首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
19-Norandrosterone (19-NA) as its glucuronide derivative is the target metabolite in anti-doping testing to reveal an abuse of nandrolone or nandrolone prohormone. To provide further evidence of a doping with these steroids, the sulfoconjugate form of 19-norandrosterone in human urine might be monitored as well. In the present study, the profiling of sulfate and glucuronide derivatives of 19-norandrosterone together with 19-noretiocholanolone (19-NE) were assessed in the spot urines of 8 male subjects, collected after administration of 19-nor-4-androstenedione (100 mg). An LC/MS/MS assay was employed for the direct quantification of sulfoconjugates, whereas a standard GC/MS method was applied for the assessment of glucuroconjugates in urine specimens. Although the 19-NA glucuronide derivative was always the most prominent at the excretion peak, inter-individual variability of the excretion patterns was observed for both conjugate forms of 19-NA and 19-NE. The ratio between the glucuro- and sulfoconjugate derivatives of 19-NA and 19-NE could not discriminate the endogenous versus the exogenous origin of the parent compound. However, after ingestion of 100 mg 19-nor-4-androstenedione, it was observed in the urine specimens that the sulfate conjugates of 19-NA was detectable over a longer period of time with respect to the other metabolites. These findings indicate that more interest shall be given to this type of conjugation to deter a potential doping with norsteroids.  相似文献   

2.
Metabolites of nandrolone were determined in the urine of several sportsmen, sedentary and post-menopausal women by capillary gas chromatography–mass spectrometry quadrupole (GC–MS) and capillary gas chromatography mass–mass spectrometry ion trap (GC–MS–MS) methods. The method employed was GC–EI-MS with 17α-methyltestosterone as internal standard with ethyl ether extraction prior to selected ion monitoring of the bis(trimethylsilyl) ethers at ion masses m/z 405 and 420 for the nandrolone metabolites, and 418 and 403 for nandrolone derivative. Recovery for nandrolone, 19-norandrosterone (19-NA) and 19-noretiocholanolone (19-NE) was 97.20, 94.17 and 95.54%, respectively. Detection limits for nandrolone, 19-NA and 19-NE were 0.03, 0.01 and 0.06 ng/ml. Metabolites of nandrolone (19-NA and 19-NE) were found in 12.5% (n=40) of sportsmen and 40% (n=10) of post-menopausal women.  相似文献   

3.
When administered to human subjects, nandrolone is metabolized into two main products, 19-norandrosterone (19-NA) and 19-noretiocholanolone (19-NE). Recent studies demonstrated the endogenous production of these compounds in man at concentrations very close to the threshold of the International Olympic Committee (IOC), i.e. 2 ng/ml. Because the possibility of reaching or exceeding this fateful limit is difficult to exclude, a complementary biochemical parameter is necessary for the differentiation of endogenous 19-NA and 19-NE production from residues resulting from nandrolone consumption. We measured the endogenous concentrations of 19-NA and 19-NE in 385 urine samples from professional football players, and we studied the phase II metabolite composition in individuals excreting the highest concentrations. The results showed that around 30% of endogenous 19-norandrosterone was sulfo-conjugated, whereas 100% of 19-norandrosterone was excreted conjugated to a glucuronic acid when nandrolone was administered. This significant qualitative difference appears to be a promising complementary criterion to more definitively conclude about an athlete's culpability, especially when nandrolone metabolites are found in the low ng/ml range.  相似文献   

4.
In 1997, in the scope of antidoping control in sport, a not inconsiderable number of urine analysed by official laboratories revealed the presence of 19-nortestosterone (19-NT: 17β-hydroxyestr-4-en-3-one) metabolites: 19-norandrosterone (19-NA: 3α-hydroxy-5α-estran-17-one) and 19-noretiocholanolone (19-NE: 3α-hydroxy-5β-estran-17-one). These repeated results on a short period of time generated some investigations and especially the verification of the possible production of these metabolites by an unknown endogenous route in adult entire male. Some experiences were led on different persons known to be non-treated with steroids and more precisely with nandrolone. Extractive methods were developed focusing on their selectivity, i.e. searching to eliminate at best matrix interferences from the target analytes. Gas chromatography coupled to mass spectrometry (quadrupole and magnetic instruments) was used to detect, identify and quantify the suspected signals. Two types of derivatization (TMS and TBDMS), a semi-preparative HPLC as well as co-chromatography proved unambiguously the presence, in more than 50% of the analysed urine (n=40), of 19-NA at concentrations between 0.05 and 0.60 ng/ml. 19-NE was not detected with the developed methods (LOD<0.02 ng/ml). Experiments led on athletes showed that after a prolonged intense effort, the 19-NA concentration can be increased by a factor varying between 2 and 4. Even if some complementary researches have to be done in order to determine the maximal physiological level of 19-NA and 19-NE, these results should considerably change the strategy of antidoping laboratories.  相似文献   

5.
Determination of whether the major metabolite of nandrolone in urine, 19-norandrosterone (19-NA), is exogenous or endogenous in origin is one of the most exciting challenges for antidoping laboratories. Gas chromatography–combustion–isotope ratio mass spectrometry (GC–C–IRMS) can be used to differentiate these two origins by carbon isotopic ratio analysis. A complete method for purification of 19-NA in urine has been established. Acetylated ketosteroids, and in particular 19-NA, are isolated from the urine matrix before analysis after hydrolysis and purification of urine by reversed-phase and normal solid-phase extraction. The limit of detection for 19-NA was about 60 ng with recoveries of 54–60%. Evidence of exogenous administration of 19-NA may be established from isotope ratio determination from the 13C/12C ratios of several synthetic 19-norsteroids compared to those obtained for endogenous steroids.  相似文献   

6.
The biosynthesis of non-aromatic 19-norsteroids has been studied using primary cultures of porcine granulosa cells. Formation of 5(10)-estrene-3 beta,17 beta-diol, a novel 19-norsteroid, from androstenedione and 19-hydroxyandrostenedione by porcine granulosa cells is reported for the first time. The structure was deduced from (i) comparison of its elution times on C18 reverse phase HPLC with authentic 5(10)-estrene-3 beta,17 beta-diol (ii) identification with 5(10)-estrene-3 beta,17 beta-diol-diacetate after acetylation (iii) oxidation/acid catalysed isomerization to 19-norandrostenedione. Serum or serum plus FSH significantly stimulated (seven fold increase) formation of 5(10)-estrene-3 beta,17 beta-diol from androstenedione and 19-hydroxyandrostenedione. Formation of 5(10)-estrene-3 beta,17 beta-diol from both substrates was significantly (p less than 0.01) reduced by the aromatase inhibitors 4-hydroxyandrostenedione (15 microM) and aminoglutethimide phosphate (10(-4)M). These results suggest that 5(10)-estrene-3 beta,17 beta-diol (and 19-norandrostenedione) may be formed by enzymes similar to the aromatase complex required for estradiol-17 beta biosynthesis. 5(10)-Estrene-3 beta,17 beta-diol is converted by granulosa cells to four metabolites. 19-Norandrostenedione was identified by crystallization to constant specific activity; 19-nortestosterone is a minor product. Production of 19-norandrostenedione and 19-nortestosterone indicates that granulosa cells possess the enzymes necessary for the transformation of 5(10)-estrene-3 beta,17 beta-diol and other 3-hydroxy-5(10)-estrenes to 19-nor-4-ene-3-ketosteroids. The formation of 5(10)-estrene-3 beta,17 beta-diol and 19-norandrostenedione as substantial metabolites of androstenedione suggest a physiological role for these 19-norsteroids in ovarian follicular development.  相似文献   

7.
Therapeutic potential of nandrolone and its derivatives against leishmaniasis has been studied. A number of derivatives of nandrolone (1) were synthesized through biotransformation. Microbial transformation of nandrolone (1) with Cunninghamella echinulata and Cunninghamella blakesleeana yielded three new metabolites, 10β,12β,17β-trihydroxy-19-nor-4-androsten-3-one (2), 10β,16α,17β-trihydroxy-19-nor-4-androsten-3-one (3), and 6β,10β,17β-trihydroxy-19-nor-4-androsten-3-one (4), along with four known metabolites, 10β,17β-dihydroxy-19-nor-4-androsten-3-one (5), 6β,17β-dihydroxy-19-nor-4-androsten-3-one (6) 10β-hydroxy-19-nor-4-androsten-3,17-dione (7) and 16β,17β-dihydroxy-19-nor-4-androsten-3-one (8). Compounds 18 were evaluated for their anti-leishmanial activity. Compounds 1 and 8 showed a significant activity in vitro against Leishmania major. The leishmanicidal potential of compounds 1–8 (IC50 = 32.0 ± 0.5, >100, 77.39 ± 5.52, 70.90 ± 1.16, 54.94 ± 1.01, 80.23 ± 3.39, 61.12 ± 1.39 and 29.55 ± 1.14 μM, respectively) can form the basis for the development of effective therapies against the protozoal tropical disease leishmaniasis.  相似文献   

8.
19-Norandrosterone sulfate (19-NAS) is the sulfoconjugated form of 19-norandrosterone (19-NA), the major metabolite of the steroid nandrolone. A sensitive and accurate liquid chromatography/tandem mass spectrometry (LC-MS/MS) assay was developed for the direct measurement of 19-NAS in human urine samples. The method involved a quaternary amine SPE protocol and subsequently injection of the extract onto an analytical column (Uptisphere ODB, 150 mm x 3.0 mm, 5 microm) for chromatographic separation and mass spectrometry detection in negative electrospray ionisation mode. The sulfoconjugate of 19-NA was identified in urine by comparison of mass spectra and retention time with a reference substance. The limit of detection (LOD) and lowest limit of quantification (LLOQ) of 19-NAS were of 40 pg/mL and 200 pg/mL, respectively. For a nominal concentration of 2 ng/mL, recovery (94%), intra-day precision (2.7%), intra-assay precision (6.6%) and inter-assay precision (14.3%) were determined. Finally, this analytical method was applied for quantifying the concentration of 19-NAS in doping samples, using calibration curves (0.2-20 ng/mL) and the standard-addition method. The results show the feasibility of applying this LC-MS/MS assay as a complementary tool to detect misuse of nandrolone or nandrolone precursors.  相似文献   

9.
The detection of 19 norandrosterone (19-NA) in a competitor's urine sample is taken as prima facie evidence of administration of nandrolone or other 19-norsteroid but a potential problem is that administration of norethisterone, a progestogen used for menstrual disorders and for hormonal contraception, also results in the excretion of 19-NA that can exceed the laboratory reporting threshold of 2 ng/mL. The contribution of norethisterone to urinary 19-NA with and without 19-norandrostenedione, a known norethisterone tablet impurity, requires evaluation. Preparations containing, either <2 ng or 1 μg 19-norandrostenedione impurity per 5 mg of norethisterone, administered to female volunteers (n = 10) in doses comparable to those used for menstrual disorders (5 mg three times daily for 10 days), resulted in maximal 19-NA concentrations of 51 and 63 ng/mL, respectively. The maximal concentration of 19-NA, 2 h post-administration of a single 1 μg dose of 19-norandrostenedione, was 2.4 ng/mL. These results prove unequivocally that norethisterone is metabolized to 19-NA and that there is only a minor contribution from the impurity 19-norandrostenedione. Administration to women (n = 30) of a single contraceptive tablet containing norethisterone (1 mg) with one of the highest proportions of the impurity 19-norandrostenedione (∼0.5 μg, 0.05%, w/w) resulted in a urinary 19-NA concentration of 9.1 ng/mL, with a maximum concentration ratio of 19-NA to the norethisterone metabolite 3α,5β-tetrahydronorethisterone of 0.36. We provide data that should remove the need for time-consuming follow-up investigations to consider whether doping with 19-norandrogens has occurred.  相似文献   

10.
Torrado S  Segura J  Farré M  Ventura R 《Steroids》2008,73(7):751-759
19-Nor-4-androstenediol is a prohormone of nandrolone. Both substances are included in the WADA list of prohibited classes of substances. The aim of this study is to determine the plasma levels of 19-nor-4-androstenediol and its metabolites after oral administration of a nutritional supplement containing the drug. Two capsules of Norandrodiol Select 300 were orally administered to six healthy male volunteers. Plasma samples were collected up to 24h. Samples were extracted to obtain free and glucuronoconjugated metabolic fractions. Trimethylsilyl derivatives of both fractions were analyzed by gas chromatography coupled to mass spectrometry (GC-MS). The method was validated to determine linearity, extraction recovery, limit of detection and quantification, intra- and inter-day precision and accuracy. After administration of 19-nor-4-androstenediol, the main metabolites detected were norandrosterone and noretiocholanolone, mainly in the glucuronide fraction. Nandrolone, norandrostenedione and 19-nor-4-androstenediol were also detected at lower concentrations.  相似文献   

11.
Follicular fluid was aspirated from preovulatory follicles of women under ovarian stimulation for in vitro fertilization and analyzed by a highly specific technique based on gas chromatography-mass spectrometry associated with stable isotope dilution. 19-Nortestosterone and 19-norandrostenedione were identified and quantified for the first time in human follicular fluid. There was a strong positive correlation between 19-nortestosterone and estradiol-17 beta and between 19-norandrostenedione and estrone concentrations, thus indicating a common cellular origin. The accumulation of 19-norsteroids in follicular fluid confirms that they are weakly active intermediates in the multistep enzymatic conversion of androgen to estrogen. Testosterone concentrations were significantly lower than those obtained by radioimmunoassay; cross-reaction with substantially higher levels of 19-nortestosterone seems to be at the origin of this discrepancy. Androstenedione concentrations were similar to those reported in the literature and it was therefore confirmed that an estradiol/androstenedione concentration ratio above 20 is favourable for oocyte cleavage. Other and some newly estimated androgens are: testosterone sulfate, 5-androstene-3 beta, 17 beta-diol 3-sulfate and disulfate, dihydrotestosterone sulfate, epitestosterone, 19-hydroxyandrostenedione, 5 alpha-androstane-3 alpha, 17 beta-diol, 5 alpha-androstane-3 beta, 17 beta-diol, 5 alpha-androstane-3,17-dione and androsterone. Dehydroepiandrosterone sulfate was by far the most abundant androgen in this type of follicles.  相似文献   

12.
The formation of 19-norsteroids by demethylation of endogenous steroids in stored urine samples was observed. Suspicious urine samples (i.e. containing trace amounts of 19-norandrosterone and 19-noretiocholanolone) were selected and spiked with deuterated analogues of androsterone and etiocholanolone at concentrations corresponding to high endogenous levels (4 microg/mL). After incubation, respective 19-norsteroids (19-norandrosterone-d4 and 19-noretiocholanolone-d5) were identified in these samples by high-resolution mass spectrometry. The transformation of the 5 beta-isomer (etiocholanolone) yields about three-fold higher concentrations, compared to the 5 alpha-isomer. A significant temperature dependence was observed by comparison of reaction kinetics at room temperature (23+/-2 degrees C) and 37 degrees C. Concentrations of 19-norandrosterone-d4 and 19-noretiocholanolone-d5, respectively, were 2.7 and 3.6 times higher at elevated temperature. The conversion of androsterone-d4 to 19-norandrosterone-d4 did not exceed a relative amount of 0.1%. Incubation of the urine samples with androsterone-d4-glucuronide led to the production of 19-norandrosterone-d4-glucuronoide. A partial stabilization was observed after addition of metabolic inhibitors (e.g. EDTA). The application of the incubation experiments described may contribute to the clarification of adverse analytical findings regarding low levels of 19-norsteroid metabolites.  相似文献   

13.
Stable isotope gas chromatography/mass spectrometry has been used successfully in the elucidation of structures of urinary steroid metabolites in the horse and in the identification of metabolites isolated from in vivo perfusion and in vitro incubation studies using equine tissue preparations. Deuterium-labeled steroids, testosterone, dehydroepiandrosterone, and 5-androstene-3 beta,17 beta-diol have been synthesized by base-catalyzed isotope exchange methods and the products characterized by gas chromatography/mass spectrometry. [16,16(-2)H2]Dehydroepiandrosterone (plus radiolabeled dehydroepiandrosterone) was perfused into a testicular artery of a pony stallion and was shown to be metabolized into 2H2-labeled testosterone, 4-androstenedione, isomers of 5-androstene-3,17-diol, 19-hydroxytestosterone, and 19-hydroxy-4-androstenedione. In further studies, equine testicular minces have been incubated with 2H2-labeled and radiolabeled dehydroepiandrosterone and 5-androstene-3 beta, 17 beta-diol. The metabolites, whose identity was confirmed by stable isotope gas chromatography/mass spectrometry, proved the interconversion of the two substrates, as well as formation of testosterone and 4-androstenedione. The aromatization of dehydroepiandrosterone was also confirmed, together with the formation of an isomer of 5(10)-estrene-3,17-diol from both substrates showing 19-demethylation without concomitant aromatization. In studies of the feto-placental unit, the allantochorion was shown to aromatize [2H5]testosterone to [2H4]estradiol, the loss of one 2H from the substrate being consistent with aromatization of the A ring. The formation of 6-hydroxyestradiol was also confirmed in this study. The same technique has been valuable in determining the structure of two metabolites of nandrolone isolated from horse urine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We present a method for the analysis of urinary 16(5alpha)-androsten-3alpha-ol together with 5beta-pregnane-3alpha,20alpha-diol and four testosterone metabolites: androsterone (Andro), etiocholanolone (Etio), 5alpha-androstane-3alpha,17beta-diol (5alphaA), 5beta-androstane-3alpha,17beta-diol (5betaA) by means of gas chromatography/combustion/isotopic ratio mass spectrometry (GC/C/IRMS). The within-assay and between-assay precision S.D.s of the investigated steroids were lower than 0.3 and 0.6 per thousand, respectively. A comparative study on a population composed of 20 subjects has shown that the differences of the intra-individual delta(13)C-values for 16(5alpha)-androsten-3alpha-ol and 5beta-pregnane-3alpha,20alpha-diol are less than 0.9 per thousand. Thereafter, the method has been applied in the frame of an excretion study following oral ingestion of 50 mg DHEA initially and oral ingestion of 50mg pregnenolone 48 h later. Our findings show that administration of DHEA does not affect the isotopic ratio values of 16(5alpha)-androsten-3alpha-ol and 5beta-pregnane-3alpha,20alpha-diol, whereas the isotopic ratio values of 5beta-pregnane-3alpha,20alpha-diol vary by more 5 per thousand upon ingestion of pregnenolone. We have observed delta(13)C-value changes lower than 1 per thousand for 16(5alpha)-androsten-3alpha-ol, though pregnenolone is a precursor of the 16-ene steroids. In contrast to 5beta-pregnane-3alpha,20alpha-diol, the 16-ene steroid may be used as an endogenous reference compound when pregnenolone is administered.  相似文献   

15.
After incubation of 3beta-hydroxy-5-[17,21,21,21-2H]-pregnen-20-one with the microsomal fraction of boar testis, the metabolites were analyzed by gas chromatography and gas chromatography-mass spectrometry. The following metabolites were identified: 3beta,17alpha-dihydroxy-5-[21,21,21-3H]pregnen-20-one, 3beta-hydroxy-5-androsten-17-one, 5-androstene-3beta,17beta-diol, and 5-[17beta-2H]androstene-3beta,17alpha-diol. The presence of a 2H atom at the 17beta position of 5-androstene-3beta,17alpha-diol was confirmed by oxidizing the steroid with 3beta-hydroxy-steroid dehydrogenase of Pseudomonas testosteroni to obtain 17alpha-hydroxy-4-[2H]androsten-3-one and then by oxidizing the latter steroid with chromic acid to obtain nonlabeled 4-androstene-3,17-dione. Among these metabolites, the first three can be interpreted to be synthesized by a well documented pathway, including 17alpha-hydroxylation followed by side chain cleavage as follows: 3beta-hydroxy-5-[17,21,21,21-2H]pregnen-20-one leads to 3beta,17alpha-dihydroxy-2-[21,21,212H]-pregnen-20-one leads to 3beta-hydroxy-5-androsten-17-one leads to 5-androstene-3beta,17beta-diol. On the other hand, 5-androstene-3beta,17alpha-diol, which contained a 2H atom at the 17beta position, is not likely to be synthesized via above mentioned pathway in which nonlabeled 3beta-hydroxy-5-androsten-17-one is formed as the first C19-steroid. It seems that an alternate side chain cleavage mechanism leading from pregnenolone to 17alpha-hydroxy-C19-steroid exists in boar testis.  相似文献   

16.
Anabolic steroids are widely used to increase skeletal muscle (SM) mass and improve physical performance. Some dietary supplements also include potent steroid precursors or active steroid analogs such as nandrolone. Our previous study reported the anabolic steroid effects on SM in a castrated guinea pig model with SM measured using a highly quantitative magnetic resonance imaging (MRI) protocol. The aim of the current study was to apply this animal model and in vivo MRI protocol to evaluate the growth effects of four widely used over-the-counter testosterone and nandrolone precursors: 4-androstene-3 17-dione (androstenedione), 4-androstene-3β 17β-diol (4-androsdiol), 19-nor-4-androstene-3β-17β-diol (bolandiol) and 19-nor-4-androstene-3 17-dione (19-norandrostenedione). The results showed that providing precursor to castrated male guinea pigs led to plasma steroid levels sufficient to maintain normal SM growth. The anabolic growth effects of these specific precursors on individual and total muscle volumes, sexual organs, and total adipose tissue over a 10-week treatment period, in comparison with those in the respective positive control testosterone and nandrolone groups, were documented quantitatively by MRI.  相似文献   

17.
The course of the transformation of six 5-ene steroids with varying substituents at C-17 or/and C-3: dehydroepiandrosterone (DHEA), 5-androsten-3beta,17beta-diol, 17alpha-methyl-5-androsten-3beta,17beta-diol, 5-androsten-17-one, 5-androsten-3beta-ol and pregnenolone by Fusarium culmorum was investigated. Three substrates with oxygen functions at C-3 and C-17 i.e. DHEA, 5-androsten-3beta,17beta-diol and 17alpha-methyl-5-androsten-3beta,17beta-diol were hydroxylated entirely at 7alpha-axial, allylic position. The mixture of 7alpha-hydroxy- and 7alpha,15alpha-dihydroxyderivatives was formed during the transformation of pregnenolone and 5-androsten-17-one, from the latter 2alpha,7alpha-dihydroxyderivative was also obtained. 7alpha,15alpha- Dihydroxyderivative was the only product isolated from the 5-androsten-3beta-ol post-transformation mixture. The time-course of the DHEA transformation by F. culmorum shows that the substrate induces 7alpha-hydroxylase activity. DHEA was transformed by androstenedione induced F. culmorum cultures to a larger extent than by a noninduced microorganism; the selectivity of the transformation remained unchanged.  相似文献   

18.
The biotransformation of dehydrochloromethyltestosterone (DHCMT, 4-chloro-17β-hydroxy,17α-methylandrosta-1,4-dien-3-one) in man was studied with the aim to discover long-term metabolites valuable for the antidoping analysis. Having applied a high performance liquid chromatography for the fractionation of urinary extract obtained from the pool of several DHCMT positive urines, about 50 metabolites were found. Most of these metabolites were included in the GC-MS/MS screening method, which was subsequently applied to analyze the post-administration and routine doping control samples. As a result of this study, 6 new long-term metabolites were identified tentatively characterized using GC-MS and GC-MS/MS as 4-chloro-17α-methyl-5β-androstan-3α,16,17β-triol (M1), 4-chloro-18-nor-17β-hydroxymethyl,17α-methyl-5β-androsta-1,13-dien-3α-ol (M2), 4-chloro-18-nor-17β-hydroxymethyl,17α-methyl-5β-androst-13-en-3α-ol (M3), its epimer 4-chloro-18-nor-17α-hydroxymethyl,17β-methyl-5β-androst-13-en-3α-ol, 4-chloro-18-nor-17β-hydroxymethyl,17α-methylandrosta-4,13-dien-3α-ol (M4) and its epimer 4-chloro-18-nor-17α-hydroxymethyl,17β-methylandrosta-4,13-dien-3α-ol. The most long-term metabolite M3 was shown to be superior in the majority of cases to the other known DHCMT metabolites, such as 4-chloro-18-nor-17β-hydroxymethyl,17α-methylandrosta-1,4,13-trien-3-one and 4-chloro-3α,6β,17β-trihydroxy-17α-methyl-5β-androst-1-en-16-one.  相似文献   

19.
19-Norandrosterone (19-NA) is the principal urinary metabolite of the anabolic steroid nandrolone and its prohormones. The administration of these 19-nor androgens is prohibited in sport by the World Anti-Doping Agency (WADA) but, even so, adverse findings for 19-NA continue to be commonly reported. Little is known about the urinary concentrations of 19-NA that can occur in women who are not using anabolic steroids, including those using oral contraceptives containing the 19-nor progestogen norethisterone. In 2004, WADA lowered the reporting threshold for 19-NA for females from 5 to 2 ng/mL. The lack of any substantial data on 19-NA excretion in women prompted this large-scale investigation. In this investigation, single untimed urines collected from 1202 female volunteers, 38 of whom were taking norethisterone containing contraceptives, were analysed for 19-NA. None of the women was a competitive athlete and pregnancy had been excluded by a urinary test for human chorionic gonadotropin (hCG). Only one sample exceeded the 19-NA reporting threshold having a concentration of 4.1 ng/mL. This sample was from a user of a norethisterone-containing contraceptive.  相似文献   

20.
19-Norandrostenedione (NAED) and nandrolone are anabolic-androgenic steroids (AASs). Nandrolone was regarded solely as a synthetic AAS until the 1980s when trace concentrations of apparently endogenous nandrolone were detected in urine samples obtained from intact male horses (stallions). Since then, its endogenous origin has been reported in boars and bulls; endogenous NAED and nandrolone have been identified in plasma and urine samples collected from stallions. More recently, however, it was suggested that NAED and nandrolone detected in urine samples from stallions are primarily artifacts due to the analytical procedure. The present study was undertaken to determine whether NAED and nandrolone detected in plasma and urine samples collected from stallions are truly endogenous or artifacts from sample processing. To answer this question, fresh plasma and urine samples from ≥8 stallions were analyzed for the two AASs, soon after collection, by liquid chromatography hyphenated to tandem mass spectrometry (LC-MS/MS). NAED and nandrolone were not detected in fresh plasma samples but detected in the same samples post storage. Concentrations of both AASs increased with storage time, and the increases were greater at a higher storage temperature (37°C versus 4°C, and ambient temperature versus 4°C). Although NAED was detected in some fresh stallion urine samples, its concentration (<407 pg/mL) was far lower (<0.4%) than that in the same samples post storage (at ambient temperature for 15 days). Nandrolone was not detected in most of fresh urine samples but detected in the same samples post storage. Based on these results, it is concluded that all NAED and nandrolone detected in stored plasma samples of stallions and most of them in the stored urine samples are not from endogenous origins but spontaneously generated during sample storage, most likely from spontaneous decarboxylation of androstenedione-19-oic acid and testosterone-19-oic acid. To our knowledge, it is the first time that all NAED and nandrolone detected in plasma of stallions and most of them detected in the urine have been shown to be spontaneously generated in vitro during sample storage. This finding would have significant implications with regard to the regulation of the two steroids in horse racing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号