首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present three-dimensional structural models for a DNA oligomer containing a bulged guanosine based on proton NMR data and energy minimization computations. The nonexchangeable proton resonances of the duplex 5'd(GATGGGCAG).d(CTGCGCCATC) are assigned by nuclear Overhauser effect spectroscopy (NOESY) and correlated spectroscopy connectivities, and the NMR spectrum is compared with that of a regular 8-mer of similar sequence, 5'd(GATGGCAG).d(CTGCCATC). Experimental proton-proton distances are obtained from NOESY spectra acquired with mixing times of 100, 150, and 200 ms. A refined three-dimensional structure for the bulge-containing duplex is calculated from regular B DNA starting coordinates by using the AMBER molecular mechanics program [Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G., Profeta, S., & Weiner, P. (1984) J. Am. Chem. Soc. 106, 765-784]. We compare structures obtained by building the helix in three and four base pair increments with structures obtained by direct minimization of the entire nine base sequence, with and without experimental distance constraints. The general features of all the calculated structures are very similar. The helix is of the B family, with the extra guanine stacked into the helix, and the helix axis is bent by 18-23 degrees, in agreement with gel mobility data for bulge-containing sequences [Rice, J. A. (1987) Ph.D. Thesis, Yale University].  相似文献   

2.
We have determined the three-dimensional structure of a non-selfcomplementary nonanucleotide duplex which contains an abasic (apyrimidinic) site in the centre, i.e. a deoxyribose residue opposite an adenosine. The majority of the base and sugar proton resonances were assigned by NOESY, COSY and 2DQF spectra in D2O and H2O. We have measured the initial slope of buildup of NOEs in NOESY spectra at very short mixing times (25 to 50 ms), and from these were able to establish interproton distances for the central part of the duplex. We propose a different strategy for proton-proton distance determinations which takes into account the observed variations in correlation times for particular proton-proton vectors. A set of 31 measured interproton distances was incorporated into the refinement of the oligonucleotide structure by molecular mechanics calculations. Two structures were obtained which retain all aspects of a classical B DNA in which the unpaired adenine and the abasic deoxyribose lie inside the helix. We observe that the non-hydrogen bonded adenine is held well in the helix, the Tm of this base being the same as that of the A.T base pairs in the same duplex.  相似文献   

3.
D Hare  L Shapiro  D J Patel 《Biochemistry》1986,25(23):7445-7456
We report below on features of the three-dimensional structure of the d(C-G-T-G-A-A-T-T-C-G-C-G) self-complementary duplex (designated 12-mer GT) containing symmetrical G X T mismatches in the interior of the helix. The majority of the base and sugar protons in the 12-mer GT duplex were assigned by two-dimensional nuclear Overhauser effect (NOESY) spectra in H2O and D2O solution. A set of 92 short (less than 4.5-A) proton-proton distances defined by lower and upper bounds for one symmetrical half of the 12-mer GT duplex were estimated from NOESY data sets recorded as a function of mixing time. These experimental distances combined with nucleotide bond length parameters were embedded into Cartesian space; several trial structures were refined to minimize bond geometry and van der Waals and chirality error. Confidence in this approach is based on the similarity of the refined structures for the solution conformation of the 12-mer GT duplex. The G and T bases pair through two imino-carbonyl hydrogen bonds, and stacking is maintained between the G X T wobble pair and adjacent Watson-Crick G X C pairs. The experimental distance information is restricted to base and sugar protons, and hence structural features such as base pair overlap, glycosidic torsion angles, and sugar pucker are well-defined by this combination of NMR and distance geometry methods. By contrast, we are unable to define the torsion angles about the bonds C3'-O3'-P-O5'-C5'-C4' in the backbone of the nucleic acid.  相似文献   

4.
M A Rosen  L Shapiro  D J Patel 《Biochemistry》1992,31(16):4015-4026
We have synthesized an oligodeoxynucleotide duplex, d(G-C-A-T-C-G-A-T-A-G-C-T-A-C-G).d(C-G-T-A-G-C-C-G-A-T-C-G), with a three-base bulge loop (A-T-A) at a central site in the first strand. Nuclear Overhauser experiments (NOESY) in H2O indicate that the GC base pairs flanking the bulge loop are intact between 0 and 25 degrees C. Nuclear Overhauser effects in both H2O and D2O indicate that all bases within the bulge loop are stacked into the helix. These unpaired bases retain an anti conformation about their glycosidic bonds as they stack within the duplex. The absence of normal sequential connectivities between the two cytosine residues flanking the bulge site on the opposite strand indicates a disruption in the geometry of this base step upon insertion of the bulged bases into the helix. This conformational perturbation is more akin to a shearing apart of the bases, which laterally separates the two halves of the molecule, rather than the "wedge" model often invoked for single-base bulges. Using molecular dynamics calculations, with both NOE-derived proton-proton distances and relaxation matrix-calculated NOESY cross peak volumes as restraints, we have determined the solution structure of an A-T-A bulge loop within a DNA duplex. The bulged bases are stacked among themselves and with the guanine bases on either side of the loop. All three of the bulged bases are displaced by 2-3 A into the major groove, increasing the solvent accessibility of these residues. The ATA-bulge duplex is significantly kinked at the site of the lesion, in agreement with previously reported electron microscopy and gel retardation studies on bulge-containing duplexes [Hsieh, C.-H., & Griffith, J. D. (1989) Proc. Natl. Acad. Sci. U.S.A 86, 4833-4837; Bhattacharyya, A., & Lilley, D. M. J. (1989) Nucleic Acids Res. 17, 6821-6840]. Bending occurs in a direction away from the bulge-containing strand, and we find a significant twist difference of 84 degrees between the two base pairs flanking the bulge loop site. This value represents 58% of the twist difference for base pairs four steps apart in B-DNA. These results suggest a structural mechanism for the bending of DNA induced by unpaired bases, as well as accounting for the effect bulge loops may have on the secondary and tertiary structures of nucleic acids.  相似文献   

5.
The use of proton-proton nuclear Overhauser enhancement (NOE) distance information for identification of polypeptide secondary structures in non-crystalline proteins was investigated by stereochemical studies of standard secondary structures and by statistical analyses of the secondary structures in the crystal conformations of a group of globular proteins. Both regular helix and beta-sheet secondary structures were found to contain a dense network of short 1H-1H distances. The results obtained imply that the combined information on all these distances obtained from visual inspection of the two-dimensional NOE (NOESY) spectra is sufficient for determination of the helical and beta-sheet secondary structures in small globular proteins. Furthermore, cis peptide bonds can be identified from unique, short sequential proton-proton distances. Limitations of this empirical approach are that the exact start or end of a helix may be difficult to define when the adjoining residues form a tight turn, and that unambiguous identification of tight turns can usually be obtained only in the hairpins of antiparallel beta-structures. The short distances between protons in pentapeptide segments of the different secondary structures have been tabulated to provide a generally applicable guide for the analysis of NOESY spectra of proteins.  相似文献   

6.
Until very recently interproton distances from NOESY experiments have been derived solely from the two-spin approximation method. Unfortunately, even at short mixing times, there is a significant error in many of these distances. A complete relaxation matrix approach employing a matrix eigenvalue/eigenvector solution to the Bloch equations avoids the approximation of the two-spin method. We have calculated the structure of an extrahelical adenosine tridecamer oligodeoxyribonucleotide duplex, d(CGCAGAATTCGCG)2, by an iterative refinement approach using a hybrid relaxation matrix method combined with restrained molecular dynamics calculations. Distances from the 2D NOESY spectra have been calculated from the relaxation rate matrix which has been evaluated from a hybrid NOESY volume matrix comprising elements from the experiment and those calculated from an initial structure. The hybrid matrix derived distances have then been used in a restrained molecular dynamics procedure to obtain a new structure that better approximates the NOESY spectra. The resulting partially refined structure is then used to calculate an improved theoretical NOESY volume matrix which is once again merged with the experimental matrix until refinement is complete. Although the crystal structure of the tridecamer clearly shows the extrahelical adenosine looped out way from the duplex, the NOESY distance restrained hybrid matrix/molecular dynamics structural refinement establishes that the extrahelical adenosine stacks into the duplex.  相似文献   

7.
D Hare  L Shapiro  D J Patel 《Biochemistry》1986,25(23):7456-7464
This paper reports on features of the three-dimensional structure of the d(C-G-C-A-G-A-G-C-T-C-G-C-G) self-complementary duplex (designated adenosine 13-mer), which contains symmetrical extrahelical adenosines in the interior of the helix. The majority of the protons have been assigned from two-dimensional nuclear Overhauser effect (NOESY) spectra of the adenosine 13-mer in H2O and D2O solution. The measurement of NOESY cross-peak volume integrals as a function of mixing time has yielded a set of 96 short (less than 4.5-A) proton-proton distances defined by lower and upper bounds, which have served as input parameters for a distance geometry analysis of one symmetric half of the adenosine 13-mer duplex. We demonstrate that the extrahelical adenosine stacks into the duplex for all refined structures without disruption of base pairing on either side of the modification site. The distance geometry refinement yields two classes of conformations consistent with distance measurements but which differ in orientation of the stacked extrahelical adenosine at the modification site.  相似文献   

8.
P Cagas  C A Bush 《Biopolymers》1990,30(11-12):1123-1138
Through control of both the nmr probe temperature and of the solvent viscosity, phase-sensitive two-dimensional 1H nuclear Overhauser data (NOESY) at 300 and 500 MHz are obtained with excellent signal-to-noise ratios for Lewis blood group penta- and hexasaccharides isolated from human milk. Relatively long mixing times are required to produce measurable NOE intensities in these oligosaccharides, which makes a full relaxation matrix analysis necessary. By measurements of selective T1 for a few isolated 1H resonances, it was possible to generate a simulation of the complete NOESY spectrum at arbitrary mixing time for comparison with the experimental data. From an exhaustive search of the conformational space, it was found that only a small range of glycosidic dihedral angles of the nonreducing terminal Lewis blood group determinant fragments of the milk oligosaccharides LNF-2 and LND-1 produce simulated spectra agreeing within experimental error to the data. Conformational energy calculations reveal that each of these conformations is also one of minimum energy. It is concluded that the Lewis(a) and Lewis(b) oligosaccharides adopt relatively compact rigid structures in solution, as shown by the observation of cross peaks between protons in nonadjacent residues. Like the blood group A and H oligosaccharides, there exists only a small dependence of the conformation for Lewis(a) and Lewis(b) oligosaccharides on solvent. The apparent lack of dependence of conformation of these oligosaccharides on DMSO in D2O suggests that modification of solvent viscosity with mixtures of DMSO:D2O may provide a useful general strategy of NOESY studies of oligosaccharides.  相似文献   

9.
Berberine, an isoquinoline plant alkaloid, belongs to the structural class of protoberberines. Recently, the ability of these compounds to act as Topoisomerase I or II poisons, was related to the antitumor activity. The binding of protoberberins to DNA has been studied and the partial intercalation into the double helix has been considered responsible for their activity. We have studied the interaction of berberine with the double helix oligonucleotides d(AAGAATTCTT)(2), d(GCGATCGC)(2), d(CGTATACG)(2), d(CGTACG)(2), 5'-d(ACCTTTTTGATGT)-3'/5(ACATCAAAAAGGT)-3' and with the single strand 5'-d(ACATCAAAAAGGT)-3', by 1H, 31P NMR and UV spectroscopy. Phosphorus resonance experiments were performed to detect small conformational changes of the phosphoribose backbone, in the case that an intercalation process occurs. Our data reveal that berberine does not intercalate into the duplexes studied, and binds preferentially to AT rich sequences. The structure of the complex with d(AAGAATTCTT)(2) was determined by using proton 2D NOESY spectra, which allowed to obtain several NOE contacts between the drug and the nucleotide. Structural models were built up by Molecular Mechanics (MM) and Molecular Dynamics (MD) calculations, by using the inter-proton distances derived from the NOE values. Berberine results to be located in the minor groove, lying with the convex side on the helix groove and presenting the positively charged nitrogen atom close to the negative ionic surface of the oligomer. The large 1H chemical shifts variation, observed for the drug when it is added to the above duplexes, as well as to the single strand oligomer, was interpreted with non-specific ionic interactions. The binding constants were measured by UV and NMR spectroscopy. They are strongly affected by the ionic strength and by the self-association process, which commonly occurs with this type of drugs. A dimerisation constant was measured and the value was included in the calculations of the binding constants. The results obtained show that the non-specific ionic interactions represent the major contribution to the values of the binding constants. These parameters, as well as the protons chemical shift variation of the ligand, are thus not diagnostic for the identification of a drug/DNA complex.  相似文献   

10.
Quantification of DNA structure from NMR data: conformation of d-ACATCGATGT   总被引:1,自引:0,他引:1  
K V Chary  S Modi  R V Hosur  G Govil  C Q Chen  H T Miles 《Biochemistry》1989,28(12):5240-5249
Resonance assignments of nonexchangeable base and sugar protons have been obtained in double-helical d-ACATCGATGT by using two-dimensional correlated spectroscopy (COSY) and nuclear Overhauser enhancement spectroscopy (NOESY). The exchangeable imino protons have been assigned on the basis of their chemical shifts. The characteristic phase-sensitive multiplet patterns of the intrasugar cross-peaks in the omega 1-scaled COSY spectrum have been used to estimate several scalar coupling constants (J). The information on the J values combined with the intranucleotide COSY cross-peak intensities has been used to identify sugar puckers of individual nucleotide units. In most cases, the deoxyribofuranose rings are found to adopt a conformation close to O4'-endo. Spin diffusion has been monitored from the buildup of the normalized volumes of NOE cross-peaks in NOESY spectra as a function of mixing time. A set of 52 intranucleotide and internucleotide proton-proton distances have been estimated by using low mixing time NOESY spectra (tau m = 40 and 80 ms). The estimated intrasugar proton-proton distances rule out possibilities of existence of a fast equilibrium between C2'-endo and C3'-endo conformations. Intranucleotide proton-proton distances combined with the knowledge of sugar puckers have been used to fix the glycosidic bond torsion angle (chi). For this purpose, simulated distance contours depicting the dependence of intranucleotide proton-proton distances on pseudorotational phase angle (P) and glycosidic bond torsion angle (chi) have been used. Further, the proton homonuclear (J, delta) spectrum has been used to monitor the 31P-1H heteronuclear couplings, which are preserved in the omega 2 projection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
B Brodsky  M H Li  C G Long  J Apigo  J Baum 《Biopolymers》1992,32(4):447-451
Triple-helix formation of the peptide (Pro-Hyp-Gly)10 was monitored by nmr and CD spectroscopy. The two-dimensional nmr spectra indicated that the Gly C alpha H and Pro C delta H proton resonances shift upfield in going from the nonhelical to helical form, while hydroxy-proline resonances are unchanged. The integrated areas of the helical and nonhelical resonances could be monitored in the one-dimensional nmr spectrum, and indicate that in the (Pro-Hyp-Gly)10 about 90% of the residues are in a defined triple-helical conformation. The introduction of a glycine to alanine substitution or the deletion of a single hydroxyproline residue in the stable triple-helical peptide (Pro-Hyp-Gly)10 still allows trimers to be formed, but the trimers show a substantial loss of triple helix and decreased thermal stability compared with (Pro-Hyp-Gly)10. Two computer models were generated for the Gly----Ala peptide, one with the Ala side chains packed inside the helix and the other with the region containing the alanines forming a beta-bend that loops out from the helix. The nmr data is more consistent with the latter model.  相似文献   

12.
We have determined the three-dimensional structure of a non-self-complementary oligodeoxynucleotide duplex that contains a model abasic site. The duplex contains six GC base pairs plus the abasic site at the center of one strand and corresponds to an abasic frameshift. Two-dimensional NMR studies on the nonexchangeable protons show that the guanine bases on either side of the abasic site are stacked over each other and that the abasic site is rotated out of the helix. Close proton-proton interactions are observed between the H4' proton of the abasic site and sugar protons of the guanosine in the 5' direction, which allows the position of the free sugar to be well-defined. NOE buildup curves from NOESY spectra recorded at very short mixing times were used to calculate a set of interproton distances. This data set was incorporated into the refinement of the oligonucleotide structure by molecular mechanics calculations. Two conformations that differ in the sugar conformation of the guanosine next to the abasic site in the 3' direction were necessary to fit all the NMR data. One of these two conformations could only be stabilized by addition of counterions at specific sites.  相似文献   

13.
The spatial structure of the gramicidin A (GA) transmembrane ion-channel was refined on the base of cross-peak volumes measured in NOESY spectra (mixing time tau m = 100 and 200 ms). The refinement methods included the comparison of experimental cross-peak volumes with those calculated for low-energy GA conformations, dynamic averaging of the low-energy conformation set and restrained energy minimization. Accuracy of the spatial structure determination was estimated by the penalty function Fr defined as a root mean square deviation of interproton distances corresponding to the calculated and experimental cross-peak volumes. As the initial conformation we used the right-handed pi 6,3 LD pi 6,3 LD helix established on the base of NMR data regardless of the cross-peak volumes. The conformation is in a good agreement with NOE cross-peak volumes (Fr 0.2 to 0.5 A depending on NOESY spectrum). For a number of NOEs formed by the side chain protons, distances errors were found as much as 0.5-2.0 A. Restrained energy minimization procedure had little further success. However some of these errors were eliminated by the change in torsional angle chi 2 of D-Leu12 and dynamic averaging of the Val7 side chain conformations. Apparently, majority of deviations of the calculated and experimental cross-peak volumes are due to the intramolecular mobility of GA and cannot be eliminated within the framework of rigid globule model. In summary the spatial structure of GA ion-channel can be thought as a set of low-energy conformations, differing by the side chain torsion angles chi 1 Val7 and chi 2 D-Leu4 and D-Leu10 and the orientation of the C-terminal ethanolamine group. Root mean square differences between the atomic coordinates of conformations are in the range of 0.3-0.8 A.  相似文献   

14.
K V Chary  R V Hosur  G Govil  C Q Chen  H T Miles 《Biochemistry》1988,27(10):3858-3867
Complete resonance assignments of nonexchangeable base protons and sugar protons in d-GGTACGCGTACC at 500 MHz have been obtained by two-dimensional correlated spectroscopy (COSY) and nuclear Overhauser enhancement spectroscopy (NOESY). The characteristic phase-sensitive multiplet patterns of the ntrasugar cross peaks in the omega 1-scaled COSY spectrum have been used to estimate several scalar coupling constants (J). These coupling constants combined with the intranucleotide COSY cross peak intensities have been used to identify the sugar pucker of individual nucleotide units. In most cases, the deoxyribose rings adopt a conformation close to O4'-endo. Spin-diffusion has been monitored from the buildup of the normalized volumes of NOE cross peaks in NOESY spectra as a function of mixing time. A set of 55 intranucleotide and internucleotide interproton distances have been estimated from the low mixing time NOESY spectrum (tau m = 75 ms). The estimated intranucleotide proton-proton distances have been used to determine the individual glycosidic dihedral angles of the nucleotide units which lie in the anti domain. It is observed that the molecule adopts an overall conformation close to that of the B-form although there are differences in the intricate details.  相似文献   

15.
The modelling of the conformation of a biomolecule in solution is based mainly on the internuclear distances deduced from measurements of nuclear Overhauser effects (nOe) in NOESY correlation maps. The distances are then used as restraints in the energy minimization procedure, which leads to one or several optimized conformations. A general and safe technique for validating these structures with respect to the experimental data is here proposed: from the internuclear distances, the relaxation matrix can be computed under the assumption of a unique rotational correlation time. By stepwise integration of these relaxation equations, the NOESY maps can be accurately reconstructed for any mixing time. Because multi-spin effects are correctly taken into account, any difference between the experimental and theoretical maps can be easily interpreted in terms of conformation, and possible inconsistencies due to conformational averaging can be pointed out. The technique is illustrated for a bacterial lipopeptide, mycosubtilin, the spectrum of which is completely assigned.  相似文献   

16.
R Powers  D G Gorenstein 《Biochemistry》1990,29(42):9994-10008
CPI-CDPI2 is a synthetic analogue of CC-1065, which is a naturally occurring antitumor antibiotic. Assignment of the 1H NMR spectra of a CPI-CDPI2-oligodeoxyribonucleotide decamer, d-(CGCTTAAGCG)2, complex has been made by two-dimensional 1H/1H spectroscopy. The solution structure of the complex was calculated by an iterative hybrid relaxation matrix method combined with NOESY distance restrained molecular dynamics. Refinement proceeded in two steps in which the decamer was initially refined alone and then CPI-CDPI2 was added to the structure to allow initial estimates of drug-DNA contacts. A hybrid matrix/MD refinement was used to better take into account problems associated with spin diffusion. Thus the distances from the 2D NOESY spectra were calculated from the relaxation rate matrix which were evaluated from a hybrid NOESY volume matrix comprising elements from the experimental spectrum and those calculated from an initial structure. The hybrid matrix derived distances were then used in a restrained molecular dynamics procedure to obtain a new structure that better approximates the NOESY spectra. The resulting partially refined structure was then used to calculate an improved theoretical NOESY volume matrix which is once again merged with the experimental matrix until refinement is complete. The efficacy of CC-1065 has been attributed to its minor groove binding and alkylation to the N3 position of adenosine. CPI-CDPI2 appears to bind to the decamer in a similar manner. The effect of CPI-CDPI2 on the decamer's 1H and 31P spectrum was consistent with a minor groove binding motif with the drug alkylating at A17 with the CDPI rings oriented toward the 5'-end of the alkylated strand. In addition, the NMR data support one major adduct but also indicate the presence of a minor adduct. The latter could represent a drug alkylation of the DNA at a secondary site (or alternative orientation of the rings).  相似文献   

17.
H Kessler  S Mronga  G Müller  L Moroder  R Huber 《Biopolymers》1991,31(10):1189-1204
The hinge region links the antigen binding Fab part to the constant Fc domain in immunoglobulins. For the hinge peptide derivative [AcThr(OtBu)-Cys-Pro-Pro-Cys-Pro-Ala-ProNH2]2 the assignment of the 1H and 13C resonances was achieved by two-dimensional nmr techniques: total correlation spectroscopy (TOCSY), nuclear Overhauser enhancement spectroscopy (NOESY), rotating frame nuclear Overhauser enhancement spectroscopy (ROESY), heteronuclear multiple quantum coherence (HMQC) transfer, and a HSQC (modified Overbodenhausen experiment) with high resolution in F1, which was several times folded in F1 but still phase correctable. Conformational relevant parameters (78 nuclear Overhauser effect distance restraints, 3JHH for prochiral assignments, temperature gradients) were determined by nmr and served as input data for molecular dynamics (MD) structure refinement. A simulated model compound corresponding to the [Cys-Pro-Pro-Cys]2 core elongated by the peptide chains in the Fab and Fc direction served as a starting structure for the final MD run. The conformation calculated in in vacuo does not agree with the C2 symmetry required from nmr data, but the structure obtained by a water simulation fulfills the requirement. Here the core of the hinge peptide derivative adopts a polyproline II double helix as in the x-ray structure of IgG1. Hence, segments responsible for the internal flexibility are located outside the core as confirmed by the flexibility of the solvent exposed C termini.  相似文献   

18.
Quantitative method is developed for evaluation interproton distances in peptides in solution. The method is based on the measurement of the relative intensities of the cross-peaks in the pure-phase absorption NOESY spectra. The ratios of the cross-peak intensities IN alpha/I alpha N and INN/I alpha N enable to determine the corresponding interproton distances dN alpha, d alpha N and dNN for several amino acid residues. These distances can be used to estimate other distances with cross-peaks in NOESY spectra. As example, the interproton distances are determined in a cyclic hexapeptide, namely cyclic analogue of substance P: cyclo [H-Glu-Phe-Phe-Gly-Leu-Met-NH(CH2)3-NH-]. The spatial structure of the molecule in dimethylsulphoxide solution is established.  相似文献   

19.
The solution structures of d(GAAAACGTTTTC)2 and of its methylated derivative d(GAAAAMe5CGTTTTC)2 have been determined by NMR and molecular modelling in order to examine the impact of cytosine methylation on the central CpG conformation. Detailed 1H NMR and 31P NMR investigation of the two oligomers includes quantitative NOESY, 2D homonuclear Hartmann-Hahn spectroscopy, double-quantum-filtered COSY and heteronuclear 1H-31P correlation. Back-calculations of NOESY spectra and simulations of double-quantum-filtered COSY patterns were performed to gain accurate information on interproton distances and sugar phase angles. Molecular models under experimental constraints were generated by energy minimization by means of the molecular mechanics program JUMNA. The MORASS software was used to iteratively refine the structures obtained. After methylation, the oligomer still has a B-DNA conformation. However, there are differences in the structural parameters and the thermal stability as compared to the unmethylated molecule. Careful structural analysis shows that after methylation CpG departs from the usual conformation observed in other ACGT tetramers with different surroundings. Subtle displacements of bases, sugars and backbone imposed by the steric interaction of the two methyl groups inside the major groove are accompanied by severe pinching of the minor groove at the C-G residues.  相似文献   

20.
Peptide GVKGDKGNPGWPGAPY from the triple-helix domain of type IV collagen aggregates in solution at a critical aggregation concentration of 18 mM. This molecular self association process is investigated by 1H- and 13C-nmr spectroscopy. As a function of increasing peptide concentration, selective 1H resonances are cooperatively chemically shifted by up to 0.04 ppm to apparently saturable values at high concentration. Pulsed field gradient nmr was used to derive translation diffusion constants that, as the peptide concentration is increased, also cooperatively and monotonically decrease to an apparent limiting value. An average number of 6 monomer units per aggregate have been estimated from diffusion constant and 13C relaxation data. Comparative 1H nuclear Overhauser effect spectroscopy (NOESY) spectra accumulated at high and low peptide concentrations suggest that average internuclear distances are decreased as a result of peptide association. 13C-nmr multiplet spin-lattice relaxation and 13C- {1H} NOE effects on 13C-enriched glycine methylene positions in the peptide demonstrate that overall molecular tumbling and backbone internal motions are attenuated in the aggregate state. Lowering the solution pD from pD 6 to pD 2 disrupts the aggregate state, suggesting a role for electrostatic interactions in the association process. Based on thermodynamic considerations, hydrophobic interactions also probably act to stabilize the aggregate state. These data are discussed in terms of an nmr/NOE constrained computer-modeled structure of the peptide. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号