首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mitochondria of cultured normal human fibroblast cells were found to contain the enzyme phosphoenolpyruvate carboxykinase. The activity of this enzyme in these cells is increased 2- to 3-fold by addition of 5 . 10(-4) M dibutyryl cyclic AMP, or 1.5- to 2-fold by the addition of dexamethasone (2 . 10(-7) M) or hydrocortisone (1.38 . 10(-6) M). These increases in enzyme activity were inhibited cycloheximide and actinomycin D, suggesting they are dependent upon de novo protein synthesis. Cultured human fibroblasts may thus provide a useful system for studying the regulation of mitochondrial phosphoenolpyruvate carboxykinase.  相似文献   

3.
4.
Dibutyryl cyclic AMP stimulated the activity of phosphoenolpyruvate carboxykinase in perfused livers of rats, fed on a low-protein diet, linearly over a 6h period. The enzyme activity was also significantly elevated by dexamethasone, the effect being considerably lower than that of the cyclic nucleotide. Since the time-course of phosphoenolpyruvate carboxykinase activity in response to dibutyryl cyclic AMP resembled that observed after dibutyryl cyclic AMP injection into intact animals, it is suggested that induction of the enzyme in vivo is due to a direct action of the cyclic nucleotide on the liver. Combined administration of dibutyryl cyclic AMP and glucocorticoids did not lead to an additive increase of liver phosphoenolpyruvate carboxykinase activity, either in vivo or in the perfused organ.  相似文献   

5.
Dibutyryl cyclic AMP stimulated the activity of phosphoenolpyruvate carboxykinase in perfused livers of rats, fed on a low-protein diet, linearly over a 6h period. The enzyme activity was also significantly elevated by dexamethasone, the effect being considerably lower than that of the cyclic nucleotide. Since the time-course of phosphoenolpyruvate carboxykinase activity in response to dibutyryl cyclic AMP resembled that observed after dibutyryl cyclic AMP injection into intact animals, it is suggested that induction of the enzyme in vivo is due to a direct action of the cyclic nucleotide on the liver. Combined administration of dibutyryl cyclic AMP and glucocorticoids did not lead to an additive increase of liver phosphoenolpyruvate carboxykinase activity, either in vivo or in the perfused organ.  相似文献   

6.
The concentrations of cyclic AMP and cyclic GMP in brown fat and liver of both suckling and adult rats at fixed times after injection of insulin (2.5 U/100 g body weight) or prednisolone (2.5 mg/100 g body weight) were compared with the activity of phosphoenolpyruvate carboxykinase assayed 24 h after the injections. A stimulus that produced an increase in cyclic AMP content also produced an increase in the enzyme activity. If the content of cyclic GMP was also increased there was no rise in phosphoenolpyruvate carboxykinase activity. A rise in the content of cyclic GMP alone was associated with a reduction in the activity of the enzyme. These preliminary results indicate that cyclic AMP could be involved in the induction of phosphoenolpyruvate carboxykinase and that cyclic GMP may somehow be related to its repression. The known differences in the response of phosphoenolpyruvate carboxykinase activity to insulin and prednisolone in different tissues and at different stages of ontogenic development may thus be linked to differences in the responsiveness of enzymes concerned with the metabolism of cyclic nucleotides.  相似文献   

7.
8.
The effect of protein feeding and the addition of amino acids on the activity of hepatic phosphoenolpyruvate carboxykinase (GTP: oxalacetate carboxylyase (transphosphorylating), EC 4.1.1.32) was investigated in vivo and in the isolated perfused rat liver. Protein feeding resulted in a considerable increase in phosphoenolpyruvate carboxykinase activity within 6 h. This rise was independent of the presence of glucocorticoids.In the isolated perfused liver system amino acids per se had a small effect on phosphoenolpyruvate carboxykinase activity and led to an increase by 20% when glucocorticoids were present, but resulted in a rise by 100% when glucocorticoids plus dibutyryl cyclic AMP were added to the perfusion medium. The effect of amino acids in the presence of dibutyryl cyclic AMP could also be observed in the liver of glucocorticoid-deprived rats.Cycloheximide, a translational inhibitor, totally blocked all effects of amino acids on enzyme activity.These results indicate that the concentration of amino acids in the portal vein modify the regulation of phosphoenolpyruvate carboxykinase by cyclic AMP.  相似文献   

9.
10.
The effect glucocorticoids on the synthesis and degradation of phosphoenolpyruvate carboxykinase (GTP)(EC4.1.1.32) in rat liver and kidney in vivo was studied immunochemically. The glucocorticoid analogue triamcinolone (9alpha-fluoro-11beta, 21-dihydroxy-16alpha,17alpha-isopropylidenedioxypregna-1,4-diene-3,20-dione) increased the synthesis rate of the kidney enzyme in starved animals. Both triamcinolone and cortisol decreased the synthesis rate of hepatic phosphoenolpyruvate carboxykinase (GTP) in fed and starved rats, but were without effect on the degradation rate of the enzyme. This effect of triamcinolone in liver was reversed by injection of dibutyryl cyclic AMP. However, in diabetic animals glucocorticoids increased the synthesis rate of hepatic phosphoenolpyruvate carboxykinase (GTP). Triamcinolone administration to starved rats in vivo is shown to cause an increase in the portal blood concentrations of insulin and glucose. Since the physiological de-inducer of liver phosphoenolpyruvate carboxykinase (GTP) is insulin, this is the probable cause of the decrease in the synthesis rate of the hepatic enzyme noted when glucocorticoids are administered to non-diabetic animals.  相似文献   

11.
Incubation of adipocytes in glucose-free medium with adrenocorticotrophic hormone, epinephrine, isoproterenol, or norepinephrine increased the concentration of cyclic AMP and the percentage of phosphorylase a activity, and decreased the percentage of glycogen synthase I activity. Glucose was essentially without effect on glycogen synthase or phosphorylase in either the presence or absence of epinephrine. Although glucose potentiated the action of insulin to activate glycogen synthase, the hexose did not enhance the effectiveness of insulin in the presence of epinephrine. Likewise, glucose did not increase the ability of insulin to oppose the activation of phosphorylase by epinephrine.The activation of glycogen synthase by insulin was not associated with a decrease in the concentration of cyclic AMP. Insulin partially blocked the rise in cyclic AMP due to isoproterenol, adrenocorticotrophic hormone, and norepinephrine. The maximum effects of isoproterenol on glycogen synthase and phosphorylase were observed when the concentration of cyclic AMP was increased twofold. However, insulin clearly opposed the changes in enzyme activity produced by isoproterenol (and also adrenocorticotrophic hormone, epinephrine and norepinephrine) even though concentrations of cyclic AMP were still increased three- to fourfold. Nicotinic acid opposed the increases in cyclic AMP due to adrenocorticotrophic hormone, isoproterenol and norepinephrine to the same extent as insulin; however, nicotinic acid was ineffective in opposing the activation of phosphorylase and inactivation of glycogen synthase produced by these agents. Thus, it is unlikely that the effects of insulin on glycogen synthase and phosphorylase result from an action of the hormone to decrease the concentration of cyclic AMP.  相似文献   

12.
The presence of high phosphoenolpyruvate carboxykinase (EC 4.1.1.32) activity in mouse islet cytosol has been demonstrated. The enzyme was activated by Mn2+ with a Ka of 100 X 10(-6) mol/l. The mean total activity of the Mn2+-stimulated phosphoenolpyruvate carboxykinase in islet cytosol estimated at 22 degrees C with saturating concentrations of the substrates oxaloacetate and ITP was 146 pmol/min per micrograms DNA. Km was calculated to be 6 X 10(-6) mol/l for oxaloacetate and 140 X 10(-6) mol/l for ITP. The islet phosphoenolpyruvate carboxykinase activity was not increased after starvation of the animals for 48 h. Preincubation of the cytosol at 4 degrees C with Fe2+, quinolinate, ATP, Pi, glucose 6-phosphate, fructose 1,6-bisphosphate, NAD+, NADH, oxaloacetate, ITP, cyclic AMP and Ca2+ had no effect on the enzyme activity. However, preincubation of the cytosol at 37 degrees C with ATP-Mg inhibited the Mn2+-stimulated phosphoenolpyruvate carboxykinase activity progressively with time and in a concentration-dependent manner. A similar but weaker inhibitory effect was observed with p[NH]ppA, whereas p[CH2]ppA, ADP, AMP, adenosine and Pi had no effect. It is tentatively suggested that ATP and p[NH]ppA either by adenylation or otherwise affect the interaction between islet phosphoenolpyruvate carboxykinase and the recently discovered Mr = 29000 protein modulator of the enzyme in such a way - perhaps by causing a dissociation between them - that phosphoenolpyruvate carboxykinase loses its sensitivity to Mn2+ activation.  相似文献   

13.
The administration of N6, O2'-dibutyryl cyclic AMP and theophylline to fasted-refed rats produces an 8-fold stimulation of the relative rate of hepatic phosphoenolpyruvate carboxykinase synthesis in 90 min, as measured by isotopic immunochemical techniques in vivo. The mechanism of this induction was studied first by using a homologous, noninitiating cell-free protein-synthesizing system derived from the liver of fasted-refed, cyclic AMP-treated rats. In such a system, a 5-fold increase in phosphoenolpyruvate carboxykinase synthseis is observed at 20 min post-treatment and a 9-fold stimulation at 75 min, indicating a rapid increase in the number of ribosomes engaged in the translation of the enzyme mRNA after exposure to cyclic AMP. The level of functional mRNA coding for phosphoenolpyruvate carboxykinase was then assayed in a wheat germ protein-synthesizing system capable of using rat liver mRNA as template. The template activity for phosphoenolpyruvate carboxykinase synthesis is greatly increased in the poly(A)-containing RNA isolated from cyclic AMP-induced animals. Both the increase in the capacity of the liver extract for in vitro phosphoenolpyruvate carboxykinase synthesis and the emergence of enzyme mRNA detected in the wheat germ assay are completely prevented by a pretreatment with cordycepin at doses which inhibit the appearance in the cytoplasm of newly synthesized poly(A)-containing RNA. These data demonstrate that the induction of hepatic phosphoenolpyruvate carboxykinase by cyclic AMP is characterized by the rapid build-up of newly synthesized, actively translated mRNA coding for the enzyme. The messenger accumulation could be due to an increase in the rate of its production or a decrease in the rate of its degradation.  相似文献   

14.
Summary Nicotinic acid administration, which depletes liver glycogen, leads to an increase of both pyruvate kinase L and phosphoenolpyruvate carboxykinase in liver by a factor of nearly two. The former is not prevented by either cycloheximide or actinomycin D. L-Cysteine, an allosteric inhibitor of pyruvate kinase L, favors gluconeogenesis from lactate in both nicotinic acid treated and starved animals.  相似文献   

15.
The effect of starvation on the activity of hepatic phosphoenolpyruvate carboxykinase (GTP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.32), and on the response of the enzyme to N6-O2'dibutyryl adenosine 3', 5'-monophosphate was investigated in intact and glucocorticoid-deprived rats. In the liver of intact animals, starvation produced a rapid increase in the concentration of cyclic AMP and a corresponding increase in the activity of phosphoenolpyruvate carboxykinase. The kinetics of both changes were not affected by adrenalectomy. Injection of N6-O2'-dibutyryl adenosine 3', 5'-monophosphate into intact starved rats resulted in an immediate, dramatic increase in phosphoenolpyruvate carboxykinase activity above the starvation level. Adrenalectomy completely blocked the response of the enzyme to the cyclic nucleotide. Restoration of hydrocortisone to the adrenalectomized animals restored the full N6-I2'dibutyryl adenosine 3', 5'-monophosphate effect after a lag period of 2 h. The physiological significance of these findings is considered. The data are interpreted with regard to the current hypothesis that glucocorticoids promote an increase in translatable phosphoenolpyruvate carboxykinase mRNA, while cyclic AMP enhances the translation of preexisting specific mRNA templates.  相似文献   

16.
Reuber H35 cells were pulse-labeled with radioactive leucine and the influence of hormones, serum, and amino acids on protein degradation was investigated during a subsequent chase period. Radioactive, immunoprecipitable phosphoenolpyruvate carboxykinase (GTP) (EC 4.1.1.32) had a half-life of 5 to 6 hours which was not influenced by either N6, O2-dibutyryl adenosine 3':5'-monophosphate, dexamethasone, or insulin. The rate of phosphoenolpyruvate carboxykinase degradation was the same under steady state conditions as during the approach to a new steady state following hormonal induction or deinduction of the enzyme. Therefore, hormonal regulation of enzyme activity in vivo is the result of changes in the rate of enzyme synthesis. The rate of proteolysis for total cell proteins was increased under nutritional step-down conditions produced by the removal of serum or amino acids, or both, from the medium. This effect was completely prevented by insulin. Cycloheximide and puromycin, but not actinomycin D or cordycepin, inhibited protein degradation under step-down conditions but did not further decrease the basal rate of proteolysis measured in the presence of either insulin or serum plus amino acids. There was a good correlation between changes in proteolysis produced by serum and amino acids and changes in the degradation rate of phosphoenolpyruvate carboxykinase. Also, inhibition of proteolysis with cycloheximide and puromycin was accompanied by a decrease in the degradation rate for enzyme antigen. It is suggested that nutritional step-down leads either to the synthesis or activation of a proteolytic system.  相似文献   

17.
The loss of glucose regulation of glycogen synthase in perfused livers from diabetic rats was associated with a substantial reduction in synthase phosphatase activity. Treatment of diabetic rats with insulin alone resulted in total restoration of the glucose effect and synthase phosphatase activity, while simultaneous treatment with cycloheximide severely reduced the hormonal effect. Although treatment of normal rats with cycloheximide had no effect on glucose activation of synthase, it did result in severe depletion of liver glycogen increased liver glycogen phosphorylase activity, and elevation of liver adenosine 3′,5′-monosphosphate (cyclic AMP), but without elevation of liver protein kinase activity. Simultaneous treatment of alloxan-diabetic rats with insulin and cycloheximide resulted in reduction of total liver glycogen, increased phosphorylase activity, a reduction in the ability of insulin to lower hepatic cyclic AMP, and a further reduction of protein kinase activity.In summary, the effect of insulin treatment of diabetic rats to restore glucose regulation of hepatic glycogen synthase probably involves synthesis of new protein, and the data remain consistent with the hypothesis that the defect may be due to a diabetes-related deficiency in a specific synthase phosphatase and/or alteration of the synthase molecule itself.  相似文献   

18.
The loss of glucose regulation of glycogen synthase in perfused livers from diabetic rats was associated with a substantial reduction in synthase phosphatase activity. Treatment of diabetic rats with insulin alone resulted in total restoration of the glucose effect and synthase phosphatase activity, while simultaneous treatment with cycloheximide severely reduced the hormonal effect. Although treatment of normal rats with cycloheximide had no effect on glucose activation of synthase, it did result in severe depletion of liver glycogen, increased liver glycogen phosphorylase activity, and elevation of liver adenosine 3',5'-monophosphate (cyclic AMP), but without elevation of liver protein kinase activity. Simultaneous treatment of alloxan-diabetic rats with insulin and cycloheximide resulted in reduction of total liver glycogen, increased phosphorylase activity, a reduction in the ability of insulin to lower hepatic cyclic AMP, and a further reduction of protein kinase activity. In summary, the effect of insulin treatment of diabetic rats to restore glucose regulation of hepatic glycogen synthase probably involves synthesis of new protein, and the data remain consistent with the hypothesis that the defect may be due to a diabetes-related deficiency in a specific synthase phosphatase and/or alteration of the synthase molecule itself.  相似文献   

19.
1. Glucose production from L-lactate was completely inhibited 24h after carbon tetrachloride treatment in liver from 48h-starved rats. The activities of phosphoenolpyruvate carboxykinase, fructose diphosphatase and glucose 6-phosphatase were decreased by this treatment in fed and starved rats, whereas lactate dehydrogenase activity was only decreased in fed animals. 2. The production of glucose by renal cortical slices from fed rats previously treated with carbon tetrachloride was enhanced when L-lactate, pyruvate and glutamine but not fructose were used as glucose precursors. Renal phosphoenolpyruvate carboxykinase activity was increased in this condition. 3. This increase was counteracted by cycloheximide or actinomycin D, suggesting that the effect was due to the synthesis de novo of the enzyme. 4. The pattern of hepatic gluconeogenic metabolites in treated animals was characterized by an increase in lactate, pyruvate, malate and citrate as well as a decrease in glucose 6-phosphate, suggesting an impairment of liver gluconeogenesis in vivo. 5. In contrast, the profile of renal metabolites suggested that gluconeogenesis was operative in the treated rats, as indicated by the marked increase in the content of phosphoenolpyruvate, 2-phosphoglycerate, 3-phosphoglycerate and glucose 6-phosphate. 6. It is postulated that renal gluconeogenesis could contribute to the maintenance of glycaemia in carbon tetrachloride-treated rats.  相似文献   

20.
S Kacew  R L Singhal 《Life sciences》1973,13(10):1363-1371
Administration of an acute oral dose of p,p′-DDT (600 mg/kg), α-chlordane (200 mg/kg), heptachlor (200 mg/kg) and endrin (50 mg/kg) produced a significant rise in the concentration of serum glucose and urea and a lowering of hepatic glycogen. In addition, treatment with either of these insecticides significantly increased the activities of hepatic and renal pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose 1,6-diphosphatase and glucose 6-phosphatase, the four enzymes which play a key, rate-limiting role in the process of gluconeogenesis. Treatment with p,p′-DDT, α-chlordane, heptachlor or endrin proved equally effective in elevating the levels of endogenous cyclic AMP and augmenting the activity of basal- and fluoride-stimulated forms of adenyl cyclase in both tissues. Whereas renal phosphodiesterase was decreased slightly by p,p′-DDT, the activity of this cyclic AMP-degrading enzyme remained unaltered following the administration of other pesticides. Our data indicate that the pesticide-induced alterations in carbohydrate metabolism of liver and kidney may be associated with an enhanced ability of these organs to synthesize cyclic AMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号