首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elevated hydrostatic pressure has been shown to affect the growth rate of the thermophilic methanobacterium Methanococcus thermolithotrophicus without extending its temperature range of viability. Analysis of the cell inventory after ≈ 10 h of incubation at 65°C and 50 MPa (applying high-pressure liquid chromatography and two-dimensional gel electrophoresis) proved that pressure induces alterations in the protein pattern and the amino acid composition of the total cell hydrolysate. Gels showed that after pressurization a series of (basic) proteins with a molecular mass in the range of 38 and 70 kilodaltons occurs which is not detectable in cells grown at normal atmospheric pressure. The question of whether the observed alterations are caused by the perturbation of the balance of protein synthesis and turnover or by the pressure-induced synthesis of compounds analogous to heat shock proteins remains unanswered.  相似文献   

2.
High-pressure, high-temperature investigations on thermophilic microorganisms that grow on hydrogen or other gaseous substrates require instrumentation which provides sufficient substrate for cell proliferation up to 2 × 108 to 3 × 108 cells per ml under isothermal and isobaric conditions. To minimize H2 leakage and to optimize reproducibility at high pressure and high temperature, 10-ml nickel tubes with a liquid/gas ratio of 1:2 were used in a set of autoclaves connected in series. By applying a hydraulic pump and a 2.5-kW heating device, fast changes in temperature (up to 400°C) and pressure (up to 400 MPa) can be accomplished within less than 10 min. To quantify bacterial growth, determinations of cell numbers per unit volume yielded optimum accuracy. Preliminary experiments with the thermophilic, methanogenic archaebacterium Methanococcus thermolithotrophicus showed that bacterial growth depends on both temperature and pressure. At the optimum temperature, increased hydrostatic pressure up to 50 MPa enhanced the growth yield; at a pressure of >75 MPa, cell lysis dominated. Changes in cell proliferation were accompanied by changes in morphology.  相似文献   

3.
The effects of pressure on cultures of Lactobacillus plantarum were characterized by determination of the viability and activity of HorA, an ATP-binding cassette multidrug resistance transporter. Changes in the membrane composition of L. plantarum induced by different growth temperatures were determined. Furthermore, the effect of the growth temperature of a culture on pressure inactivation at 200 MPa was determined. Cells were characterized by plate counts on selective and nonselective agar after pressure treatment, and HorA activity was measured by ethidium bromide efflux. Fourier transform-infrared spectroscopy and Laurdan fluorescence spectroscopy provided information about the thermodynamic phase state of the cytoplasmic membrane during pressure treatment. A pressure-temperature diagram for cell membranes was established. Cells grown at 37°C and pressure treated at 15°C lost >99% of HorA activity and viable cell counts within 36 and 120 min, respectively. The membranes of these cells were in the gel phase region at ambient pressure. In contrast, cells grown at 15°C and pressure treated at 37°C lost >99% of HorA activity and viable cell counts within 4 and 8 min, respectively. The membranes of these cells were in the liquid crystalline phase region at ambient pressure. The kinetic analysis of inactivation of L. plantarum provided further evidence that inactivation of HorA is a crucial step during pressure-induced cell death. Comparison of the biological findings and the membrane state during pressure treatment led to the conclusion that the inactivation of cells and membrane enzymes strongly depends on the thermodynamic properties of the membrane. Pressure treatment of cells with a liquid crystalline membrane at 0.1 MPa resulted in HorA inactivation and cell death more rapid than those of cells with a gel phase membrane at 0.1 MPa.  相似文献   

4.
The colony-forming ability and the rate of reproduction of Bacillus stearothermophilus were determined as a function of temperature and pressure. Colonies were formed between 39 and 70°C at atmospheric pressure and between 54 and 67°C at 45 MPa. Colonies did not form at 55.9 MPa. The rate of reproduction in broth cultures decreased with increasing pressure at all temperatures. The rate of reproduction diminished rapidly with pressure above 10.4 MPa. Therefore, increased hydrostatic pressure was not sufficient to enable B. stearothermophilus to function beyond the temperature limiting growth and reproduction at atmospheric pressure, and B. stearothermophilus should grow in naturally or artificially warmed regions of the deep sea, where the pressure is less than approximately 50 MPa, although growth rates would be low above 10 MPa.  相似文献   

5.
The combined effects of subzero temperature and high pressure on the inactivation of Escherichia coli K12TG1 were investigated. Cells of this bacterial strain were exposed to high pressure (50 to 450 MPa, 10-min holding time) at two temperatures (−20°C without freezing and 25°C) and three water activity levels (aw) (0.850, 0.992, and ca. 1.000) achieved with the addition of glycerol. There was a synergistic interaction between subzero temperature and high pressure in their effects on microbial inactivation. Indeed, to achieve the same inactivation rate, the pressures required at −20°C (in the liquid state) were more than 100 MPa less than those required at 25°C, at pressures in the range of 100 to 300 MPa with an aw of 0.992. However, at pressures greater than 300 MPa, this trend was reversed, and subzero temperature counteracted the inactivation effect of pressure. When the amount of water in the bacterial suspension was increased, the synergistic effect was enhanced. Conversely, when the aw was decreased by the addition of solute to the bacterial suspension, the baroprotective effect of subzero temperature increased sharply. These results support the argument that water compression is involved in the antimicrobial effect of high pressure. From a thermodynamic point of view, the mechanical energy transferred to the cell during the pressure treatment can be characterized by the change in volume of the system. The amount of mechanical energy transferred to the cell system is strongly related to cell compressibility, which depends on the water quantity in the cytoplasm.  相似文献   

6.
The objective of this study was to determine the effect of high pressure (HP) on the inactivation of microbial contaminants in Cheddar cheese (Escherichia coli K-12, Staphylococcus aureus ATCC 6538, and Penicillium roqueforti IMI 297987). Initially, cheese slurries inoculated with E. coli, S. aureus, and P. roqueforti were used as a convenient means to define the effects of a range of pressures and temperatures on the viability of these microorganisms. Cheese slurries were subjected to pressures of 50 to 800 MPa for 20 min at temperatures of 10, 20, and 30°C. At 400 MPa, the viability of P. roqueforti in cheese slurry decreased by >2-log-unit cycles at 10°C and by 6-log-unit cycles at temperatures of 20 and 30°C. S. aureus and E. coli were not detected after HP treatments in cheese slurry of >600 MPa at 20°C and >400 MPa at 30°C, respectively. In addition to cell death, the presence of sublethally injured cells in HP-treated slurries was demonstrated by differential plating using nonselective agar incorporating salt or glucose. Kinetic experiments of HP inactivation demonstrated that increasing the pressure from 300 to 400 MPa resulted in a higher degree of inactivation than increasing the pressurization time from 0 to 60 min, indicating a greater antimicrobial impact of pressure. Selected conditions were subsequently tested on Cheddar cheese by adding the isolates to cheese milk and pressure treating the resultant cheeses at 100 to 500 MPa for 20 min at 20°C. The relative sensitivities of the isolates to HP in Cheddar cheese were similar to those observed in the cheese slurry, i.e., P. roqueforti was more sensitive than E. coli, which was more sensitive than S. aureus. The organisms were more sensitive to pressure in cheese than slurry, especially with E. coli. On comparison of the sensitivities of the microorganisms in a pH 5.3 phosphate buffer, cheese slurry, and Cheddar cheese, greatest sensitivity to HP was shown in the pH 5.3 phosphate buffer by S. aureus and P. roqueforti while greatest sensitivity to HP by E. coli was exhibited in Cheddar cheese. Therefore, the medium in which the microorganisms are treated is an important determinant of the level of inactivation observed.  相似文献   

7.
Among food-borne pathogens, some strains could be resistant to hydrostatic pressure treatment. This information is necessary to establish processing parameters to ensure safety of pressure-pasteurized foods (N. Kalchayanand, A. Sikes, C. P. Dunne, and B. Ray, J. Food Prot. 61:425–431, 1998). We studied variation in pressure resistance among strains of Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7, and Salmonella species at two temperatures of pressurization. Early-stationary-phase cells in 1% peptone solution were pressurized at 345 MPa either for 5 min at 25°C or for 5, 10, or 15 min at 50°C. The viability loss (in log cycles) following pressurization at 25°C ranged from 0.9 to 3.5 among nine L. monocytogenes strains, 0.7 to 7.8 among seven S. aureus strains, 2.8 to 5.6 among six E. coli O157:H7 strains, and 5.5 to 8.3 among six Salmonella strains. The results show that at 25°C some strains of each species are more resistant to pressure than the others. However, when one resistant and one sensitive strain from each species were pressurized at 345 MPa and 50°C, the population of all except the resistant S. aureus strain was reduced by more than 8 log cycles within 5 min. Viability loss of the resistant S. aureus strain was 6.3 log cycles even after 15 min of pressurization. This shows that strains of food-borne pathogens differ in resistance to hydrostatic pressure (345 MPa) at 25°C, but this difference is greatly reduced at 50°C. Pressurization at 50°C, in place of 25°C, will ensure greater safety of foods.  相似文献   

8.
Bacterial bioluminescence is commonly found in the deep sea and depends on environmental conditions. Photobacterium phosphoreum ANT-2200 has been isolated from the NW Mediterranean Sea at 2200-m depth (in situ temperature of 13°C) close to the ANTARES neutrino telescope. The effects of hydrostatic pressure on its growth and luminescence have been investigated under controlled laboratory conditions, using a specifically developed high-pressure bioluminescence system. The growth rate and the maximum population density of the strain were determined at different temperatures (from 4 to 37°C) and pressures (from 0.1 to 40 MPa), using the logistic model to define these two growth parameters. Indeed, using the growth rate only, no optimal temperature and pressure could be determined. However, when both growth rate and maximum population density were jointly taken into account, a cross coefficient was calculated. By this way, the optimum growth conditions for P. phosphoreum ANT-2200 were found to be 30°C and, 10 MPa defining this strain as mesophile and moderately piezophile. Moreover, the ratio of unsaturated vs. saturated cellular fatty acids was found higher at 22 MPa, in agreement with previously described piezophile strains. P. phosphoreum ANT-2200 also appeared to respond to high pressure by forming cell aggregates. Its maximum population density was 1.2 times higher, with a similar growth rate, than at 0.1 MPa. Strain ANT-2200 grown at 22 MPa produced 3 times more bioluminescence. The proposed approach, mimicking, as close as possible, the in situ conditions, could help studying deep-sea bacterial bioluminescence and validating hypotheses concerning its role into the carbon cycle in the deep ocean.  相似文献   

9.
Low-temperature anaerobic digestion (LTAD) technology is underpinned by a diverse microbial community. The methanogenic archaea represent a key functional group in these consortia, undertaking CO2 reduction as well as acetate and methylated C1 metabolism with subsequent biogas (40 to 60% CH4 and 30 to 50% CO2) formation. However, the cold adaptation strategies, which allow methanogens to function efficiently in LTAD, remain unclear. Here, a pure-culture proteomic approach was employed to study the functional characteristics of Methanosarcina barkeri (optimum growth temperature, 37°C), which has been detected in LTAD bioreactors. Two experimental approaches were undertaken. The first approach aimed to characterize a low-temperature shock response (LTSR) of M. barkeri DSMZ 800T grown at 37°C with a temperature drop to 15°C, while the second experimental approach aimed to examine the low-temperature adaptation strategies (LTAS) of the same strain when it was grown at 15°C. The latter experiment employed cell viability and growth measurements (optical density at 600 nm [OD600]), which directly compared M. barkeri cells grown at 15°C with those grown at 37°C. During the LTSR experiment, a total of 127 proteins were detected in 37°C and 15°C samples, with 20 proteins differentially expressed with respect to temperature, while in the LTAS experiment 39% of proteins identified were differentially expressed between phases of growth. Functional categories included methanogenesis, cellular information processing, and chaperones. By applying a polyphasic approach (proteomics and growth studies), insights into the low-temperature adaptation capacity of this mesophilically characterized methanogen were obtained which suggest that the metabolically diverse Methanosarcinaceae could be functionally relevant for LTAD systems.  相似文献   

10.
Endospores of proteolytic type B Clostridium botulinum TMW 2.357 and Bacillus amyloliquefaciens TMW 2.479 are currently described as the most high-pressure-resistant bacterial spores relevant to food intoxication and spoilage in combined pressure-temperature applications. The effects of combined pressure (0.1 to 1,400 MPa) and temperature (70 to 120°C) treatments were determined for these spores. A process employing isothermal holding times was established to distinguish pressure from temperature effects. An increase in pressure (600 to 1,400 MPa) and an increase in temperature (90 to 110°C) accelerated the inactivation of C. botulinum spores. However, incubation at 100°C, 110°C, or 120°C with ambient pressure resulted in faster spore reduction than treatment with 600 or 800 MPa at the same temperature. This pressure-mediated spore protection was also observed at 120°C and 800, 1,000, or 1,200 MPa with the more heat-tolerant B. amyloliquefaciens TMW 2.479 spores. Inactivation curves for both strains showed a pronounced pressure-dependent tailing, which indicates that a small fraction of the spore populations survives conditions of up to 120°C and 1.4 GPa in isothermal treatments. Because of this tailing and the fact that pressure-temperature combinations stabilizing bacterial endospores vary from strain to strain, food safety must be ensured in case-by-case studies demonstrating inactivation or nongrowth of C. botulinum with realistic contamination rates in the respective pressurized food and equipment.  相似文献   

11.
The synergistic effects of high hydrostatic pressure (HHP), mild heating, and amino acids on the germination of Clostridium sporogenes spores were examined by determining the number of surviving spores that returned to vegetative growth after pasteurization following these treatments. Pressurization at 200 MPa at a temperature higher than 40°C and treatment with some of the 19 l-amino acids at 10 mM or higher synergistically facilitated germination. When one of these factors was omitted, the level of germination was insignificant. Pressures of 100 and 400 MPa were less effective than 200 MPa. The spores were effectively inactivated by between 1.8 and 4.8 logs by pasteurization at 80°C after pressurization at 200 MPa at 45°C for 120 min with one of the amino acids with moderate hydrophobicity, such as Leu, Phe, Cys Met, Ala, Gly, or Ser. However, other amino acids showed poor inactivation effects of less than 0.9 logs. Spores in solutions containing 80 mM of either Leu, Phe, Cys, Met, Ala, Gly, or Ser were successfully inactivated by pasteurization by more than 5.4 logs after pressurization at 200 MPa at 70°C for 15 to 120 min. Ala and Met reduced the spore viability by 2.8 and 1.8 logs, respectively, by pasteurization at a concentration of 1 mM under 200 MPa at 70°C. These results indicate that germination of the spores is facilitated by a combination of high hydrostatic pressure, mild heating, and amino acids.  相似文献   

12.
The effect of water temperature on biochemical composition, growth and reproduction of the ornamental shrimp, Neocaridina heteropoda heteropoda, was investigated to determine the optimum temperature for its culture. The effect of embryo incubation temperature on the subsequent performance of juveniles was also evaluated. Ovigerous females and recently hatched juveniles (JI) were maintained during egg incubation and for a 90-day period, respectively, at three temperatures (24, 28 and 32°C). Incubation period increased with decreasing water temperature, but the number and size of JI were similar among treatments. At day 30 of the 90-day period, body weight and growth increment (GI) at 24°C were lower than those at 28 and 32°C. On subsequent days, GI at 24°C exceeded that at 28 and 32°C, leading to a similar body weight among treatments. These results suggest growth was delayed at 24°C, but only for 30 days after hatching. The lipid concentration tended to be lowest, intermediate and highest at 28, 32 and 24°C, respectively, possibly as a consequence of the metabolic processes involved in growth and ovarian maturation. Protein and glycogen concentrations were similar among treatments. Both the growth trajectory and biochemical composition of shrimps were affected by the temperature experienced during the 90-day growth period independently of the embryo incubation temperature. During the growth period, shrimps reached sexual maturity and mated, with the highest proportion of ovigerous females occurring at 28°C. All the females that matured and mated at 32°C lost their eggs, indicating a potentially stressful effect of high temperature on ovarian maturation. Based on high survival and good growth performance of shrimps at the three temperatures tested over the 90-day period it is concluded that N. heteropoda heteropoda is tolerant to a wide range of water temperatures, with 28°C being the optimum temperature for its culture.  相似文献   

13.
Roots of hydroponically grown maize (Zea mays cv LG11) have a greatly reduced growth rate at 5°C (0.02 millimeters per hour) compared with those at 20°C (1.2 millimeters per hour). Various physical parameters of roots growing at each temperature were compared. Turgor pressure of cells in the elongation zone increased from 0.59 ± 0.05 megapascal at 20°C to 0.82 ± 0.04 megapascal after 70 hours at 5°C; thus, growth rate was not limited by decreased pressure. On cooling, tissue plasticity (measured by Instron/tensiometer) decreased slowly over 70 hours. On rewarming to 20°C from 5°C, growth rate, turgor pressure, and tissue plasticity all returned concertedly to their original values over a period of days. However, immediately following cooling growth rate dropped rapidly from 1.8 to 0.12 millimeters per hour in 30 minutes but turgor pressure and tissue Instron plasticity remained unchanged. A plot of turgor pressure against growth rate indicated that, following cooling from 30 to 15°C, the in vivo wall extensibility of the tissue was reduced by 75%. Yield threshold was unchanged. Cells whose expansion was arrested in the long-term cold treatment do not resume growth. Root growth recovers by the expansion of cells newly produced by the meristem. Cessation of extension growth is an effect on the individual expanding cell. Growth recovery is not a reverse of this effect but requires the generation of fresh cells.  相似文献   

14.
Wu MT  Wallner SJ 《Plant physiology》1984,75(3):778-780
Using cultured pear (Pyrus communis cv Bartlett) cells, heat tolerance induced by heat shock was compared to that developed during growth at high temperature. After growth at 22°C, cells exposed to 38°C for 20 minutes (heat shock) showed maximum increased tolerance within 6 hours. Cells grown at 30°C developed maximum heat tolerance after 5 to 6 days; this maximum was well below that induced by heat shock. Heat shock-induced tolerance was fully retained at 22°C for 2 days and was only partly lost after 4 days. However, pear cells acclimated at 30°C lost all acquired heat tolerance 1 to 2 days after transfer to 22°C. In addition, cells which had been heat-acclimated by growth at 30°C showed an additional increase in heat tolerance in response to 39°C heat shock. The most striking difference between heat shock and high growth temperature effects on heat tolerance was revealed when tolerance was determined using viability tests based on different cell functions. Growth at 30°C produced a general hardening, i.e. increased heat tolerance was observed with all three viability tests. In contrast, significantly increased tolerance of heat-shocked cells was observed only with the culture regrowth test. The two types of treatment evoke different mechanisms of heat acclimation.  相似文献   

15.
The temperature characteristic of respiration of Azotobacter vinelandii possesses a constant value of 19,330 ± 165 over the temperature range 20–30°C. This value is independent of pH, oxygen tension, age of culture, and other factors within the limits studied. The optimum temperature of respiration is 34–35°C., with limits at about 10° and 50°C.  相似文献   

16.
The optimum temperatures for methanogenesis in microbial mats of four neutral to alkaline, low-sulfate hot springs in Yellowstone National Park were between 50 and 60°C, which was 13 to 23°C lower than the upper temperature for mat development. Significant methanogenesis at 65°C was only observed in one of the springs. Methane production in samples collected at a 51 or 62°C site in Octopus Spring was increased by incubation at higher temperatures and was maximal at 70°C. Strains of Methanobacterium thermoautotrophicum were isolated from 50, 55, 60, and 65°C sites in Octopus Spring at the temperatures of the collection sites. The optimum temperature for growth and methanogenesis of each isolate was 65°C. Similar results were found for the potential rate of sulfate reduction in an Icelandic hot spring microbial mat in which sulfate reduction dominated methane production as a terminal process in anaerobic decomposition. The potential rate of sulfate reduction along the thermal gradient of the mat was greatest at 50°C, but incubation at 60°C of the samples obtained at 50°C increased the rate. Adaptation to different mat temperatures, common among various microorganisms and processes in the mats, did not appear to occur in the processes and microorganisms which terminate the anaerobic food chain. Other factors must explain why the maximal rates of these processes are restricted to moderate temperatures of the mat ecosystem.  相似文献   

17.
Volvariella volvacea, commonly known as the straw or paddy mushroom, had the following growth characteristics: minimum temperature, 25°C; optimal temperature, 37°C; maximal temperature, 40°C; pH optimum 6.0. Optimal pH for cellulase production was 5.5. The optimal initial pH for cellulase production and mycelial growth was found to be 6.0. The pH and temperature optima for cellulolytic activity were 5.0 and 50°C, respectively. Maximal cellulolytic activity was obtained within 5 days in shake-flask culture. The cellulases were found to be partly cell free and partly cell bound during growth on microcrystalline cellulose. The endoglucanase activity was primarily extracellular, and β-glucosidase activity was found exclusively extracellularly. Weak cellulase activity was detected when cells were grown on cellobiose and lactose. V. volvacea could not digest the lignin portion of newspaper in shake-flask cultivation. Phenol oxidase, an important enzyme in lignin biodegradation, also was lacking in the cell-free filtrate. However, the organism oxidized phenolic compounds when it was cultured on agar plates containing commercial lignin.  相似文献   

18.
Carbon-starved cultures of strain Ant-300, a psychrophilic marine vibrio isolated from the Antarctic Convergence, were compared with their nonstarved counterparts for resistance to heat. Specifically, starved and unstarved cells were exposed to 17°C, which is 4°C above the maximum growth temperature, and compared with cells maintained at the optimum temperature (5 to 7°C). Total cell counts, direct viable-cell counts, and plate counts were monitored. At a temperature of 17°C, viability (as indicated by plate counts) was lost within 40 h, with direct viable-cell counts indicating less than 5% viability at this time. However, when cells were carbon starved for 1 week prior to heat challenge, significant plateability was maintained for more than 6 days; direct viable-cell counts of starved cells maintained at 17°C indicated the presence of viable cells for at least 12 days. Because starvation is the normal physiological state of copiotrophic, heterotrophic bacteria in oligotrophic marine waters, these data suggest that starvation conditions may be a significant factor in providing heat tolerance to psychrophiles.  相似文献   

19.
Sealed vesicles were prepared from microsomal membranes from cell suspension cultures of tomato (Lycopersicon esculentum Mill cv VF36). ATP-dependent proton transport activity by the vesicles was measured as quenching of fluorescence of acridine orange. Measurements of proton transport were correlated with the activity of a nitrate-inhibitable ATPase. The initial rate of proton influx into the vesicles was strongly temperature dependent with a Q10 of 2 and a maximum rate near 35°C. The data suggest that passive permeability did not increase at chilling temperatures but did increase rapidly with temperatures above 30°C. A comparison was made between membranes from cell cultures grown at 28°C and 9°C. The temperature optimum for proton transport broadened and shifted to a lower temperature range in membranes from cells maintained at 9°C.  相似文献   

20.
Two strains of extremely thermophilic, anaerobic bacteria are described that are representative of isolates obtained from a variety of oceanic hydrothermal vent sites at depths from 2,000 to 3,700 m. The isolates were similar in their requirements for complex organic media, elemental sulfur, and seawater-range salinities (optimum, 2.1 to 2.4%); their high tolerance for sulfide (100 mM) and oxic conditions below growth-range temperatures (50 to 95°C); and their archaebacterial characteristics: absence of murein, presence of certain diand tetraethers, and response to specific antibiotics. The two strains (S and SY, respectively) differed slightly in their optimum growth temperatures (85 and 90°C, optimum pHs for growth (7.5 and 7.0), and DNA base compositions (52.01 and 52.42 G+C mol%). At their in situ pressure of about 250 atm (25,313 kPa), growth rates at 80 and 90°C were about 40% lower than those at 1 atm (101.29 kPa), and no growth occurred at 100 and 110°C, respectively, at either pressure. In yeast extract medium, only 2% of the organic carbon was used and appeared to stem largely from the proteinaceous constituents. According to physiological criteria, the isolates belong to the genus Desulfurococcus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号