首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Illumination of maize roots initiates changes in mRNA levels and in the activities of proteins within the root cap. Using Northern analysis we showed a 5–6-fold increase in the levels of three specific mRNAs and a 14-fold increase in plastid mRNA. This increase is rapid, occurring within 30 minutes of illumination. With prolonged periods of darkness following illumination, messages return to levels observed in dark, control caps. For two species of mRNA illumination results in a reduction in message levels. Light-stimulated increases in the levels of specific mRNAs are proportionally greater than are increases in the activities of corresponding proteins. We suggest that the light-stimulated increase in protein activity in root caps may be preceded by and occur as a consequence of enhanced levels of mRNA. Our work suggests that photomorphogenesis in roots could involve changes in the levels of a wide variety of mRNAs within the root cap.  相似文献   

2.
Two cDNA clones representing mRNAs, highly expressed in pea root tips, were isolated by mRNA differential display. Ribonuclease protection analyses showed different patterns of expression of these two messages in several pea tissues. Sequence analysis showed that the first clone, PsH1b-40, has 100% homology with a previously isolated H1 histone cDNA, PsH1b. However, it has an additional 30 nt at the 3 end which is absent in PsH1b, suggesting possible multiple polyadenylation sites in the same mRNA. The second clone, PsH1b-41, encodes a deduced 19.5 kDa protein of 185 amino acids with an isoelectric point of 11.5. The putative globular domain of the encoded protein showed 67–71% residue identity with globular domains of 28 kDa pea PsH1b H1 histone and Arabidopsis thaliana H1-1 H1 histone. It has 9 repeating motifs of (T/S)XXK. In the C-terminal domain, there are four lysine-rich repeating motifs of SXK(T/S)PXKKXK which may be involved in chromatin condensation and decondensation. Southern blot analysis of nuclear DNA shows that PsH1-41 belongs to a multigene family.  相似文献   

3.
Root cap development in cereals and legumes is self-regulated by a repressor that accumulates in the extracellular environment, and immersing the root tip into water results in renewed cap development. By exploiting this phenomenon, root cap mitosis and differentiation can be synchronously induced among populations. In Pisum sativum L., messenger RNA (mRNA) differential display revealed changes in expression of approximately 1% of the sample mRNA population within minutes of induced cap turnover. This profile changes sequentially over a period of 30 min, then stabilizes. Microarray analysis of Medicago truncatula root caps confirmed changes in expression of approximately 1% of the target population, within minutes. A cell specific marker for cap turnover exhibited the same temporal and spatial expression profile in the gymnosperm species Norway spruce (Picea abies) as in pea. Induced cap development provides a means to profile cell-specific gene expression among phylogenetically diverse species from the early moments of mitosis and cellular differentiation.  相似文献   

4.
After induction with maltose, 30–40% of the total protein in the osmotic shock fluid consist of maltose-binding protein while the induction ratio (maltose versus glycerol grown cells) for the amount of binding protein synthesized as well as for maltose transport is in the order of 10. Induction of maltose transport does not occur during all times of the cell cycle, but only shortly before cell division. Electronmicroscopic analysis of cells grown logarithmically on glycerol or maltose revealed in the latter the formation of large pole caps. These pole caps arise from an enlargement of the periplasmic space. Small cells contain one pole cap, large cells contain two. Pulse label studies with strain BUG-6, a mutant that is temperature sensitive for cell division reveal the following: Growth at the non-permissive temperature prevents maltose-binding protein synthesis and formation of new transport capacity.After shifting to the permissive temperature the cells regain both functions. Simultaneously, the newly formed cells exhibit pole caps.We conclude that the induction of maltose-binding protein is responsible for the formation of pole caps. In addition, beside the presence of inducer, cell cycle events occuring during division are necessary for the synthesis of maltose-binding protein.Non Standard Abbreviations GLPT periplasmic protein, related to transport of glycerolphosphate in Escherichia coli (Silhavy et al., 1976b)  相似文献   

5.
Extracellular proteins in pea root tip and border cell exudates   总被引:1,自引:0,他引:1       下载免费PDF全文
Newly generated plant tissue is inherently sensitive to infection. Yet, when pea (Pisum sativum) roots are inoculated with the pea pathogen, Nectria haematococca, most newly generated root tips remain uninfected even though most roots develop lesions just behind the tip in the region of elongation. The resistance mechanism is unknown but is correlated spatially with the presence of border cells on the cap periphery. Previously, an array of >100 extracellular proteins was found to be released while border cell separation proceeds. Here we report that protein secretion from pea root caps is induced in correlation with border cell separation. When this root cap secretome was proteolytically degraded during inoculation of pea roots with N. haematococca, the percentage of infected root tips increased from 4% +/- 3% to 100%. In control experiments, protease treatment of conidia or roots had no effect on growth and development of the fungus or the plant. A complex of >100 extracellular proteins was confirmed, by multidimensional protein identification technology, to comprise the root cap secretome. In addition to defense-related and signaling enzymes known to be present in the plant apoplast were ribosomal proteins, 14-3-3 proteins, and others typically associated with intracellular localization but recently shown to be extracellular components of microbial biofilms. We conclude that the root cap, long known to release a high molecular weight polysaccharide mucilage and thousands of living cells into the incipient rhizosphere, also secretes a complex mixture of proteins that appear to function in protection of the root tip from infection.  相似文献   

6.
Two functionally distinct sets of meristematic cells exist within root tips of pea (Pisum sativum): the root apical meristem, which gives rise to the body of the root; and the root cap meristem, which gives rise to cells that differentiate progressively through the cap and separate ultimately from its periphery as border cells. When a specific number of border cells has accumulated on the root cap periphery, mitosis within the root cap meristem, but not the apical meristem, is suppressed. When border cells are removed by immersion of the root tip in water, a transient induction of mitosis in the root cap meristem can be detected starting within 5 min. A corresponding switch in gene expression throughout the root cap occurs in parallel with the increase in mitosis, and new border cells begin to separate from the root cap periphery within 1 h. The induction of renewed border cell production is inhibited by incubating root tips in extracellular material released from border cells. The results are consistent with the hypothesis that operation of the root cap meristem and consequent turnover of the root cap is self-regulated by a signal from border cells.  相似文献   

7.
Guard cells are specialized and metabolically active cells which arise during the differentiation of the epidermis. Using Nicotiana glauca epidermal peels as a source of purified guard cells, we have constructed a cDNA library from guard cell RNA. In order to isolate genes that are predominantly expressed in guard cells, we performed a differential screen of this library, comparing the hybridization of a radiolabeled cDNA probe synthesized from guard cell RNA to that from a mesophyll cell cDNA probe. Sixteen clones were isolated based on their greater level of hybridization with the guard cell probe. Of these, eight had high homology to lipid transfer protein (LTP), two were similar to glycine-rich protein (GRP), and one displayed high homology to proline-rich proteins from Arabidopsis thaliana (AtPRP2, AtPRP4) and from potato guard cells (GPP). Northern analysis confirmed that one or more NgLTP genes, NgGRP1, and NgGPP1 are all differentially expressed, with highest levels in guard cells, and low or undetectable levels in mesophyll cells and in roots. In addition, all are induced to some degree in drought-stressed guard cells. NgLTP and NgGRP1 expression was localized by in situ hybridization to the guard cells and pavement cells in the epidermis. NgGRP1 expression was also detected in cells of the vasculature. Genomic Southern analysis indicated that LTP is encoded by a family of highly similar genes in N. glauca. This work has identified members of a subset of epidermis- and guard cell-predominant genes, whose protein products are likely to contribute to the unique properties acquired by guard cells and pavement cells during differentiation.  相似文献   

8.
The root cap is a universal feature of angiosperm, gymnosperm, and pteridophyte roots. Besides providing protection against abrasive damage to the root tip, the root cap is also involved in the simultaneous perception of a number of signals – pressure, moisture, gravity, and perhaps others – that modulate growth in the main body of the root. These signals, which originate in the external environment, are transduced by the cap and are then transported from the cap to the root. Root gravitropism is one much studied response to an external signal. In the present paper, consideration is given to the structure of the root cap and, in particular, to how the meristematic initial cells of both the central cap columella and the lateral portion of the cap which surrounds the columella are organized in relation to the production of new cells. The subsequent differentiation and development of these cells is associated with their displacement through the cap and their eventual release, as border cells, from the cap periphery. Mutations, particularly in Arabidopsis, are increasingly playing a part in defining not only the pattern of genetic activity within different cells of the cap but also in revealing how the corresponding wild-type proteins relate to the range of functions of the cap. Notable in this respect have been analyses of the early events of root gravitropism. The ability to image auxin and auxin permeases within the cap and elsewhere in the root has also extended our understanding of this growth response. Images of auxin distribution may, in addition, help extend ideas concerning the positional controls of cell division and cell differentiation within the cap. However, firm information relating to these controls is scarce, though there are intriguing suggestions of some kind of physiological link between the border cells surrounding the cap and mitotic activity in the cap meristem. Open questions concern the structure and functional interrelationships between the root and the cap which surmounts it, and also the means by which the cap transduces the environmental signals that are of critical importance for the growth of the individual roots, and collectively for the shaping of the root system. Current address (Peter W. Barlow): School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK  相似文献   

9.
The quiescent center is viewed as an architectural template in the root apical meristem of all angiosperm and gymnosperm root tips. In roots of Arabidopsis thaliana (L.) Heynh., the quiescent center inhibits differentiation of contacting initial cells and maintains the surrounding initial cells as stem cells. Here, the role of the quiescent center in the development of the maize (Zea mays L.) root cap has been further explored. Three maize root-specific genes were identified. Two of these were exclusively expressed in the root cap and one of them encoded a GDP-mannose-4,6-dehydratase. Most likely these two genes are structural, tissue-specific markers of the cap. The third gene, a putative glycine-rich cell wall protein, was expressed in the cap and in the root epidermis and, conceivably is a positional marker of the cap. Microsurgical and molecular data indicate that the quiescent center and cap initials may regulate the positional and structural expression of these genes in the cap and thereby control root cap development. Received: 22 September 1999 / Accepted: 9 November 1999  相似文献   

10.
Mitosis and cell wall synthesis in the legume root cap meristem can be induced and synchronized by the nondestructive removal of border cells from the cap periphery. Newly synthesized cells can be examined microscopically as they differentiate progressively during cap development, and ultimately detach as a new population of border cells. This system was used to demonstrate that Pisum sativum L. fucosyl transferase (PsFut1) mRNA expression is strongly expressed in root meristematic tissues, and is induced >2-fold during a 5-h period when mitosis in the root cap meristem is increased. Expression of PsFut1 antisense mRNA in pea hairy roots under the control of the CaMV35S promoter, which exhibits meristem localized expression in pea root caps, resulted in a 50-60% reduction in meristem localized endogenous PsFut1 mRNA expression measured using whole mount in situ hybridization. Changes in gross levels of cell wall fucosylated xyloglucan were not detected, but altered surface localization patterns were detected using whole mount immunolocalization with CCRC-M1, an antibody that recognizes fucosylated xyloglucan. Emerging hairy roots expressing antisense PsFut1 mRNA appeared normal macroscopically but scanning electron microscopy of tissues with altered CCRC-M1 localization patterns revealed wrinkled, collapsed cell surfaces. As individual border cells separated from the cap periphery, cell death occurred in correlation with extrusion of cellular contents through breaks in the wall.  相似文献   

11.
12.
Günter Fellenberg 《Planta》1965,64(3):287-290
Summary Bromouracil and histone inhibit root formation and tissue differentiation in dark grown pea epicotyls when they are applicated 11–48 hours after culture initiation. The activity of cell division is thereby not suppressed.

Mit 3 Textabildungen  相似文献   

13.
Wang JW  Wang LJ  Mao YB  Cai WJ  Xue HW  Chen XY 《The Plant cell》2005,17(8):2204-2216
The plant root cap mediates the direction of root tip growth and protects internal cells. Root cap cells are continuously produced from distal stem cells, and the phytohormone auxin provides position information for root distal organization. Here, we identify the Arabidopsis thaliana auxin response factors ARF10 and ARF16, targeted by microRNA160 (miR160), as the controller of root cap cell formation. The Pro(35S):MIR160 plants, in which the expression of ARF10 and ARF16 is repressed, and the arf10-2 arf16-2 double mutants display the same root tip defect, with uncontrolled cell division and blocked cell differentiation in the root distal region and show a tumor-like root apex and loss of gravity-sensing. ARF10 and ARF16 play a role in restricting stem cell niche and promoting columella cell differentiation; although functionally redundant, the two ARFs are indispensable for root cap development, and the auxin signal cannot bypass them to initiate columella cell production. In root, auxin and miR160 regulate the expression of ARF10 and ARF16 genes independently, generating a pattern consistent with root cap development. We further demonstrate that miR160-uncoupled production of ARF16 exerts pleiotropic effects on plant phenotypes, and miR160 plays an essential role in regulating Arabidopsis development and growth.  相似文献   

14.
We launched imbibed seeds of Zea mays into outer space aboard the space shuttle Columbia to determine the influence of microgravity on cellular differentiation in root caps. The influence of microgravity varied with different stages of cellular differentiation. Overall, microgravity tended to 1) increase relative volumes of hyaloplasm and lipid bodies, 2) decrease the relative volumes of plastids, mitochondria, dictyosomes, and the vacuome, and 3) exert no influence on the relative volume of nuclei in cells comprising the root cap. The reduced allocation of dictyosomal volume in peripheral cells of flight-grown seedlings correlated positively with their secretion of significantly less mucilage than peripheral cells of Earth-grown seedlings. These results indicate that 1) microgravity alters the patterns of cellular differentiation and structures of all cell types comprising the root cap, and 2) the influence of microgravity on cellular differentiation in root caps of Zea mays is organelle specific.  相似文献   

15.
In order to quantify the ultrastructural changes that occur during cellular differentiation in an “open” type of root cap, we have performed a morphometric analysis of the ultrastructures of calyptrogen, columella, and peripheral cells of the root cap ofCucurbita pepo. The relative volumes of nuclei, nucleoli, and mitochondria decrease as cells move (i.e., differentiate) through the root cap. Before cells are sloughed from the cap, the relative volume of the vacuole increases by 250%. The relative volumes of plastids and plastid starch increase as calyptrogen cells differentiate into columella cells, but decrease as columella cells differentiate into peripheral cells. Dictyosomal volumes increase only as columella cells differentiate into peripheral cells. These results indicate that the five cell types comprising the root cap ofC.pepo are each characterized by a unique structure, and that the ultrastructural changes associated with cellular differentiation in root caps are organelle specific. These results are discussed relative to the functions of the various cell types of the root cap.  相似文献   

16.
The early nodulin gene, PsENOD7, is expressed in pea root nodules induced by Rhizobium leguminosarum bv. viciae, but not in other plant organs. In situ hybridization showed that this gene is transcribed during nodule maturation in the infected cells of the proximal part of the prefixation zone II. At the transition of zone II into interzone II–III, the level of PsENOD7 mRNA drops markedly. PsENOD7 has no significant homology to other genes. RFLP mapping studies have shown that PsENOD7 is located in linkage group I between the leghaemoglobin genes and sym2.  相似文献   

17.
A homologue of the multidrug resistance (MDR) gene was obtained while screening a potato stolon tip cDNA expression library with35S-labeled calmodulin. The mammalian MDR gene codes for a membrane-bound P-glycoprotein (170–180 kDa) which imparts multidrug resistance to cancerous cells. The potato cDNA (PMDR1) codes for a polypeptide of 1313 amino acid residues (ca. 144 kDa) and its structural features are very similar to the MDR P-glycoprotein. The N-terminal half of the PMDR1-encoded protein shares striking homology with its C-terminal half, and each half contains a conserved ATP-binding site and six putative transmembrane domains. Southern blot analysis indicated that potato has one or two MDR-like genes. PMDR1 mRNA is constitutively expressed in all organs studied with higher expression in the stem and stolon tip. The PMDR1 expression was highest during tuber initiation and decreased during tuber development.  相似文献   

18.
BACKGROUND: In syncytial blastoderm Drosophila embryos, actin caps assemble during telophase. As the cell cycle progresses through interphase, these small caps expand and fuse to form pseudocleavage furrows that are structurally related to the cleavage furrows that assemble during somatic cell division. The molecular mechanism driving cell cycle coordinated actin reorganization from the caps to the furrows is not understood. RESULTS: We show that Drosophila embryos contain a typical Arp2/3 complex and that components of this complex localize to the margins of the expanding caps, to mature pseudocleavage furrows, and to somatic cell cleavage furrows during the postcellularization embryonic divisions. A mutation that disrupts the arpc1 subunit of Arp2/3 leads to spindle fusions that are characteristic of pseudocleavage furrow disruption. By contrast, this mutation does not significantly affect nuclear positioning during interphase, which is dependent on actin cap function. In vivo analysis of actin reorganization demonstrates that the arpc1 mutation does not prevent assembly of small actin caps but blocks cap expansion and furrow assembly as the cell cycle progresses through interphase. The scrambled gene is also required for cap expansion and furrow assembly, and Scrambled is required for Arp2/3 localization to the cap margins. CONCLUSIONS: The Drosophila Arp2/3 complex and Scrambled protein are required for actin cap expansion and pseudocleavage furrow formation during the syncytial blastoderm divisions. We propose that Scrambled-dependent localization of Arp2/3 to the margins of the expanding caps triggers local actin polymerization that drives cap expansion and pseudocleavage furrow assembly.  相似文献   

19.
Plant enzyme activities in the rhizosphere potentially are a resource for improved plant nutrition, soil fertility, bioremediation, and disease resistance. Here we report that a border cell specific β-galactosidase is secreted into the acidic extracellular environment surrounding root tips of pea, as well as bean, alfalfa, barrel medic, sorghum, and maize. No enzyme activity was detected in radish and Arabidopsis, species that do not produce viable border cells. The secreted enzyme activity was inhibited by galactose and 2-phenylethyl 1-thio-β-d-galactopyranoside (PETG) at concentrations that altered root growth without causing cell death. A tomato galactanase encoding gene was used as a probe to isolate a full length pea cDNA clone (BRDgal1) from a root cap-border cell cDNA library. Southern blot analysis using full length BRDgal1 as a probe revealed 1–2 related sequences within the pea genome. BRDgal1 mRNA expression was analysed by whole mount in situ hybridization (WISH) and found to occur in the outermost peripheral layer of the cap and in suspensions of detached border cells. No expression was detected within the body of the root cap. Repeated efforts to develop viable hairy root clones expressing BRDgal1 antisense mRNA under the control of the CaMV35S promoter, whose expression in the root cap is limited to cells at the root cap periphery only during root emergence, were unsuccessful. These data suggest that altered expression of this enzyme is deleterious to early root development. The first two authors contributed equally to the completion of this project.  相似文献   

20.
The aim of this study was to identify genes expressed in an age-dependent manner in mouse (Mus musculus) liver. To search for age-dependently expressed genes, we used a fluorescence differential display–PCR (FDD–PCR) technique on total RNA extracted from mouse livers collected at seven different developmental stages. All differentially expressed cDNAs detected by FDD–PCR were reamplified, subcloned and sequenced, and six genes were confirmed to show age-dependent expression by quantitative real-time PCR analysis. Nucleotide sequence analyses showed that four of them had high homology with known genes (mitochondrial DNA, cytosolic aldehyde dehydrogenase, cell division cycle 2-like 5 and complement component 8 alpha polypeptide), and two with expressed sequence tags of unknown genes. The FDD–PCR technique was effective for detecting novel age-dependently expressed genes, and also for newly characterizing individual expression patterns of known genes. The age-dependent expression patterns of known genes revealed in this study may provide an opportunity to investigate the unknown physiological roles of the proteins they encode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号