak, and soybean agglutinin binding sites disappear at the basophilic erythroblast stage. Glycoconjugates on polychromatophilic erythroblasts acquire similar compositions to those of erythrocytes.  相似文献   

13.
Self-recognition assessed by rosette formation by lymphocytes with erythrocytes of syngeneic or autologous origin is a very primitive function that is present before lymphoid system development proper in the thymus. Autologous rosette-forming cells (A-RFC) have been found in the very early yolk sac of pregnant mice of 10–11 days gestation. Moreover, when these 10- to 11-days' gestation pregnant mice were subcutaneously injected with facteur thymique sérique (FTS) 1 day before A-RFC examination, it appears that FTS reduces the number of A-RFC in the yolk sac by 63%. Thus it has not been possible to determine whether FTS acted by changing the migration capacity or the expression of receptors on the cell surface.  相似文献   

14.
To study the role of the yolk sac and amnion in craniofacial development, the effects of opening the yolk sac and amnion on facial formation of rat embryos were examined in vitro. Rat embryos were cultured for 72 hr from day 11.5 of gestation using an improved rotation apparatus. In experiments, the yolk sac and amnion were opened at the time of explantation (day 11.5) in one group (D11 open) and were opened 24 hr after the beginning of the culture (day 12.5) in another group (D12 open). Cleft lip developed in 100% of cultured embryos when the yolk sac and amnion were opened at day 11.5 (D11 open). In the D12 open group, however, cleft lip occurrence decreased to 3.0%. Protein content, wet weight, and somite number of cultured embryos were not significantly different in the two groups. The results of this study demonstrate that it is beneficial to open the yolk sac and amnion after 24 hr in culture for normal facial formation of rat embryo cultured from day 11.5 of gestation.  相似文献   

15.
Previous studies have shown that antibodies to cubulin, a receptor on the yolk sac that binds high density lipoproteins (HDL) and cobalamin, induce fetal abnormalities. Mice with markedly low concentrations of plasma HDL-cholesterol (HDL-C) give birth to healthy pups, however. To establish whether maternal HDL-C has a role in fetal development, sterol metabolism was studied in the fetus and extra-embryonic fetal tissues in wild-type and apolipoprotein A-I-deficient mice (apoAI-/-). Maternal HDL-C content was markedly greater in apoAI+/+ mice prior to pregnancy and at 13 days into gestation. By 17 days into gestation, HDL-C content was similar between both types of mice. Fetuses from apoAI (-/- x -/-) matings were 16;-25% smaller than control mice at 13 and 17 days of gestation and contained less cholesterol. The differences in size and cholesterol content were not due to a lack of cholesterol synthesis or apoA-I in the fetus. In the yolk sac and placenta, sterol synthesis rates were approximately 50% greater in the 13-day-old apoAI-/- mice as compared to the apoAI+/+ mice. Even though synthesis rates were greater, cholesterol concentrations were 22% lower in the yolk sac and similar in the placenta of apoAI-/- mice as compared to tissues of wild-type mice. These data suggest that a difference in maternal HDL-C concentration or composition can affect the size of the fetus and sterol metabolism of the yolk sac and placenta in the mouse.  相似文献   

16.
Remarkable differences were found between late erythroid progenitors (CFU-e) in cultures of murine yolk sac cells and those of fetal liver cells with respect to frequency, erythropoietin responsiveness and colony size. Cultures of yolk sac on day 11 of gestation showed a CFU-e population of lower frequency, less sensitivity to erythropoietin and smaller colony size than those from cultures of day 14 fetal liver cells. As the proportion of CFU-e to BFU-e was much lower in yolk sac than that in fetal liver, 48-96 h liquid culture experiments were done with these cells to examine the capacity of their precursors to generate a certain amount of CFU-e subpopulations. The cultures of yolk sac cells produced large numbers of CFU-e which formed some large-sized colonies but those of fetal liver cells generated only a small amount of CFU-e.  相似文献   

17.
R Palacios  B A Imhof 《The EMBO journal》1996,15(24):6869-6876
During mouse development, the first lymphohematopoietic precursor cells and myeloid or erythroid cell lineage-determined cells can be detected in the yolk sac at days 8-8.5 of gestation. The characteristics of the cells that give rise to these yolk sac primitive lymphohematopoietic cells and the molecular events controlling this process remain poorly defined. We show here that cell suspensions from day 7 early-mid-primitive streak stage embryo proper generated early immature PgP-1+ Joro 177+ Lin- hematopoietic cells and some Mac-1+ myeloid and TER 119+ erythroid cells after co-culture with the yolk sac-derived stromal cell line YS6 without addition of exogenous cytokines. Purified Lin- hematopoietic cells generated in these cultures did not express genes known to be transcribed at early stages of lymphoid, myeloid or erythroid cell differentiation and were able to give rise to T and B lymphocytes, myeloid cells and erythroid cells after appropriate further induction in vitro. Several cell lines were established in culture with a mixture of four cytokines from the PgP-1+ Joro 177+ Lin- cell population. The cell lines shared phenotypic and genotypic characteristics with the PgP-1+ Joro 177+ Lin- cell population generated in culture from day 7 embryo proper and they were able to reconstitute the lymphohematopoietic system of irradiated mice. Taken together these results support a model of lymphohematopoiesis in which cells from day 7 early-mid-primitive streak mouse embryo proper migrate and colonize the visceral yolk sac. There they generate primitive lymphohematopoietic precursor cells and the first erythroid and myeloid hematopoietic cells under the influence of yolk sac stromal cells like the YS6 cells described here.  相似文献   

18.
The dynamics of ceruloplasmin content was studied by immunochemical methods in the postimplantation rat embryos and postnatal animals. Ten to twenty two day old embryos contained ceruloplasmin (CP) in yolk sac, serum, and amniotic fluid. The highest CP levels were found in yolk sac. CP concentration profiles were almost identical in the serum and amniotic fluid being the highest on the 12th day (0.26 mg%) and the lowest (0.04) on the 16th day of gestation. CP concentration in the serum increased rapidly up to 3.5 mg% from the 17th day of gestation till the term (22nd day) while remaining at a constant and rather low level in the amniotic fluid. Within 16-18 days after birth, CP concentration in the serum remained at the level of 11 +/- 0.3 mg%. Later on it gradually increased and attained plateau (46-48 mg%) by the time of sex maturity. The maternal serum CP does not penetrate, in the embryo, as can be inferred from the experiments with 125I-CP injected into pregnant rats. Differences in the CP degradation rate and modes were found between the embryos and postnatal rats. It is suggested that CP is initially synthesized by the yolk sac endoderm during organogenesis (10-16 days of gestation) and predominantly by the liver during the foetal period (17-22 days).  相似文献   

19.
Embryonic and fetal hemopoiesis: an overview   总被引:13,自引:0,他引:13  
M Tavassoli 《Blood cells》1991,17(2):269-81; discussion 282-6
Our current knowledge of embryonic and fetal hemopoiesis is critically reviewed in this article. In both murine and human systems, embryonic and fetal development is associated with multiple switching in the sites of hemopoiesis. The phenomenon is first extraembryonic, occurring in blood islands of the yolk sac. Hemopoietic stem cells (HSC) appear to derive from hemangioblasts that are of mesodermal origin. Yolk sac milieu is permissive only for erythropoiesis which proceeds synchronously and may be erythropoietin-insensitive. Yolk sac milieu is not permissive for the development of other cell lines. The final product is nucleated red cells. Yolk sac hemopoiesis is an example par excellence of primitive (as compared to definitive) form of hemopoiesis. HSC then seem to migrate via the bloodstream to the liver and spleen to seed these tissues, which then carry the burden of hemopoiesis until birth and for some time thereafter. Here also erythropoiesis predominates, but some granulopoiesis also occurs. Thus, the milieu is not totally impermissive. Hemopoiesis is in definitive form, lacking synchronicity of cell growth with the end product being anucleated cells and synthesized hemoglobin not limited to embryonic type. The site of hemopoiesis is finally transferred to the bone marrow, which is predominantly granulopoietic. Certain cellular and embryological features of these types of hemopoiesis in the context of more recent molecular understanding of stem cell homing are discussed.  相似文献   

20.
The two adult beta-globin genes (beta 1s2major and beta 2sminor) of the Hbbs2 haplotype are differentially expressed during development. Centrifugal elutriation was used to separate the two populations of erythrocytes present in developing fetuses. Hemoglobin analysis showed that the larger, nucleated erythrocytes (yolk sac-derived) have relatively larger amounts of beta-sminor hemoglobin than do smaller, nonnucleated cells (fetal liver-, spleen-, and bone marrow-derived) at the same stage of development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号