首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Reproduction and related traits such as mating success are strongly affected by thermal stress. We tested direct and correlated responses to artificial selection in replicated lines of Drosophila buzzatii that were selected for mating success at high temperature. Knockdown resistance at high temperature (KRHT) and chill‐coma recovery (CCR) were tested as correlated selection responses. Virgin flies were allowed to mate for four hours at 33°C in three replicated lines (S lines) to obtain the selected flies and then returned at 25°C to lay eggs. Other three replicated lines were maintained at 25°C without any selection as control (C lines). After 15 selection generations, KRHT and CCR were measured. Both traits were assessed in flies that did not receive any hardening pretreatments as well as in flies that were either heat or cold hardened. Thermotolerance traits showed significant correlated responses with higher KRHT in S than in C lines, both with a heat‐hardening pretreatment and without a heat‐hardening pretreatment. CCR time was longer in S than in C lines both with a cold‐hardening pretreatment and without a cold‐hardening pretreatment. Hardening treatments improved both KRHT and CCR in all cases excepting KRHT in C lines. Overall, KRHT and CCR showed an antagonistic pattern of correlated responses to our selection regime, suggesting either pleiotropy or tightly linked trait‐specific genes partially affecting KRHT and CCR.  相似文献   

2.
Chill‐coma recovery (CCR) is an important trait for thermal adaptation in insects. Multiple phenotypes could be affected by selection on CCR if the trait is genetically correlated with other adaptive traits. To test for heritable (co‐)variation in CCR, we examined direct and correlated responses to bi‐directional selection on CCR. Drosophila buzzatii Patterson & Wheeler (Diptera: Drosophilidae) was artificially selected for decreased and increased recovery time following exposure to 0 °C. After 18 selected generations, the selection response in CCR was significant but qualitatively asymmetric, with replicated lines for slow CCR showing the highest response. Knockdown resistance to high temperature was not affected by CCR selection. Starvation resistance in the adult fly showed no clear pattern of correlated responses to CCR selection. Selection on CCR had no impact on developmental time and body size. Chill‐coma recovery shows no apparent genetic trade‐offs with any of the multiple traits included in this study. These results are largely consistent with recent studies on clines in D. buzzatii, which showed that CCR is not across‐population correlated with other clinally varying traits of thermal adaptation. Cold adaptation may evolve toward increased cold resistance independent of upper thermal limits.  相似文献   

3.
In insects, two ecologically relevant traits of thermal adaptation are knockdown resistance to high temperature (KRHT) and chill-coma recovery (CCR). Chromosome 2 of Drosophila melanogaster was tested for quantitative trait loci (QTL) affecting both CCR and KRHT in backcrosses between homosequential lines that are fixed for the standard (noninverted) sequence of this autosome. These lines were obtained by artificial selection on KRHT and subsequent inbreeding from a stock that was derived from a single wild population. Heat-induced expression of the 70KD heat-shock protein (Hsp70) was also examined for variation between the lines. Composite interval mapping was performed for each trait on each reciprocal backcross, identifying one QTL region in the middle of chromosome 2 for both KRHT and CCR. The largest estimates of additive effects were found in pericentromeric regions of chromosome 2, accounting for 10–14% (CCR) and 10–17% (KRHT) of the phenotypic variance in BC populations. No QTL was found in the region of the heat-shock factor ( hsf ) gene. However, the two parental lines have diverged in the heat-induced Hsp70 expression. Distribution of KRHT QTL on chromosome 2 was similar between this study based on crosses between lines selected from a single wild population and previous work based on crosses between selection lines from different continents. Colocalized QTL showed a trade–off association between CCR and KRHT, which should be the result of either multiple, tightly linked trait-specific genes or a single gene with pleiotropic effects on the traits. We discuss candidate loci contained within the QTL regions.  相似文献   

4.
Knockdown resistance to high temperature is an ecologically important trait in small insects. A composite interval mapping was performed on the two major autosomes of Drosophila melanogaster to search for quantitative trait loci (QTL) affecting knockdown resistance to high temperature (KRHT). Two dramatically divergent lines from geographically different thermal environments were artificially selected on KRHT. These lines were crossed to produce two backcross (BC) populations. Each BC was analysed for 200 males with 18 marker loci on chromosomes 2 and 3. Three X-linked markers were used to test for X-linked QTL in an exploratory way. The largest estimate of autosome additive effects was found in the pericentromeric region of chromosome 2, accounting for 19.26% (BC to the low line) and 29.15% (BC to the high line) of the phenotypic variance in BC populations, but it could represent multiple closely linked QTL. Complete dominance was apparent for three QTL on chromosome 3, where heat-shock genes are concentrated. Exploratory analysis of chromosome X indicated a substantial contribution of this chromosome to KRHT. The results show that a large-effect QTL with dominant gene action maps on the right arm of chromosome 3. Further, the results confirm that QTL for heat resistance are not limited to chromosome 3.  相似文献   

5.
Knockdown resistance to high temperature (KRHT) is a thermal adaptation trait in Drosophila melanogaster. Here we used quantitative real-time PCR (qRT-PCR) to test for possible associations between KRHT and the expression of candidate genes within quantitative trait loci (QTL) in eight recombinant inbred lines (RIL). hsp60 and hsc70-3 map within an X-linked QTL, while CG10383, catsup, ddc, trap1, and cyp6a13 are linked in a KRHT-QTL on chromosome 2. hsc70-3 expression increased by heat-hardening. Principal Components analysis revealed that catsup, ddc and trap1 were either co-expressed or combined in their expression levels. This composite expression variable (e-PC1) was positively associated to KRHT in non-hardened RIL. In heat-hardened flies, hsp60 was negatively related to hsc70-3 on e-PC2, with effects on KRHT. These results are consistent with the notion that QTL can be shaped by expression variation in combined candidate loci. We found composite variables of gene expression (e-PCs) that best correlated to KRHT. Network effects with other untested linked loci are apparent because, in spite of their associations with KRHT phenotypes, e-PCs were sometimes uncorrelated with their QTL genotype.  相似文献   

6.
Cuticular colour in the mealworm beetle (Tenebrio molitor) is a quantitative trait, varying from tan to black. Population level variation in cuticular colour has been linked to pathogen resistance in this species and in several other insects: darker individuals are more resistant to pathogens. Given that cuticular colour has a heritable component, we have taken an experimental evolution approach: we selected 10 lines for black and 10 lines for tan adult cuticular phenotypes over at least six generations and measured the correlated responses to selection in a range of immune effector systems. Our results show that two immune parameters related to resistance (haemocyte density and pre-immune challenge activity of phenoloxidase (PO)) were significantly higher in selection lines of black beetles compared to tan lines. This may help to explain increased resistance to pathogens in darker individuals. Cuticular colour is dependent upon melanin production, which requires the enzyme PO that is present in its inactive form inside haemocytes. Thus, the observed correlated response to selection upon cuticular colour and immune variables probably results from these traits' shared dependence on melanin production.  相似文献   

7.
Clines for size and stress resistance traits have been described for several Drosophila species and replicable clines across different species may indicate climatic selection. Here we consider clines in stress resistance traits in an Australian endemic species, D. serrata, by comparing levels of variation within and among isofemale lines initiated with flies collected from the eastern coast of Australia. We also consider clinical variation in chill coma recovery, a trait that has recently been shown to exhibit high levels of variation among Drosophila species. Patterns were compared with those in the cosmopolitan species D. melanogaster from the same area. Both desiccation and starvation resistance showed no clinical pattern despite heritable variation among isofemale lines. In contrast chill coma resistance exhibited a linear cline in the anticipated direction, resistance increasing with latitude. Body size was measured as wing length and body weight. Both traits showed geographic variation and strong non-linear clines with a sharp reduction in size in the tropics. These results are discussed in the context of climatic selection and evolutionary processes limiting species borders.  相似文献   

8.
Correlated responses to selection for postweaning gain in mice were studied to determine the influence of population size and selection intensity. Correlated traits measured were three-, six- and eight-week body weights, litter size, twelve-day litter weight, proportion infertile matings and two indexes of reproductive performance. In general, the results agreed with observations made on direct response: correlated responses in the body weight traits and litter size increased as (1) selection intensity increased and (2) effective population size increased. Correlated responses in the body weight traits and litter size were positive in the large population size lines (16 pairs), as expected from the positive genetic correlation between these traits and postweaning gain. However, several negative correlated responses were observed at small population sizes (one and two pairs). Within each level of selection intensity, traits generally associated with fitness tended to decline most in the very small populations (one and two pairs) and in the large populations (16 pairs) for apparently different reasons. The fitness decline at the small effective population sizes was attributable to inbreeding depression. In contrast, it was postulated that the fitness decline at the large effective population size was due to selection moving the population mean for body weight and a trait positively correlated genetically with body weight (i.e., percent body fat) away from an optimum.  相似文献   

9.
The thermotolerance effect of heat hardening (also called short-term acclimation), knockdown resistance to high temperature (KRHT) with and without heat hardening and chill-coma recovery (CCR) are important phenotypes of thermal adaptation in insects and other organisms. Drosophila melanogaster from Denmark and Australia were previously selected for low and high KRHT, respectively. These flies were crossed to construct recombinant inbred lines (RIL). KRHT was higher in heat-hardened than in nonhardened RIL. We quantify the heat-hardening effect (HHE) as the ratio in KRHT between heat-hardened and nonhardened RIL. Composite interval mapping revealed a more complex genetic architecture for KRHT without heat-hardening than for KRHT in heat-hardened insects. Five quantitative trait loci (QTL) were found for KRHT, but only two of them were significant after heat hardening. KRHT and CCR showed trade-off associations for QTL both in the middle of chromosome 2 and the right arm of chromosome 3, which should be the result of either pleiotropy or linkage. The major QTL on chromosome 2 explained 18% and 27-33% of the phenotypic variance in CCR and KRHT in nonhardened flies, respectively, but its KRHT effects decreased by heat hardening. We discuss candidate loci for each QTL. One HHE-QTL was found in the region of small heat-shock protein genes. However, HHE-QTL explained only a small fraction of the phenotypic variance. Most heat-resistance QTL did not colocalize with CCR-QTL. Large-effect QTL for CCR and KRHT without hardening (basal thermotolerance) were consistent across continents, with apparent transgressive segregation for CCR. HHE (inducible thermotolerance) was not regulated by large-effect QTL.  相似文献   

10.
G. McColl  A. A. Hoffmann    S. W. McKechnie 《Genetics》1996,143(4):1615-1627
To identify genes involved in stress resistance and heat hardening, replicate lines of Drosophila melanogaster were selected for increased resistance to knockdown by a 39° heat stress. Two selective regimes were used, one with and one without prior hardening. Mean knockdown times were increased from ~5 min to >20 min after 18 generations. Initial realized heritabilities were as high as 10% for lines selected without hardening, and crosses between lines indicated simple additive gene effects for the selected phenotypes. To survey allelic variation and correlated selection responses in two candidate stress genes, hsr-omega and hsp68, we applied denaturing gradient gel electrophoresis to amplified DNA sequences from small regions of these genes. After eight generations of selection, allele frequencies at both loci showed correlated responses for selection following hardening, but not without hardening. The hardening process itself was associated with a hsp68 frequency change in the opposite direction to that associated with selection that followed hardening. These stress loci are closely linked on chromosome III, and the hardening selection established a disequilibrium, suggesting an epistatic effect on resistance. The data indicate that molecular variation in both hsr-omega and hsp68 contribute to natural heritable variation for hardened heat resistance.  相似文献   

11.
Abstract We examined the evolutionary response of wing area (a trait highly correlated with other measures of body size) to relative humidity (RH), temperature, and their interaction in Drosophila melanogaster , using replicated lines that had been allowed to evolve at low or high humidity at 18°C or at 25°C. We found that after 20 weeks of selection (5–10 generations), low RH lines had significantly greater wing areas than high RH lines in both sexes. This evolutionary response may have resulted from selection of larger flies with a smaller surface area for water loss relative to their weight, or as a correlated response to selection on some other unidentified trait. There were no evolutionary effects of temperature on wing area or cell density. This may have been due to the short duration of the selection experiment, and/or counteracting selection pressures on body size at warm temperature.  相似文献   

12.
The response to uniform selection may occur in alternate ways that result in similar performance. We tested for multiple adaptive solutions during artificial selection for high voluntary wheel running in laboratory mice. At generation 43, the four replicate high runner (HR) lines averaged 2.85-fold more revolutions per day as compared with four non-selected control (C) lines, and females ran 1.11-fold more than males, with no sex-by-linetype interaction. Analysis of variance indicated significant differences among C lines but not among HR for revolutions per day. By contrast, average speed varied significantly among HR lines, but not among C, and showed a sex-by-linetype interaction, with the HR/C ratio being 2.02 for males and 2.45 for females. Time spent running varied among both HR and C lines, and showed a sex-by-linetype interaction, with the HR/C ratio being 1.52 for males but only 1.17 for females. Thus, females (speed) and males (speed, but also time) evolved differently, as did the replicate selected lines. Speed and time showed a trade-off among HR but not among C lines. These results demonstrate that uniform selection on a complex trait can cause consistent responses in the trait under direct selection while promoting divergence in the lower-level components of that trait.  相似文献   

13.
Correlated responses to artificial selection for stress tolerance can provide insight into underlying genetic variation and the physiological basis of stress resistance . Lines of Drosophila melanogaster held in the absence of food or with an unsuitable resource, specifically decomposing lemon, responded to selection by becoming starvation resistant. The lemon-selected lines also adapted by evolving a resource-based induction response. Compared to control lines, the selected lines tended to store more lipid, develop slower and have a larger body size. Additional responses included resistance to desiccation and acetone fumes, suggesting multiple stress resistance is a correlated result of selection for starvation resistance. The specific metabolic rate was lower in the starvation selected lines and enzyme activities changed in response to selection. In particular, enzyme activities indirectly associated with lipid biogenesis increased in both types of selected lines. The correlated responses to the two selection regimes were sufficiently consistent to indicate a common basis for starvation resistance. Specific responses to starvation selection appeared to oppose the short-term phenotypic responses to starvation. Thus, a common response to stress selection may be to ameliorate the immediate physiological impact of the stress factor.  相似文献   

14.
Traits do not evolve independently. To understand how trait changes under selection might constrain adaptive changes, phenotypic and genetic correlations are typically considered within species, but these capture constraints across a few generations rather than evolutionary time. For longer-term constraints, comparisons are needed across species but associations may arise because of correlated selection pressures rather than genetic interactions. Implementing a unique approach, we use known patterns of selection to separate likely trait correlations arising due to correlated selection from those reflecting genetic constraints. We examined the evolution of stress resistance in >90 Drosophila species adapted to a range of environments, while controlling for phylogeny. Initially we examined the role of climate and phylogeny in shaping the evolution of starvation and body size, two traits previously not examined in this context. Following correction for phylogeny only a weak relationship between climate and starvation resistance was detected, while all of the variation in the relationship between body size and climate could be attributed to phylogeny. Species were divided into three environmental groups (hot and dry, hot and wet, cold) with the expectation that, if genetic correlations underpin trait correlations, these would persist irrespective of the environment, whereas selection-driven evolution should produce correlations dependent on the environment. We found positive associations between most traits in hot and dry environments coupled with high trait means. In contrast few trait correlations were observed in hot/wet and cold environments. These results suggest trait associations are primarily driven by correlated selection rather than genetic interactions, highlighting that such interactions are unlikely to limit evolution of stress resistance.  相似文献   

15.
Correlated responses to artificial selection on body size in Drosophila melanogaster were investigated, to determine how the changes in size were produced during development. Selection for increased thorax length was associated with an increase in larval development time, an extended growth period, no change in growth rate, and an increased critical larval weight for pupariation. Selection for reduced thorax length was associated with reduced growth rate, no change in duration of larval development and a reduced critical larval weight for pupariation. In both lines selected for thorax length and lines selected for wing area, total body size changed in the same direction as the artificially selected trait. In large selection lines of both types, the increase in size was achieved almost entirely by an increase in cell number, while in the small lines the decrease in size was achieved predominantly by reduced cell size, and also by a reduction in cell number. The implications of the results for evolutionary-genetic change in body size in nature are discussed.  相似文献   

16.
Most life history traits are positively influenced by body size, whereas disadvantages of large body size are poorly documented. To investigate presumed intrinsic costs of large size in the yellow dung fly (Scathophaga stercoraria; Diptera: Scathophagidae), we established two replicates each of three body size laboratory selection lines (small, control and large; selection on males only), and subjected flies of the resulting extended body size range to various abiotic stresses. Response to selection was symmetrical in the small and large lines (realized h(2) = 0.16-0.18). After 24 generations of selection body size had changed by roughly 10%. Female size showed a correlated response to selection on male size, whereas sexual size dimorphism did not change. Development time also showed a correlated response as, similar to food limited flies, small line flies emerged earlier at smaller body size. At the lowest larval food limit possible, flies of all lines emerged at the same small body size after roughly the same development time; so overall phenotypic plasticity in body size and development time strongly increased following selection. Juvenile mortality increased markedly when food was extremely limited, large line flies showing highest mortality. Winter frost disproportionately killed large (line) flies because of their longer development times. Mortality at high temperatures was high but size-selective effects were inconsistent. In all environments the larger males suffered more. Initial growth rate was higher for males and at unlimited food. Small line individuals of both sexes grew slowest at unlimited larval food but fastest at limited larval food, suggesting a physiological cost of fast growth. Overall, extension of the natural body size range by artificial selection revealed some otherwise cryptic intrinsic juvenile viability costs of large size, mediated by longer development or faster growth, but only in stressful environments.  相似文献   

17.
In insects changes in lipid metabolism may underlie a trade-off between cold resistance and starvation resistance. To test this we examined correlated responses in independent sets of Drosophila melanogaster lines selected for increased cold resistance and increased starvation resistance. The starvation lines showed correlated patterns found in other D. melanogaster populations selected for this trait, including higher lipid levels and increased resistance to desiccation, although the selected lines did not show a longer development time as found in some other studies. Consistent with the trade-off hypothesis, selected lines with increased starvation resistance showed decreased resistance to a cold stress as measured by mortality, whereas selected lines with increased cold resistance showed a decrease in starvation resistance. To counter the possibility of inadvertent selection accounting for these patterns, selected and control lines from both selection regimes were crossed to form mass bred populations, which were left for four generations prior to establishing isofemale lines. By scoring starvation and cold resistance in these lines derived from both sets of selection regimes, we confirmed the negative association between resistance to these stresses in females but not in males. Potential implications of this trade-off for surviving cold conditions when food resources are limiting are discussed.  相似文献   

18.
Resistance to low temperatures can vary markedly among invertebrate species and is directly related to their distribution. Despite the ecological importance of cold resistance this trait has rarely been studied genetically, mainly because low and variable fitness of offspring from cold-stressed mothers makes it difficult to undertake selection experiments and compare cold resistance of parents and offspring. One measure of cold resistance that varies geographically in Drosophila melanogaster and that is amenable to genetic analysis is chill-coma recovery. Three replicate lines of D. melanogaster were selected every second generation, for over 30 generations, for decreased recovery time following exposure to 0 degrees C. Correlated responses were scored to characterize underlying physiological traits and to investigate interactions with other traits. Lines responded rapidly to the intermittent selection regime with realized heritabilities varying from 33% to 46%. Selected lines showed decreased recovery time after exposure to a broad range of low temperatures and also had a lower mortality following a more severe cold shock, indicating that a general mechanism underlying cold resistance had been selected. The selection response was independent of plastic changes in cold resistance because the selected lines maintained their ability to harden (i.e. a short-term exposure to cool temperature resulted in decreased recovery time in subsequent chill-coma assays). Changes in cold resistance were not associated with changes in resistance to high temperature exposure, and selected lines showed no changes in wing size, development time or viability. However, there was a decrease in longevity in the selected lines due to an earlier onset of ageing. These results indicate that chill-coma recovery can be rapidly altered by selection, as long as selection is undertaken every second generation to avoid carry-over effects, and suggest that lower thermal limits can be shifted towards increased cold resistance independently of upper thermal limits and without tradeoffs in many life-history traits.  相似文献   

19.
Replicate lines of Drosophila melanogaster and D. simulans originating from the same location in Australia were selected at two selection intensities (50%, 85% mortality) for increased resistance to desiccation, and scored for correlated responses to see if similar physiological changes were associated with the selection responses. Realized heritabilities were much higher in D. melanogaster. Selected lines of both species were more resistant than control lines to starvation and a toxic ethanol concentration. Both species also showed similar correlated responses for traits underlying the selection response: selected lines lost water at a slower rate and had reduced activity levels in a dry environment, but they did not differ in wet or dry body weight or in water content. For D. melanogaster, realized heritabilities for lines selected at 85% mortality were higher than for lines selected at 50% mortality, but there was no effect of selection intensity for D. simulans. Comparative studies of this nature may be useful in predicting the extent to which species can adapt to stress in the wild.  相似文献   

20.
One of the hypotheses of growing interest in studies of responses to thermal environments suggests that trade-offs and other trait associations may be altered by temperature. Here, the commonly observed positive association between body size and longevity was examined at two adult test temperatures, 14 degrees C and 25 degrees C, in cold-stress-selected lines (S) and their controls (C) in 25 degrees C-reared Drosophila melanogaster. Thorax length (TL) and developmental time (DT) were also scored in 25 degrees C-reared individuals before and after one generation of truncation selection on longevity. The topography of the selection surface that relates longevity to thorax and wing size was temperature dependent and differed both between lines and between sexes. Longevity increased monotonically with body size (TL) in C and S females at 25 degrees C but, surprisingly, longevity decreased with body size in S individuals at 14 degees C. Body size did not diverge between S and C lines and showed no response to longevity selection. However, DT increased by 25 degrees C-longevity selection in C individuals and decreased by 14 degrees C-longevity selection in S individuals. These results suggest that trait associations (including the commonly observed trade-off between body size and DT) can greatly depend on temperature, as a shift in the sign of the correlation is possible at low temperature. Genotype x temperature interaction is an important source of variation in the relationship between soma size and longevity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号