首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative and qualitative changes in cellular actin were followed during differentiation of a myeloid leukemia cell line, namely Ml, which was inducible with conditioned medium (CM). During 3 d of incubation with CM, when the Ml cells differentiated to macrophages and lost their mitotic activity, the actin content, F-actin ratio in total actin, and the actin synthesis showed an increase. A greater difference before and after differentiation was found in the ability of G-actin to polymerize. Actin harvested from CM-treated cells showed a greater ability to polymerize, depending on the increased concentration of MgCl2 and/or KCl and proteins, as compared with the actin from untreated Ml cells. Actin harvested from the Mml cell line, a macrophage line, had a particularly high polymerizability with or without CM treatment. In contrast, the actin from the D- subline, which is insensitive to CM, showed almost no polymerization.  相似文献   

2.
The antigenicity of the N-terminal region of skeletal-muscle actin was analysed. Two epitopes, corresponding to the 1-7 and 18-28 sequences, were determined. The antibodies specific for the first epitope discriminate skeletal-muscle actin from cardiac-muscle and smooth-muscle actins. The antibodies specific for the second epitope interact with all the actins tested, ranging from invertebrate to higher-vertebrate actins.  相似文献   

3.
The kinetics and thermodynamics for the polymerization of purified Acanthamoeba actin were studied and compared to muscle actin. Polymerization was qualitatively similar for the two actins with a rate-limiting nucleation step followed by rapid polymer extension. Polymerization occurred only above a threshold critical concentration which varied with polymerization conditions for each actin. In the presence of 2 mM MgCl2, nucleation of both actins was rapid and their critical concentrations were similarly low and not detectably dependent on temperature. In 0.1 M KCl, the rates of nucleation of both actins were much slower than when Mg2+ was present and were significantly different from each other. Also, under these conditions, the critical concentrations of Acanthamoeba and muscle actin were significantly different and both varied markedly with temperature. These quantitative differences between the two actins could be attributed to differences in both their enthalpies and entropies of polymerization, Acanthamoeba actin having the more positive deltaH and delta S. Co-polymerization of the two actins was also demonstrated. Overall, however, there were no qualitative differences between Acanthamoeba and muscle actin that would suggest a unique role for the monomer-polymer equilibrium of cytoplasmic actin in cell motility.  相似文献   

4.
Purification and properties of soluble actin from sea urchin eggs   总被引:11,自引:0,他引:11  
Unfertilized eggs of the sea urchin, Strongylocentrotus purpuratus, were homogenized in a buffer containing 0.1 M KCl and 2 mM MgCl2 at pH 6.85. About 50% of the actin was recovered in the high-speed supernate of the homogenate. More than 80% of the actin in this supernate was found to be monomeric upon gel filtration chromatography through a Sephadex G-150 column or by a DNase I inhibition assay. The critical concentration for polymerization of this actin prior to further purification was 0.3-0.9 mg/ml under various conditions. Actin was purified to near homogeneity from the Sephadex G-150 pool with high yield. The purified actin had a critical concentration for polymerization of 0.02-0.03 mg/ml. The isoelectric point of the crude actin and the purified actin was the same. Indeed, we found that there is only one isoelectric focusing species of actin in the sea urchin egg, and it has an isoelectric point more basic than rabbit skeletal muscle actin. The discrepancy between the polymerizability of the crude and purified actin may be due to the presence of factors in the crude fraction which inhibit the polymerization of actin.  相似文献   

5.
In order to investigate the structural basis for functional differences among actin isoforms, we have compared the polymerization properties and conformations of scallop adductor muscle beta-like actin and rabbit skeletal muscle alpha-actin. Polymerization of scallop Ca(2+)-actin was slower than that of skeletal muscle Ca(2+)-actin. Cleavage of the actin polypeptide chain between Gly-42 and Val-43 with Escherichia coli protease ECP 32 impaired the polymerization of scallop Mg(2+)-actin to a greater extent than skeletal muscle Mg(2+)-actin. When monomeric scallop and skeletal muscle Ca(2+)-actins were subjected to limited proteolysis with trypsin, subtilisin, or ECP 32, no differences in the conformation of actin subdomain 2 were detected. At the same time, local differences in the conformations of scallop and skeletal muscle actin subdomains 1 were revealed as intrinsic fluorescence differences. Replacement of tightly bound Ca(2+) with Mg(2+) resulted in more extensive proteolysis of segment 61-69 of scallop actin than in the case of skeletal muscle actin. Furthermore, segment 61-69 was more accessible to proteolysis with subtilisin in polymerized scallop Ca(2+)-actin than in polymerized skeletal muscle Ca(2+)-actin, indicating that, in the polymeric form, the nucleotide-containing cleft is in a more open conformation in beta-like scallop actin than in skeletal muscle alpha-actin. We suggest that this difference between scallop and skeletal muscle actins is due to a less efficient shift of scallop actin subdomain 2 to the position it has in the polymer. The possible consequences of amino acid substitutions in actin subdomain 1 in the allosteric regulation of the actin cleft, and hence in the different stabilities of polymers formed by different actins, are discussed.  相似文献   

6.
Calcium ion-regulated thin filaments from vascular smooth muscle.   总被引:5,自引:4,他引:1       下载免费PDF全文
Myosin and actin competition tests indicated the presence of both thin-filament and myosin-linked Ca2+-regulatory systems in pig aorta and turkey gizzard smooth-muscle actomyosin. A thin-filament preparation was obtained from pig aortas. The thin filaments had no significant ATPase activity [1.1 +/- 2.6 nmol/mg per min (mean +/- S.D.)], but they activated skeletal-muscle myosin ATPase up to 25-fold [500 nmol/mg of myosin per min (mean +/- S.D.)] in the presence of 10(-4) M free Ca2+. At 10(-8) M-Ca2+ the thin filaments activated myosin ATPase activity only one-third as much. Thin-filament activation of myosin ATPase activity increased markedly in the range 10(-6)-10(-5) M-Ca2+ and was half maximal at 2.7 x 10(-6) M (pCa2+ 5.6). The skeletal myosin-aorta-thin-filament mixture gave a biphasic ATPase-rate-versus-ATP-concentration curve at 10(-8) M-Ca2+ similar to the curve obtained with skeletal-muscle thin filaments. Thin filaments bound up to 9.5 mumol of Ca2+/g in the presence of MgATP2-. In the range 0.06-27 microM-Ca2+ binding was hyperbolic with an estimated binding constant of (0.56 +/- 0.07) x 10(6) M-1 (mean +/- S.D.) and maximum binding of 8.0 +/- 0.8 mumol/g (mean +/- S.D.). Significantly less Ca2+ bound in the absence of ATP. The thin filaments contained actin, tropomyosin and several other unidentified proteins. 6 M-Urea/polyacrylamide-gel electrophoresis at pH 8.3 showed proteins that behaved like troponin I and troponin C. This was confirmed by forming interspecific complexes between radioactive skeletal-muscle troponin I and troponin C and the aorta thin-filament proteins. The thin filaments contained at least 1.4 mumol of a troponin C-like protein/g and at least 1.1 mumol of a troponin I-like protein/g.  相似文献   

7.
Gelation of extracts of a myeloid leukemia cell line (Ml) was compared before and after differentiation induced with conditioned medium (CM) from rat embryo cells. Although an extract of Mml cells, a macrophage line derived from Ml line, gelled when warmed in the presence of 2 mM MgCl2, undifferentiated Ml cells gelled only after dialysis and a supplement of exogenous actin. After differentiation had been induced, an addition of exogenous actin, but not dialysis, was needed for gelation. Small amounts of KCl always inhibited the gelation of the control Ml cell extracts, but they promoted gelation of the CM-treated Ml and Mml cell extracts. Thus, the dialysis required for gelation of the control Ml cell extract appears to be necessary for the exclusion of endogenous KCl. Several possible mechanisms for the KCl control of gelation, as well as different requirements of exogenous actin needed for gelation are discussed based on the results of our experiments.  相似文献   

8.
Crude actin extracts from acetone-dried powder of the muscle layer of bovine aorta contain an actin-modulating protein which promotes nucleation of actin monomers and decreases the average length of actin filaments in a Ca2+-dependent manner. This observation has allowed the development of an improved purification procedure for aorta actin which increases the yield 2- to 3-times. The actin obtained with this procedure consists of 77% alpha- and 23% gamma-isoelectric species. Pure aorta actin is indistinguishable from actins from skeletal, cardiac and chicken-gizzard smooth muscle in its polymerization rate, critical concentration, and reduced viscosity when polymerized with KCl at 25 degrees C. It differs from sarcomeric actins, but not from chicken-gizzard smooth muscle actin, in the temperature dependence of polymerization equilibria in KCl. This difference correlates with the amino acid replacements Val-17----Cys-17 and Thr-89----Ser-89, supporting a conclusion drawn from other studies that the N-terminal portion of actin polypeptide chain contains sites important for polymerization.  相似文献   

9.
Smooth-muscle actin was isolated from pig uterus and from pregnant-rat uterus. Methods involving acetone-dried powders were unsuccessful, and a column-chromatographic procedure was developed, with proteinase inhibitors and avoiding polymerization as a purification step. The yield of pure actin was 0.8--1.5 mg/g wet wt. of uterus, which should be compared with an expected yield of actin from skeletal muscle of 2--4 mg/g wet wt. The actin was pure as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, and exhibited alpha-, beta-, and gamma-forms on isoelectric focusing. It possessed a blocked N-terminal amino acid residue, and its amino acid analysis conformed to those of other actins. The rat uterine actin was available only in small amounts (5--10 mg) and did not polymerize. The pig uterine actin could be obtained in amounts up to 30 mg, polymerized reversibly, and activated a skeletal myosin Mg2+-dependent ATPase.  相似文献   

10.
Two IgG1, kappa monoclonal antibodies (Mab) against actin have been obtained from a fusion in which chicken gizzard actin was used as the immunogen. One Mab, designated B4, shows a preferential reactivity toward enteric smooth muscle actin but also cross-reacts with skeletal, cardiac, and aorta actins on the basis of immunoblots, ELISA assays, and indirect immunofluorescence. However, this antibody does not react with either cytoplasmic actin in any of these assay systems. A second Mab, designated C4, reacts with all six known vertebrate isoactins as well as Dictyostelium discoideum and Physarum polycephalum actins. Thus B4 Mab appears to react with an epitope that is at least partially shared among the muscle actins but not found in cytoplasmic actins, while C4 Mab binds to an antigenic determinant that has been highly conserved among the actins. The binding sites of both Mabs on skeletal actin overlap that of pancreatic DNase I. Both antibodies bind a SV8 proteolytic product comprising the amino-terminal two-thirds of the actin molecule, and their epitopes appear to overlap since C4 can compete for the binding of B4 to skeletal actin. Neither antibody is able to prevent actin polymerization.  相似文献   

11.
Structural differences between skeletal-muscle and aortic actins were studied by using biochemical and immunological approaches. By using proteinase digestion we found that three regions of actin show structural differences: (a) in the C-terminal part, (b) the region around residue 227 and (c) the region around residue 167. By using antibodies specific to particular actin conformations we can discriminate between monomeric and filamentous forms of the two actins. Our results show that the minor sequence variations of the N- and C-terminal regions induce structural change in these regions, but also some long-range structural variations in other regions.  相似文献   

12.
Complete amino acid sequences for four mammalian muscle actins are reported: bovine skeletal muscle actin, bovine cardiac actin, the major component of bovine aorta actin, and rabbit slow skeletal muscle actin. The number of different actins in a higher mammal for which full amino acid sequences are now available is therefore increased from two to five. Screening of different smooth muscle tissues revealed in addition to the aorta type actin a second smooth muscle actin, which appears very similar if not identical to chicken gizzard actin. Since the sequence of chicken gizzard actin is known, six different actins are presently characterized in a higher mammal. The two smooth muscle actins--bovine aorta actin and chicken gizzard actin--differ by only three amino acid substitutions, all located in the amino-terminal end. In the rest of their sequences both smooth muscle actins share the same four amino acid substitutions, which distinguish them from skeletal muscle actin. Cardiac muscle actin differs from skeletal muscle actin by only four amino acid exchanges. No amino acid substitutions were found when actins from rabbit fast and slow skeletal muscle were compared. In addition we summarize the amino acid substitution patterns of the six different mammalian actins and discuss their tissue specificity. The results show a very close relationship between the four muscle actins in comparison to the nonmuscle actins. The amino substitution patterns indicate that skeletal muscle actin is the highest differentiated actin form, whereas smooth muscle actins show a noticeably cloer relation to nonmuscle actins. By these criteria cardiac muscle actin lies between skeletal muscle actin and smooth muscle actins.  相似文献   

13.
Actin from Saccharomyces cerevisiae.   总被引:17,自引:1,他引:16       下载免费PDF全文
Inhibition of DNase I activity has been used as an assay to purify actin from Saccharomyces cerevisiae (yeast actin). The final fraction, obtained after a 300-fold purification, is approximately 97% pure as judged by sodium dodecyl sulfate-gel electrophoresis. Like rabbit skeletal muscle actin, yeast actin has a molecular weight of about 43,000, forms 7-nm-diameter filaments when polymerization is induced by KCl or Mg2+, and can be decorated with a proteolytic fragment of muscle myosin (heavy meromyosin). Although heavy meromyosin ATPase activity is stimulated by rabbit muscle and yeast actins to approximately the same Vmax (2 mmol of Pi per min per mumol of heavy meromyosin), half-maximal activation (Kapp) is obtained with 14 micro M muscle actin, but requires approximately 135 micro M yeast actin. This difference suggests a low affinity of yeast actin for muscle myosin. Yeast and muscle filamentous actin respond similarly to cytochalasin and phalloidin, although the drugs have no effect on S. cerevisiae cell growth.  相似文献   

14.
M Coué  F Landon  A Olomucki 《Biochimie》1982,64(3):219-226
A new procedure of purification of actin from human blood platelets was used. This method starting from acetone powder of whole platelets gives a much higher yield than the one previously described (actin I) (Landon et al. (1977) Eur. J. Biochem., 81, 571-577). This actin II preparation has the same reduced viscosity as skeletal muscle actin, while the reduced viscosity of actin I preparation is about 1/10 of this value. Moreover actin I has the form of very short filaments as shown by electron microscopy. After an extra step of purification actin I, when polymerized, acquired a high reduced viscosity. We confirmed that platelet and sarcomeric actins are similar in their polymerization properties and their ability to activate muscular myosin. A circular dichroism study showed that the overall conformation of both actins are similar, but the environment of their aromatic chromophores is different.  相似文献   

15.
An actin-binding protein of 16 kDa was isolated from embryonic chicken skeletal muscle. The protein had the same properties as profilin, exhibited a much higher affinity for cytoskeletal (beta- and gamma-) actins than for sarcomeric (alpha-) actin in the embryonic muscle, and inhibited the polymerization of beta- and gamma-actins more efficiently in a physiological salt solution. These results indicate that the assembly of cytoskeletal and sarcomeric actins is regulated differently by profilin in the developing skeletal muscle, and that the former may not be involved in myofibril assembly.  相似文献   

16.
A factor termed Physarum actinin was isolated and partially purified from plasmodia of a myxomycete, Physarum polycephalum. When Physarum actinin was mixed with purified Physarum or rabbit striated muscle G-actin in a weight ratio of about 1 actinin to 9 actin and then the polymerization of G-actin induced, G-actin polymerized to the ordinary F-actin on addition of 0.1 M KCl. However, it polymerized to Mg-polymer on addition of 2 mM MgCl2. The reduced viscosity (etasp/C) of the Mg-polymer was 1.2 dl/g, about one-seventh of that of the F-actin (7.4 dl/g). The sedimentation coefficient of the Mg-polymer was 22.8 S, almost the same as that of the F-actin (29.4 S). The Mg-polymer showed the specific ATPase activity of the order of 1 . 10(-3) mumol ATP/mg actin per min. It was shown that Physarum actinin copolymerized with G-actin to form Mg-polymer on addition of 2 mM MgCl2. The molecular weights of Physarum actinin were about 90 000 in salt-free or slat solutions and 43 000 in a dodecyl sulfate solution. The range of salting out with ammonium sulfate was 50--65% saturation, which was different from that of Physarum actin (15--35% saturation). Physarum actinin did not interact with Physarum myosin or muscle heavy meromyosin. When the weight ratio of actinin to actin increased, the flow birefringence of the formed Mg-polymer decreased, and it became almost zero at the weight ratio of 1 actinin to 5 actin. ATPase activity reached the maximum level (2.2 . 10(-3) mumol ATP/mg actin per min) at the same ratio. On the addition of Physarum actinin to purified Physarum F-actin which had been polymerized on addition of 2 mM MgCl2 the viscosity decreased rapidly, suggesting that the F-actin filaments were broken in the smaller fragments or that they transformed to Mg-polymers. A factor with properties similar to Physarum actinin was isolated from acetone powder of sea urchin eggs.  相似文献   

17.
Jing Y  Yi K  Ren H 《Protoplasma》2003,222(3-4):183-191
Summary. Pollen and skeletal muscle actins were purified and labeled with fluorescent dyes that have different emission wavelengths. Observation by electron microscopy shows that the fluorescent actins are capable to polymerize into filamentous actin in vitro, bind to myosin S-1 fragments, and have a critical concentration similar to unlabeled actin, indicating that they are functionally active. The globular actins from two sources were mixed and polymerized by the addition of ATP and salts. The copolymerization experiment shows that when excited by light of the appropriate wavelength, both red actin filaments (pollen actin) and green actin filaments (muscle actin) can be visualized under the microscope, but no filaments exhibiting both green and red colors are detected. Furthermore, coprecipitations of labeled pollen actin with unlabeled pollen and skeletal muscle actin were performed. Measurements of fluorescent intensity show that the amount of labeled pollen actin precipitating with pollen actin was much higher than that with skeletal muscle actin, indicating that pollen and muscle actin tend not to form heteropolymers. Injection of labeled pollen actin into living stamen hair cells results in the formation of normal actin filaments in transvacuolar strands and the cortical cytoplasm. In contrast, labeled skeletal muscle actin has detrimental effects on the cellular architecture. The results from coinjection of the actin-disrupting reagent cytochalasin D with pollen actin show that overexpression of pollen actin prolongs the displacement of the nucleus and facilitates the recovery of the nuclear position, actin filament architecture, and transvacuolar strands. However, muscle actin perturbs actin filaments when injected into stamen hair cells. Moreover, nuclear displacement occurs more rapidly when cytochalasin D and muscle actin are coinjected into the cell. It is concluded that actins from plant and animal sources behave differently in vitro and in vivo and that they are functionally not interchangeable.  相似文献   

18.
B Beall  J M Chalovich 《Biochemistry》2001,40(47):14252-14259
Fesselin is a proline-rich actin binding protein that has recently been isolated from smooth muscle [Leinweber, B. D., Fredricksen, R. S., Hoffman, D. R., and Chalovich, J. M. (1999) J. Muscle Res. Cell Motil. 20, 539-545]. Fesselin is similar to synaptopodin [Mundel, P., Heid, H. W., Mundel, T. M., Krüger, M., Reiser, J., and Kriz, W. (1997) J. Cell Biol. 139, 193-204] in terms of its size, isoelectric point, and sequence although synaptopodin is not present in smooth muscle. The function of fesselin is unknown. Evidence is presented here that fesselin accelerates the polymerization of actin. Fesselin was effective on actin isolated from either smooth or skeletal muscle at low ionic strength and in the presence of 100 mM KCl. At low ionic strength, fesselin decreased the time for 50% polymerization to about 1% of that in the absence of fesselin. The lag phase characteristic of the slow nucleation process of polymerization was eliminated as the fesselin concentration was increased from very low levels. Fesselin did not alter the critical concentration for actin but did increase the rate of elongation by approximately 3-fold. The increase in elongation rate constant is insufficient to account for the total increase in polymerization rate. It is likely that fesselin stabilizes the formation of actin nuclei. Time courses of actin polymerization at varied fesselin concentrations and varied actin concentrations were simulated by increasing the rate of nucleation and both the forward and reverse rate constants for elongation.  相似文献   

19.
The aim of this study was to isolate and to characterize actin from the carp liver cytosol and to examine its ability to polymerize and interact with bovine pancreatic DNase I. Carp liver actin was isolated by ion-exchange chromatography, followed by gel filtration and a polymerization/depolymerization cycle or by affinity chromatography using DNase I immobilized to agarose. The purified carp liver actin was a cytoplasmic beta-actin isoform as verified by immunoblotting using isotype specific antibodies. Its isoelectric point (pI) was slightly higher than the pI of rabbit skeletal muscle alpha-actin. Polymerization of purified carp liver actin by 2 mM MgCl(2) or CaCl(2) was only obtained after addition of phalloidin or in the presence of 1 M potassium phosphate. Carp liver actin interacted with DNase I leading to the formation of a stable complex with concomitant inhibition of the DNA degrading activity of DNase I and its ability to polymerize. The estimated binding constant (K(b)) of carp liver actin to DNase I was calculated to be 1.85x10(8) M(-1) which is about 5-fold lower than the affinity of rabbit skeletal muscle alpha-actin to DNase I.  相似文献   

20.
Substoichiometric concentrations of cytochalasin D inhibited the rate of polymerization of actin in 0.5 mM MgCl2, increased its critical concentration and lowered its steady state viscosity. Stoichiometric concentrations of cytochalasin D in 0.5 mM MgCl2 and even substoichiometric concentrations of cytochalasin D in 30 mM KCl, however, accelerated the rate of actin polymerization, although still lowering the final steady state viscosity. Cytochalasin B, at all concentrations in 0.5 mM MgCl2 or in 30 mM KCl, accelerated the rate of polymerization and lowered the final steady state viscosity. In 0.5 mM MgCl2, cytochalasin D uncoupled the actin ATPase activity from actin polymerization, increasing the ATPase rate by at least 20 times while inhibiting polymerization. Cytochalasin B had a very much lower stimulating effect. Neither cytochalasin D nor B affected the actin ATPase activity in 30 mM KCl. The properties of cytochalasin E were intermediate between those of cytochalasin D and B. Cytochalasin D also stimulated the ATPase activity of monomeric actin in the absence of MgCl2 and KCl and, to a much greater extent, stimulated the ATPase activity of monomeric actin below its critical concentration in 0.5 mM MgCl2. Both above and below its critical concentration and in the presence and absence of cytochalasin D, the initial rate of actin ATPase activity, when little or no polymerization had occurred, was directly proportional to the actin concentration and, therefore, apparently was independent of actin-actin interactions. To rationalize all these data, a working model has been proposed in which the first step of actin polymerization is the conversion of monomeric actin-bound ATP, A . ATP, to monomeric actin-bound ADP and Pi, A* . ADP . Pi, which, like the preferred growing end of an actin filament, can bind cytochalasins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号