首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ribose is transported into cells in its pyranose form and must be rearranged to its furanose form for further utilization. Ribose pyranase RbsD catalyzes the conversion of ribose from the pyranose to furanose form. This is the key step for substrate supply to ribokinase RbsK, which converts ribose to ribose-5-phosphate for further metabolism. Sequence analysis indicated Sa240 from Staphylococcus aureus was a ribose pyranase homolog. Here we showed that Sa240 formed dimeric structure both in solution and in crystal. S240-ribose complex structure showed a ribose binding site formed by an incomplete active site compared with RbsD. Because the catalytic activity of ribose pyranase depends on its oligomeric state, we propose Sa240 is catalytically inactive in its dimeric structure.  相似文献   

2.
An enzymatic pathway for synthesis of 5-phospho-D-ribosyl alpha-1-diphosphate (PRPP) without the participation of PRPP synthase was analyzed in Escherichia coli. This pathway was revealed by selection for suppression of the NAD requirement of strains with a deletion of the prs gene, the gene encoding PRPP synthase (B. Hove-Jensen, J. Bacteriol. 178:714-722, 1996). The new pathway requires three enzymes: phosphopentomutase, ribose 1-phosphokinase, and ribose 1,5-bisphosphokinase. The latter activity is encoded by phnN; the product of this gene is required for phosphonate degradation, but its enzymatic activity has not been determined previously. The reaction sequence is ribose 5-phosphate --> ribose 1-phosphate --> ribose 1,5-bisphosphate --> PRPP. Alternatively, the synthesis of ribose 1-phosphate in the first step, catalyzed by phosphopentomutase, can proceed via phosphorolysis of a nucleoside, as follows: guanosine + P(i) --> guanine + ribose 1-phosphate. The ribose 1,5-bisphosphokinase-catalyzed phosphorylation of ribose 1,5-bisphosphate is a novel reaction and represents the first assignment of a specific chemical reaction to a polypeptide required for cleavage of a carbon-phosphorus (C-P) bond by a C-P lyase. The phnN gene was manipulated in vitro to encode a variant of ribose 1,5-bisphosphokinase with a tail consisting of six histidine residues at the carboxy-terminal end. PhnN was purified almost to homogeneity and characterized. The enzyme accepted ATP but not GTP as a phosphoryl donor, and it used ribose 1,5-bisphosphate but not ribose, ribose 1-phosphate, or ribose 5-phosphate as a phosphoryl acceptor. The identity of the reaction product as PRPP was confirmed by coupling the ribose 1,5-bisphosphokinase activity to the activity of xanthine phosphoribosyltransferase in the presence of xanthine, which resulted in the formation of 5'-XMP, and by cochromatography of the reaction product with authentic PRPP.  相似文献   

3.
A steady state kinetic investigation of the P(i) activation of 5-phospho-d-ribosyl alpha-1-diphosphate synthase from Escherichia coli suggests that P(i) can bind randomly to the enzyme either before or after an ordered addition of free Mg(2+) and substrates. Unsaturation with ribose 5-phosphate increased the apparent cooperativity of P(i) activation. At unsaturating P(i) concentrations partial substrate inhibition by ribose 5-phosphate was observed. Together these results suggest that saturation of the enzyme with P(i) directs the subsequent ordered binding of Mg(2+) and substrates via a fast pathway, whereas saturation with ribose 5-phosphate leads to the binding of Mg(2+) and substrates via a slow pathway where P(i) binds to the enzyme last. The random mechanism for P(i) binding was further supported by studies with competitive inhibitors of Mg(2+), MgATP, and ribose 5-phosphate that all appeared noncompetitive when varying P(i) at either saturating or unsaturating ribose 5-phosphate concentrations. Furthermore, none of the inhibitors induced inhibition at increasing P(i) concentrations. Results from ADP inhibition of P(i) activation suggest that these effectors compete for binding to a common regulatory site.  相似文献   

4.
The prs gene encoding phosphoribosyl diphosphate (PRPP) synthase of the hyperthermophilic autotrophic methanogenic archaeon Methanocaldococcus jannaschii has been cloned and expressed in Escherichia coli. Subsequently, M.jannaschii PRPP synthase has been purified, characterised, crystallised, and the crystal structure determined. The enzyme is activated by phosphate ions and only ATP or dATP serve as diphosphoryl donors. The K(m) values are determined as 2.6 mM and 2.8 mM for ATP and ribose 5-phosphate, respectively, and the V(max) value as 2.20 mmol (minxmg of protein)(-1). ADP is a potent inhibitor of activity while GDP has no effect. A single ADP binding site, the active site, is present per subunit. The crystal structure of the enzyme reveals a more compact subunit than that of the enzyme from the mesophile Bacillus subtilis, caused by truncations at the N and C terminus as well as shorter loops in the M.jannaschii enzyme. The M.jannaschii enzyme displays a tetrameric quaternary structure in contrast to the hexameric quaternary structure of B.subtilis PRPP synthase. Soaking of the crystals with 5'-AMP and PRPP revealed the position of the former compound as well as that of ribose 5-phosphate. The properties of M.jannaschii PRPP synthase differ widely from previously characterised PRPP synthases by its tetrameric quaternary structure and the simultaneous phosphate ion-activation and lack of allosteric inhibition, and, thus, constitute a novel class of PRPP synthases.  相似文献   

5.
Synergism of glucose and fructose in net glycogen synthesis was studied in perfused livers from 24-h fasted rats. With either glucose or fructose alone, net glycogen deposition did not occur (p greater than 0.10 for each), whereas the addition of both together resulted in significant glycogen accumulation (net glycogen accumulation was 0.21 +/- 0.03 mumol of glucose/g of liver/min at 2 mM fructose and 30 mM glucose, p less than 0.001). To better understand this synergism, intermediary substrate levels were compared at steady state with various glucose levels in the absence and in the presence of 2 mM fructose. Independent of fructose, hepatic glucose and glucose 6-phosphate increased proportionally when glucose level in the medium was raised (r = 0.86, p less than 0.001). Unlike glucose 6-phosphate, UDP-glucose did not consistently increase with glucose (p greater than 0.10); in fact, there was a small decrease at a very high glucose level (30 mM), a result consistent with the well-established activation of glycogen synthase by glucose. With elevated glucose, the level of glucose 6-phosphate was strongly correlated with glycogen content (r = 0.71, p less than 0.01, slope = 32). Adding fructose increased the "efficiency" of glucose 6-phosphate to glycogen conversion: the effect of a given increment in glucose 6-phosphate upon glycogen accumulation was increased 2.6-fold (r = 0.73, p less than 0.01, slope = 86). A kinetic modeling approach was used to investigate the mechanisms by which fructose synergized glycogen accumulation when glucose was elevated. Based on steady-state hepatic substrate levels, net hepatic glucose output, and net glycogen synthesis rate, the model estimated the rate constants of major enzymes and individual fluxes in the glycogen metabolic pathway. Modeling analysis is consistent with the following scenario: glycogen synthase is activated by glucose, whereas glucose-6-phosphatase was inhibited. In addition, the model supports the hypothesis that fructose synergizes net glycogen accumulation due to suppression of phosphorylase. Overall, our analysis suggests that glucose enhances the metabolic flux to glycogen by inducing a build up of glucose 6-phosphate via combined effects of mass action and glucose-6-phosphatase inhibition and activating glycogen synthase and that fructose enhances glycogen accumulation by retaining glycogen via phosphorylase inhibition.  相似文献   

6.
RbsD is the only protein whose biochemical function is unknown among the six gene products of the rbs operon involved in the active transport of ribose. FucU, a paralogue of RbsD conserved from bacteria to human, is also the only protein whose function is unknown among the seven gene products of the l-fucose regulon. Here we report the crystal structures of Bacillus subtilis RbsD, which reveals a novel decameric toroidal assembly of the protein. Nuclear magnetic resonance and other studies on RbsD reveal that the intersubunit cleft of the protein binds specific forms of d-ribose, but it does not have an enzyme activity toward the sugar. Likewise, FucU binds l-fucose but lacks an enzyme activity toward this sugar. We conclude that RbsD and FucU are cytoplasmic sugar-binding proteins, a novel class of proteins whose functional role may lie in helping influx of the sugar substrates.  相似文献   

7.
Photoautotrophic cells of Euglena gracilis can be adapted to N-(phosphonomethyl)glycine (glyphosate) by cultivation in media with progressively higher concentrations of the herbicide. Two different mechanisms of tolerance to the herbicide were observed. One is characterized by the overproduction and 40-fold accumulation of the target enzyme. 5-enolpyruvylshikimate-3-phosphate synthase, in cells adapted to 6 mM N-(phosphonomethyl)glycine. The other is connected with a herbicide-insensitive enzyme. No evidence was obtained for the involvement of the putative multifunctional arom protein previously reported to be involved in the biosynthesis of aromatic amino acids in Euglena. Cells adapted to N-(phosphonomethyl)glycine excreted shikimate and shikimate 3-phosphate into the medium: the amounts depended on the actual concentration of the herbicide. Two-dimensional gel electrophoresis and determination of 5-enolpyruvylshikimate-3-phosphate synthase activity in crude extracts, as well as after separation by non-denaturing gel electrophoresis, revealed that the overproduction of the enzyme in adapted cells correlates with the accumulation of a 59-kDa protein. Overproduction of this 59-kDa protein resulted from a selectively increased level of a mRNA coding for a 64.5-kDa polypeptide which appeared in adapted cells, as shown by cell-free translation in the wheat germ system. In contrast to this quantitative, adaptive type of tolerance, the second mechanism causing tolerance to N-(phosphonomethyl)glycine in the Euglena cell line NR 6/50 was probably related to a qualitatively altered 5-enolpyruvylshikimate-3-phosphate synthase, which could not be inhibited by even 2 mM N-(phosphonomethyl)glycine in vitro. In agreement with this observation, the putatively mutated cell line excreted neither shikimate nor shikimate 3-phosphate into the growth medium containing N-(phosphonomethyl)glycine, even if cultivated in the presence of 20 mM or 50 mM N-(phosphonomethyl)glycine.  相似文献   

8.
Trypanosoma cruzi, the human parasite that causes Chagas disease, contains a functional pentose phosphate pathway, probably essential for protection against oxidative stress and also for R5P (ribose 5-phosphate) production for nucleotide synthesis. The haploid genome of the CL Brener clone of the parasite contains one gene coding for a Type B Rpi (ribose 5-phosphate isomerase), but genes encoding Type A Rpis, most frequent in eukaryotes, seem to be absent. The RpiB enzyme was expressed in Escherichia coli as a poly-His tagged active dimeric protein, which catalyses the reversible isomerization of R5P to Ru5P (ribulose 5-phosphate) with Km values of 4 mM (R5P) and 1.4 mM (Ru5P). 4-phospho-D-erythronohydroxamic acid, an analogue to the reaction intermediate when the Rpi acts via a mechanism involving the formation of a 1,2-cis-enediol, inhibited the enzyme competitively, with an IC50 value of 0.7 mM and a Ki of 1.2 mM. Site-directed mutagenesis allowed the demonstration of a role for His102, but not for His138, in the opening of the ribose furanosic ring. A major role in catalysis was confirmed for Cys69, since the C69A mutant was inactive in both forward and reverse directions of the reaction. The present paper contributes to the know-ledge of the mechanism of the Rpi reaction; in addition, the absence of RpiBs in the genomes of higher animals makes this enzyme a possible target for chemotherapy of Chagas disease.  相似文献   

9.
1-Methyl-4-phenylpyridinium ion (MPP(+)), an active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, induces cell death and inhibition of cell proliferation in various cells. However, the mechanism whereby MPP(+) inhibits cell proliferation is still unclear. In this study, we found that MPP(+) suppressed the proliferation with accumulation in G(1) phase without inducing cell death in p53-deficient MG63 osteosarcoma cells. MPP(+) induced hypophosphorylation of retinoblastoma protein and rapidly down-regulated the protein but not mRNA levels of cyclin D1 in MG63 cells. The down-regulation of cyclin D1 protein was suppressed by a proteasome inhibitor, MG132. The cyclin D1 down-regulation by MPP(+) was also observed in p53-positive PC12, HeLa S3, and HeLa rho(0) cells, which are a subclone of HeLa S3 lacking mitochondrial DNA. Moreover, MPP(+) dephosphorylated Akt in PC12 cells, which was rescued by the pretreatment with nerve growth factor. In addition, the pretreatment with nerve growth factor or lithium chloride, a glycogen synthase kinase-3beta inhibitor, suppressed the cyclin D1 down-regulation caused by MPP(+). Our results demonstrate that MPP(+) induces cell cycle arrest independently of its mitochondrial toxicity or the p53 status of the target cells, but rather through the proteasome- and phosphatidylinositol 3-Akt-glycogen synthase kinase-3beta-dependent cyclin D1 degradation.  相似文献   

10.
Photosynthetic oxygen evolution by a reconstituted chloroplast system utilising sn-phospho-3-glycerol (3-phosphoglycerate) ceases upon the addition of ribose 5-phosphate even though the presence of this metabolite permits a rapid and immediate CO2 fixation. The period of cessation is appreciable at 0.1 mM ribose 5-phosphate. It is lengthened as the amount of added ribose 5-phosphate is increased and by the addition of dithiothreitol, a known activator of ribulose-5-phosphate kinase. Ribulose 1,5-bisphosphate is without effect. A similar interruption of O2 evolution may also be brought about by the addition of ADP or by ADP-generating systems such as glucose plus hexokinase. Spectrophotometric experiments indicate that the reoxidation of NADPH in the presence of sn-phospho-3-glycerol is similarly affected. The transient inhibition by ribose 5-phosphate is not observed in the presence of an active ATP-generating system or in the presence of sufficient DL-glyceraldehyde to inhibit ribulose-5-phosphate kinase activity. It is concluded that ribose 5-phosphate inhibits photosynthetic O2 evolution by adversely affecting the steady-state ATP/ADP ratio and consequently the reduction of sn-phospho-3-glycerol to glyceraldehyde 3-phosphate. The results are discussed in their relation to ADP regulation of photosynthetic carbon assimilation and metabolite transport.  相似文献   

11.
Intact cells of Bacillus cereus catalyze the breakdown of exogenous AMP to hypoxanthine and ribose 1-phosphate through the successive action of 5'-nucleotidase, adenosine deaminase, and inosine phosphorylase. Inosine hydrolase was not detectable, even in crude extracts. Inosine phosphorylase causes a "translocation" of the ribose moiety (as ribose 1-phosphate) inside the cell, while hypoxanthine remains external. Even though the equilibrium of the phosphorolytic reaction favors nucleoside synthesis, exogenous inosine (as well as adenosine and AMP) is almost quantitatively transformed into external hypoxanthine, since ribose 1-phosphate is readily metabolized inside the cell. Most likely, the translocated ribose 1-phosphate enters the sugar phosphate shunt, via its prior conversion into ribose 5-phosphate, thus supplying the energy required for the subsequent uptake of hypoxanthine in B. cereus.  相似文献   

12.
A.R. Slabas  D.A. Walker 《BBA》1976,430(1):154-164
Photosynthetic oxygen evolution by a reconstituted chloroplast system utilising sn-phospho-3-glycerol (3-phosphoglycerate) ceases upon the addition of ribose 5-phosphate even though the presence of this metabolite permits a rapid and immediate CO2 fixation. The period of cessation is appreciable at 0.1 mM ribose 5-phosphate. It is lengthened as the amount of added ribose 5-phosphate is increased and by the addition of dithiothreitol, a known activator of ribulose-5-phosphate kinase. Ribulose 1,5-bisphosphate is without effect. A similar interruption of O2 evolution may also be brought about by the addition of ADP or by ADP-generating systems such as glucose plus hexokinase. Spectrophotometric experiments indicate that the reoxidation of NADPH in the presence of sn-phospho-3-glycerol is similarly affected.The transient inhibition by ribose 5-phosphate is not observed in the presence of an active ATP-generating system or in the presence of sufficient dl-glyceraldehyde to inhibit ribulose-5-phosphate kinase activity.It is concluded that ribose 5-phosphate inhibits photosynthetic O2 evolution by adversely affecting the steady-state ATP/ADP ratio and consequently the reduction of sn-phospho-3-glycerol to glyceraldehyde 3-phosphate. The results are discussed in their relation to ADP regulation of photosynthetic carbon assimilation and metabolite transport.  相似文献   

13.
Hyperglycemia and elevation of methylglyoxal (MG) are symptoms of diabetes mellitus (DM). We previously showed that high glucose (HG; 30 mM) or MG (50-400 microM) could induce apoptosis in mammalian cells, but these doses are higher than the physiological concentrations of glucose and MG in the plasma of DM patients. The physiological concentration of MG and glucose in the normal blood circulation is about 1 microM and 5 mM, respectively. Here, we show that co-treatment with concentrations of MG and glucose comparable to those seen in the blood circulation of DM patients (5 microM and 15-30 mM, respectively) could cause cell apoptosis or necrosis in human umbilical vein endothelial cells (HUVECs) in vitro. HG/MG co-treatment directly increased the reactive oxygen species (ROS) content in HUVECs, leading to increases in intracellular ATP levels, which can control cell death through apoptosis or necrosis. Co-treatment of HUVECs with 5 microM MG and 20 mM glucose significantly increased cytoplasmic free calcium levels, activation of nitric oxide synthase (NOS), caspase-3 and -9, cytochrome c release, and apoptotic cell death. In contrast, these apoptotic biochemical changes were not detected in HUVECs treated with 5 microM MG and 30 mM glucose, which appeared to undergo necrosis. Pretreatment with nitric oxide (NO) scavengers could inhibit 5 microM MG/20 mM glucose-induced cytochrome c release, decrease activation of caspase-9 and caspase-3, and increase the gene expression and protein levels of p53 and p21, which are known to be involved in apoptotic signaling. Inhibition of p53 protein expression using small interfering RNA (siRNA) blocked the activation of p21 and the cell apoptosis induced by 5 microM MG/20 mM glucose. In contrast, inhibition of p21 protein expression by siRNA prevented apoptosis in HUVECs but had no effect on p53 expression. These results collectively suggest that the treatment dosage of MG and glucose could determine the mode of cell death (apoptosis vs. necrosis) in HUVECs, and both ROS and NO played important roles in MG/HG-induced apoptosis of these cells.  相似文献   

14.
Binding sites for horseradish peroxidase (HRP), with unusual properties, were detected on the surface of cultured and isolated cells after the cells (on cover slips) had been quickly dried, fixed in cold methanol, and post-fixed in a paraformaldehyde solution. The reaction for surface-bound HRP was suppressed by micromolar concentrations of glycoproteins such as invertase, equine luteinizing hormone (eLH) or human chorionic gonadotropin (hCG). The reaction was also suppressed by 20 mM CDP, UDP, GTP, NAD, and ribose 5-phosphate. Two to six times higher concentrations of GMP, fructose 1-phosphate, galactose 6-phosphate, mannose 6-phosphate, fructose 6-phosphate, and glucose 6-phosphate were required to suppress the binding reaction. AMP, ATP, heparin, mannan, and eight non-phosphorylated sugars showed relatively low competing potencies but fucoidin and alpha-lactalbumin were strong inhibitors. No addition of Ca2+ was required for the binding of HRP to the cell surface. However, calcium-depleted, inactive HRP did not compete with the binding of native (calcium-containing) HRP whereas H2O2-inactivated HRP suppressed the binding. GTP, NAD, ribose 5-phosphate, and EGTA accelerated the release of previously-bound HRP from the cell surface whereas glycoproteins (invertase, eLH, and hCG) did not do so. Addition of Ca2+ to GTP, NAD, ribose 5-phosphate or to EGTA prevented the accelerated release of HRP from the cell surface. It is suggested that calcium, present either in the surface membrane or in HRP itself, is involved in the binding of HRP to the cell surface and in the inhibition of binding by GTP, NAD, and ribose 5-phosphate. It is also suggested that alpha-lactalbumin, GTP, UDP, and CDP compete with the binding of HRP to a glycosyltransferase on the cell surface.  相似文献   

15.
The predominant biosynthetic route to vitamin B6 is catalyzed by a single enzyme. The synthase subunit of this enzyme, Pdx1, operates in concert with the glutaminase subunit, Pdx2, to catalyze the complex condensation of ribose 5-phosphate, glutamine and glyceraldehyde 3-phosphate to form pyridoxal 5'-phosphate, the active form of vitamin B6. In previous studies it became clear that many if not all of the reaction intermediates were covalently bound to the synthase subunit, thus making them difficult to isolate and characterize. Here we show that it is possible to follow a single turnover reaction by heteronuclear NMR using (13)C- and (15)N-labeled substrates as well as (15)N-labeled synthase. By denaturing the enzyme at points along the reaction coordinate, we solved the structures of three covalently bound intermediates. This analysis revealed a new 1,5 migration of the lysine amine linking the intermediate to the enzyme during the conversion of ribose 5-phosphate to pyridoxal 5'-phosphate.  相似文献   

16.
Inosine is a potent primary stimulus of insulin secretion from isolated mouse islets. The inosine-induced insulin secretion was totally depressed during starvation, but was completely restored by the addition of 5 mM-caffeine to the medium and partially restored by the addition of 5 mM-glucose. Mannoheptulose (3 mg/ml) potentiated the effect of 10 mM-inosine in islets from fed mice. The mechanism of the stimulatory effect of inosine was further investigated, and it was demonstrated that pancreatic islets contain a nucleoside phosphorylase capable of converting inosine into hypoxanthine and ribose 1-phosphate. Inosine at 10 mM concentration increased the lactate production and the content of ATP, glucose 6-phosphate (fructose 1,6-diphosphate + triose phosphates) and cyclic AMP in islets from fed mice. In islets from starved mice inosine-induced lactate production was decreased and no change in the concentration of cyclic AMP could be demonstrated, whereas the concentration of ATP and glucose 6-phosphate rose. Inosine (10 mM) induced a higher concentration of (fructose 1,6-diphosphate + triose phosphates) in islets from starved mice than in islets from fed mice suggesting that in starvation the activities of glyceraldehyde 3-phosphate dehydrogenase or other enzymes below this step in glycolysis are decreased. Formation of glucose from inosine was negligible. Inosine had no direct effect on adenylate cyclase activity in islet homogenates. The observed changes in insulin secretion and islet metabolism mimic what is seen when glucose and glyceraldehyde stimulate insulin secretion, and as neither ribose nor hypoxanthine-stimulated insulin release, the results are interpreted as supporting the substrate-site hypothesis for glucose-induced insulin secretion according to which glucose has to be metabolized in the beta-cells before secretion is initiated.  相似文献   

17.
Dihydroxyacetone synthase, present in methanol-grown Candida boidinii (Kloeckera sp.) No. 2201, catalyzes the transfer of the glycolaldehyde group from xylulose 5-phosphate to formaldehyde to form glyceraldehyde 3-phosphate and dihydroxyacetone. This enzyme was purified to electrophoretic homogeneity and found to be a new type of transketolase. The molecular weight of the enzyme was estimated to be 190 000 by gel filtration. The enzyme appeared to be composed of four identical subunits (Mr, 55 000). Thiamin pyrophosphate and Mg2+ were required for the activity. The optimum pH was found to be 7.0. With xylulose 5-phosphate as the ketol-donor, aliphatic aldehydes (C1?C7), glycolaldehyde and glyceraldehyde were better acceptors than ribose 5-phosphate. The kinetic data were consistent with a ping-pong bi-bi mechanism. The Km values obtained were as follows: xylulose 5-phosphate, 1.0 nM; formaldehyde, 0.43 mM; glyceraldehyde 3-phosphate, 0.42 mM; and dihydroxyacetone, 0.52 mM.  相似文献   

18.
The biosynthesis of the enzyme pyruvate kinase (E.C. 2.7.1.40) of Alcaligenes eutrophus (Hydrogenomonas eutropha) H 16 was influenced by the carbon and energy source. After growth on gluconate the specific enzyme activity was high while acetate grown cells exhibited lower activities (340 and 55 mumoles/min-g protein, respectively). The pyruvate kinase from autotrophically grown cells was purified 110-fold. The enzyme was characterized by homotropic cooperative interactions with the substrate phosphoenolpyruvate, the activators AMP, ribose 5-phosphate, glucose-6-phosphate and the inhibitor ortho-phosphate. In addition to phosphate ATP caused inhibition but in this case nonsigmoidal kinetics was obtained. The half maximal substrate saturation constant S0.5 for phosphoenolpyruvate in the absence of any effectors was 0.12 mM, in the presence of 1 mM ribose-5-phosphate 0.07 mM, and with 9 mM phosphate 0.67 mM. The corresponding Hill values were 0.96, 1.1 and 2.75. The ADP saturation curve was hyperbolic even in the presence of the effectors, the Km value was 0.14 mM ADP. When the known intracellular metabolite concentrations in A. eutrophus H 16 were compared with the regulatory sensitivity of the enzyme, it appeared that under the conditions in vivo the inhibition by ATP was more important than the regulation by the allosteric effectors.  相似文献   

19.
PLP synthase (PLPS) is a remarkable single-enzyme biosynthetic pathway that produces pyridoxal 5′-phosphate (PLP) from glutamine, ribose 5-phosphate, and glyceraldehyde 3-phosphate. The intact enzyme includes 12 synthase and 12 glutaminase subunits. PLP synthesis occurs in the synthase active site by a complicated mechanism involving at least two covalent intermediates at a catalytic lysine. The first intermediate forms with ribose 5-phosphate. The glutaminase subunit is a glutamine amidotransferase that hydrolyzes glutamine and channels ammonia to the synthase active site. Ammonia attack on the first covalent intermediate forms the second intermediate. Glyceraldehyde 3-phosphate reacts with the second intermediate to form PLP. To investigate the mechanism of the synthase subunit, crystal structures were obtained for three intermediate states of the Geobacillus stearothermophilus intact PLPS or its synthase subunit. The structures capture the synthase active site at three distinct steps in its complicated catalytic cycle, provide insights into the elusive mechanism, and illustrate the coordinated motions within the synthase subunit that separate the catalytic states. In the intact PLPS with a Michaelis-like intermediate in the glutaminase active site, the first covalent intermediate of the synthase is fully sequestered within the enzyme by the ordering of a generally disordered 20-residue C-terminal tail. Following addition of ammonia, the synthase active site opens and admits the Lys-149 side chain, which participates in formation of the second intermediate and PLP. Roles are identified for conserved Asp-24 in the formation of the first intermediate and for conserved Arg-147 in the conversion of the first to the second intermediate.  相似文献   

20.
Rat adipose tissue glycogen synthase has been kinetically characterized. The classical D form has an apparent Km for UDP-glucose of 0.7 mM and 0.4 mM in the absence and presence of glucose 6-phosphate, respectively. The apparent Ka for glucose 6-phosphate is 0.6 mM. The effect of glucose 6-phosphate on the D form is to enhance the Vmax 7-fold. The I form is also affected by glucose 6-phosphate (Ka, 0.025 mM) but the Vmax is increased only by 20%; apparent Km values for UDP-glucose are 0.4 mM and 0.045 mM in the absence and presence of glucose 6-phosphate, respectively. In addition, two new kinetically distinguishable forms have been observed. The first, designated glycogen synthase Q, arises from an Mg2+ATP-dependent deactivation of the I form. The apparent Km values of glycogen synthase Q for UDP-glucose are identical with those of the I form; however, the apparent Ka for glucose 6-phosphate (0.2 mM) is 8-fold higher than that for the I form and one-third that for the D form. Preparations from fasted or diabetic rats contain a form of glycogen synthase, designated glycogen synthase X, that has a much lower affinity for glucose 6-phosphate than the D form (apparent Ka, 3 mM); the apparent Km values for UDP-glucose are similar to those of the D form (0.7 mM and 0.3 mM in the absence and presence of glucose 6-phosphate, respectively). In preparations from fasted rats a stepwise Mg2+-dependent conversion was demonstrated of synthase X to D to Q to I; this sequential conversion was reversed on incubation with Mg2+ATP. In preparations from fed rats, synthase Q could be generated either by limited activation (from the D form) or, after conversion to the I form, by deactivation with Mg2+ATP. However, even prolonged incubation with Mg2+ATP failed to generate the D (or X) form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号