首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Susceptibility to experimental autoimmune thyroiditis (EAT) in the mouse is linked to the I-A subregion of the major histocompatibility complex. EAT can be induced in susceptible strains of mice by immunization with mouse thyroglobulin (MTg) and adjuvant. We have described a cell transfer system wherein spleen cells from EAT-susceptible CBA/J mice primed in vivo with MTg and lipopolysaccharide (LPS) can be activated in vitro with MTg to transfer EAT to naive syngeneic recipients. This cell transfer system was used to elucidate the cellular basis for the I-A restriction in EAT. While the cell active in transferring EAT was Thy 1+ I-A-, depletion of I-A+ cells from the in vitro culture prevented the activation of EAT effector T cells. MTg-pulsed mitomycin C-treated naive syngeneic spleen cells as antigen-presenting cells (APCs) could replace the I-A+ cells in vitro. Allogeneic (Balb/c) APCs were ineffective. Using APCs from several recombinant inbred strains of mice, it was shown that C3H/HEN and B10.A(4R) APCs were effective in activating MTg/LPS-primed CBA/J spleen cells to transfer EAT while B10.A(5R) APCs were ineffective. This maps the H-2 restriction to the K or I-A subregions. Addition of polyclonal anti-Iak or monoclonal anti-I-Ak or anti-L3T4 during in vitro activation inhibited both the generation of EAT effector cells and the proliferative response to MTg. Irrelevant anti-Ia reagents, monoclonal anti-I-Ek, and monoclonal anti-I-Jk were ineffective. Thus the I-A restriction in murine EAT appears to result from an I-A restricted interaction between Ia+ APCs and Ia- EAT effector T cells.  相似文献   

2.
Delayed-type hypersensitivity (DTH) responses against methylcholanthrene-induced fibrosarcomas in C3H/He and BDF1 mice were developed in BDF1 mice by sc injection of the respective mitomycin C-treated tumor cells. The DTH responses to the allogeneic and the syngeneic tumor cells were accelerated and enhanced tumor-specifically by priming 7 days previously with KCl extracts of the respective tumors. The ability in the mice primed with the tumor extracts enhancing the DTH response against the tumor cells could be transferred to recipient mice by the spleen cells, but not by the T-cell-depleted spleen cells. Rejection of allogeneic tumor was accelerated under the development of accelerated and enhanced DTH response against the allogeneic tumor antigens. Moreover, resistance to syngeneic tumor growth increased significantly with the development of accelerated and enhanced DTH response against the syngeneic tumor antigens. Thus, the augmentation of DTH response by preimmunization with tumor extracts was accompanied by the increased resistance to tumor growth, suggesting that T cells involved in the augmentation of tumor-specific DTH response play some role in increasing the resistance to tumor growth.  相似文献   

3.
Delayed-type hypersensitivity (DTH) is a cell-mediated immune response that can be adoptively transferred in rats when greater than 2 X 10(8) cells from peritoneal exudate, lymph nodes, or spleen are used. We have shown that by using an in vitro conditioning step with antigen, transfer can be subsequently carried out with as few as 2 X 10(7) spleen cells. The magnitude of DTH was reflected in ear swelling after intradermal injection of antigen [tuberculin or keyhole limpet hemocyanin (KLH)] and confirmed histologically. The transfer was antigen specific, requiring the sensitizing antigen in both the in vitro conditioning step and in the ear test challenge. Adoptive transfer with conditioned cells was genetically restricted by alleles of the RT-1 region [major histocompatibility complex (MHC) of the rat]. Brown Norway strain (n haplotype) immune cells would not transfer DTH to Lewis (1 haplotype), ACI (a haplotype), or Buffalo (b haplotype) rats, whereas each strain would transfer DTH to syngeneic recipients. Moreover, this pattern of restriction held for all strains when tested in reciprocal fashion. In additional experiments, F1 to parental bone marrow chimeras were constructed so that bone-marrow-derived cells and non-bone-marrow-derived cells were of different RT-1 haplotypes. When these chimeras were used as recipients, transfer of DTH was only observed when immune donor cells and recipient non-bone-marrow-derived cells were syngeneic. These results point to the critical role of non-bone-marrow-derived cells (endothelial cells) in the DTH reaction.  相似文献   

4.
The SJL strain of mice possess a unique developmental delay in the ability to exhibit delayed-type hypersensitivity (DTH) responses after immunization with a wide variety of Ag. Similar to other models of DTH, the adoptive transfer of syngeneic Ag-pulsed macrophages from DTH-responsive mice into these DTH-unresponsive mice results in the activation of Ag-specific, CD4+ DTH effector Th1 T cells. The absence of other defects in APC-dependent immune responses indicate that the macrophages is the sole APC required for the induction of DTH effector T cells in SJL mice. The defect occurs during the sensitization phase of the DTH response; however, it has not been determined whether a Th cell, which is required for the induction of CD4+ DTH effector T cells, was present in the DTH unresponsive SJL mice. In this study, we have determined that the Thy-1+ helper cell is induced upon Ag stimulation of nonresponder mice and present evidence for the existence of an accessory cell distinct from the macrophage that induces CD4+ DTH effector T cells. Our data indicate that CD4+ DTH effector T cells are induced in an Ag-specific and MHC-restricted manner by an adherent macrophage that expresses the Mac-1+, Mac-2-, Mac-3+, I-A+ phenotype. Adoptive transfer of as few as 100 of the Mac-1+, Mac-2-, or Mac-3+ subsets from DTH responsive donors to DTH unresponsive recipients is able to overcome the DTH deficit. The activation of CD4+ DTH effector T cells in the SJL mouse cells also requires a Thy-1+, Lyt-1+, CD3-, CD4-, CD8-, helper cell. In contrast to the Mac-1+, Mac-3+, I-A+ accessory cell, this helper cell requires an adherent, irradiation resistant, accessory cell that expresses the Mac-1+, Mac-2-, Mac-3-, I-A- surface phenotype for activation. Further, the interaction between this accessory cell and the Thy-1+ helper cell is neither Ag-specific nor MHC restricted. This is the first demonstration of an accessory cell requirement for the Thy-1+, Lyt-1+, B220-, CD4-, CD8-, CD3- DTH Th cell. These data indicate that the activation of the triple negative helper cells and subsequent activation of the CD4+ effector T cells are regulated by two distinct macrophage subpopulations.  相似文献   

5.
We have previously shown that at least two types of Lyt-1+, Lyt-2-, L3T4+ helper T cell clones can be distinguished in vitro by different patterns of lymphokine secretion and by different forms of B cell help. Evidence is presented here to show that one type of helper T cell clone (TH1) causes delayed-type hypersensitivity (DTH) when injected with the appropriate antigen into the footpads of naive mice. The antigen-specific, major histocompatability complex (MHC)-restricted footpad swelling reaction peaked at approximately 24 hr. Footpad swelling was induced by all TH1 clones tested so far, including clones specific for soluble, particulate, or allogeneic antigens. In contrast, local transfer of TH2 cells and antigen did not produce a DTH reaction, even when supplemented with syngeneic spleen accessory cells. Similarly, local transfer of an alloreactive cytotoxic T lymphocyte clone into appropriate recipients did not produce DTH. The requirements for the DTH reaction induced by TH1 cells were investigated further by using TH1 clones with dual specificity for both foreign antigens and M1s antigens. Although these clones responded in vitro to either antigen + syngeneic presenting cells, or M1s disparate spleen cells, they responded in vivo only to antigen + MHC and did not cause footpad swelling in an M1s-disparate mouse in the absence of antigen. Moreover, in vitro preactivation of TH1 or TH2 cells with the lectin concanavalin A was insufficient to induce DTH reactions upon subsequent injection into footpads. From these results, we conclude that the lack of DTH given by TH2 clones in vivo could be due to the inability of the TH2 cells to produce the correct mediators of DTH, or to a lack of stimulation of TH2 clones in the footpad environment.  相似文献   

6.
The T cell proliferative response in mice to the synthetic polymer GAT is under Ir gene control, mapping to the I-A subregion of the H-2 major histocompatibility complex (MHC). Antigen-dependent proliferation in vitro of in vivo GAT-primed lymph node cells can be inhibited by a monoclonal antibody to Ia-17, an I-A public determinant. Using this antibody for direct immunofluorescent analysis, T cells in GAT-stimulated proliferative culture are identified that express syngeneic I-A during culture. This expression is strictly antigen dependent, requires restimulation in vitro, and requires the presence of I-A-positive adherent antigen-presenting cells. T cells bearing I-A can be enriched by a simple affinity procedure, and I-A-positive cells separated on a FACS are shown to retain antigen-specific reactivity. The acquisition of I-A determinants by T cells under these culture conditions is not nonspecific. The Ia determinants borne by T cell blasts appear to be dictated by the I subregion to which the relevant Ir gene maps, and which codes for the Ia molecule involved in presentation of the antigen. Thus, (B6A)F1 (H-2b X H-2a)F1 LNC express I-Ak antigens when proliferating to GAT but not when stimulated by GLPhe, the response to which is under I-E subregion control. The relation of Ir gene function to Ia-restricted antigen presentation and self-Ia recognition is discussed.  相似文献   

7.
The injection of 6 x 10(9) sheep red blood cells (SRBC) to mice suppressed the delayed type hypersensitivity (DTH) in situ and activated spleen T cells which prevent sensitization of syngeneic recipients. Similar effect was obtained when suppressor cells induced in F1 hybrids were transferred to parental mice. Suppression was also reached in allogeneic strain combination if suppressor cells of donors and recipients shared the major histocompatibility complex (MHC). Studied performed with recombinant and mutant strains revealed that the prerequisite for interaction of DTH suppressors and effectors was the identity of K-region of MHC. Passive transfer of DTH to SRBC was also possible if donors and recipients were identical in K-region of MHC. It is believed that interaction between DTH suppressors and effectors is restricted by a region of MHC whose product takes part in antigen representation.  相似文献   

8.
Suppressor cells for delayed footpad reaction (DFR) against syngeneic testicular cells (TC) were detected in the spleen cells of donor mice immunized intravenously (iv) with viable syngeneic TC. Cyclophosphamide (CY)-pretreated recipients were given spleen cells from donors iv, immunized subcutaneously (sc) with syngeneic TC, and the footpad reaction at 24 hr was elicited with syngeneic TC 6 days after immunization. DFR in the recipients was suppressed by the transfer of spleen suppressor cells. The suppressor cells induced were Thy-1+, CY-sensitive, adult thymectomy (ATx)-resistant and act only at the induction stage. They directly suppress the generation of effector T cells for delayed-type hypersensitivity (DTH). When mice pretreated with CY were actively immunized with syngeneic TC, DFR could be provoked to a measurable level only when they were immunized sc. However, peritoneal exudate cells of those tolerant mice immunized sc without CY pretreatment or immunized iv with CY pretreatment also passively transferred DFR locally, suggesting the existence of effector T cells for DTH even in tolerant mice.  相似文献   

9.
BALB/c or C3H/He mice were inoculated i.v. with allogeneic spleen cells untreated or treated with neuraminidase. Appreciable or potent anti-allo-delayed-type hypersensitivity (DTH) responses were observed when mice were inoculated i.v. with untreated allogeneic cells or inoculated i.v. with those cells followed by s.c. immunization with untreated allogeneic cells. In contrast, i.v. inoculation of neuraminidase-treated allogeneic cells (presensitization) not only failed to induce any significant anti-allo-DTH responses but also abolished the capability of the animals to develop DTH responses after s.c. immunization, indicating the tolerance induction. This tolerance was alloantigen-specific, and rapidly inducible and long lasting. The induction of suppressor cell activity was demonstrated in tolerant mice. However, this activity was associated only with the tolerant state around 4 to 7 days after the i.v. presensitization, but was no longer detected in mice more than 14 days after the presensitization, although these mice exhibited complete tolerant state. When spleen cells from such tolerant mice were transferred i.v. into 600 R x-irradiated syngeneic recipient mice alone or together with normal syngeneic spleen cells, these tolerant spleen cells themselves failed to induce DTH responses but did not exhibit suppressive effect on the generation of DTH responses induced by normal spleen cells co-transferred. These results indicate that i.v. administration of neuraminidase-treated allogeneic cells results in the induction of alloantigen-specific tolerance which is not always associated with the induction of suppressor cell activity but rather with the elimination or functional impairment of alloantigen-specific clones.  相似文献   

10.
This paper examines the delayed-type hypersensitivity (DTH) response to male (H-Y) antigen(s). Female mice of theH?2 b haplotype developed delayed footpad reaction to syngeneic or allogenic male thymus and spleen cells after priming with syngeneic male thymus and spleen cells. The reaction peaks at 24 h, has classical DTH histology and is specific to H-Y antigen as it is not elicited with female cells. Cell transfer studies show that donor/recipient matching at theI?B b subregion is necessary for sucessful transfer of DTH and that the effective primed population is Thy-1+, Lyt-1+, 2?. DTH response to H-Y antigen appears to be confined to mice of theH?2 b haplotype. There appears to be a lack of associative recognition between H-Y antigen and MHC-coded determinants in the effector phase of DTH, and macrophage processing of H-Y seems likely, since nonresponder haplotypes can elicit the DTH response. Studies withH?2 b recombinant mouse strains indicate that the dominantIr gene is located in theI?B region. Female F1 hybrid mice derived from matings of strains not involvingH?2 b haplotype failed to develop DTH to H-Y. In summary, these data imply that a complete correlation exists between DTH to H-Y and the ability to reject male skin graft, suggesting that the effector mechanisms of skin-graft rejection may closely involve DTH cells.  相似文献   

11.
Delayed-type hypersensitivity (DTH) against alloantigens can be induced by sc immunization with allogeneic cells. The induction of DTH can be suppressed by iv preimmunization of the mice with similar allogeneic spleen cells, provided the cells are irradiated before injection. This suppression is mediated by T cells. The suppressor activity can be induced not only by H-2-and non-H-2-coded antigens, but also by H-2 subregion-coded antigens. Suppression induced by K, I, or D subregion-coded antigens is specific for that particular subregion as well as for its haplotype. I-J-coded alloantigens were found to not be necessary for the induction of antigen-specific suppressor T cells. After restimulation of suppressor T cells by the "specific" alloantigens, the DTH to simultaneously administered third-party alloantigens becomes suppressed as well. This nonspecific suppression of DTH to third party "bystander" alloantigens also occurs when the specific and the third-party antigens are presented on separate cells, provided that both cell types are administered together at the same site. The simultaneous presentation of both sets of alloantigens during the induction phase of DTH only is sufficient to prevent the normal development of DTH to the third-party antigens.  相似文献   

12.
We studied the effects of T cell extracts from adult responder BALB/c mice tolerized with poly(Glu60Ala30Tyr10) (GAT)-coupled syngeneic spleen cells (GAT-SP) on delayed-type hypersensitivity (DTH), T cell-proliferative (Tprlf), and plaque-forming cell (PFC) responses. Adult responder mice injected i.v. with GAT-SP develop Lyt-1-2+ suppressor T cells (Ts), which suppress the induction of GAT-specific DTH and PFC, but not Tprlf responses. Sonicates from these Ts contain an afferent-acting, soluble factor(s) (GAT-TsFdh) that specifically suppresses the same responses as the intact Ts (i.e., DTH and PFC, but not Tprlf). Immunosorbent chromatography studies were employed to determine the molecular nature of the suppressive material active on both cellular and humoral responses. In both assay systems, GAT-TsFdh was found to bear determinants encoded by the I subregion of the H-2 complex and a receptor(s) for GAT. BALB/c-derived GAT-TsFdh suppressed the induction of GAT DTH in syngeneic BALB/c and H-2-compatible B10.D2, but not in allogeneic C57BL/6 or CBA/Cum, suggesting a possible H-2 restriction in the suppression. It was also shown that one target of functional regulation by GAT-TsFdh is the T helper cell for DTH responses (DTH-Th). The results suggest that similar Ts and TsF regulate humoral and cell-mediated responses, perhaps by affecting a target common to both pathways (e.g., the T helper cell). The resistance of Tprlf responses to suppression by GAT-TsFdh indicates that the effector DTH-Th target is not a major component of the proliferative response. These data are discussed with respect to GAT-specific TsF-regulating PFC responses, which have been identified in nonresponders and in responders tolerized as neonates with GAT.  相似文献   

13.
Immunization of mice with viable allogeneic H-2-compatible spleen cells can induce a persistent state of delayed-type hypersensitivity (DTH) to these alloantigens, as measured with the footpad swelling test. Boosting of such mice, 2–4 months after priming, induced a typical secondary-type DTH reactivity. The capacity of secondary DTH to non-H-2 alloantigens could be adoptively transferred from primed mice into irradiated syngeneic hosts by means of nylon wool-nonadherent, Thy-1.2+ spleen cells. Vinblastine treatment of the donor mice did not affect the adoptive DTH responsiveness. These results suggest that a population of long-lived T memory cells contributes to secondary-type DTH responsiveness to non-H-2 alloantigens. The phenomenon of persistent DTH is discussed in the light of these results. The hypothesis is put forward that persistent DTH is dependent on the continuous antigen-driven differentiation of long-lived, recirculating T memory cells into nonrecirculating, functionally short-lived DTH effector cells.  相似文献   

14.
Delayed-type hypersensitivity (DTH) to Listeria monocytogenes was measured in rats that were recipients of syngeneic, semisyngeneic, and allogeneic immune thoracic duct lymphocytes (TDL). DTH could be transferred only to recipients that shared at least one haplotype with the TDL donors. The restriction was expressed in an inability of sensitized lymphoblasts to localize efficiently at antigen injection sites in the pinna of the ear and peritoneal cavity. Failure of allogeneic lymphoblasts to extravasate in more than trace numbers into Listeria-antigen-induced exudates was reflected in an absence of other lymphocyte-mediated expressions of DTH. Thus, lymphocyte-dependent MCA was not detected in Listeria-antigen-induced peritoneal exudates borne by recipients of allogeneic immune TDL and blood monocytes were not recruited in increased numbers into such exudates as they were in exudates borne by syngeneic rats. But allogeneic restriction of the delayed inflammatory response to Listeria antigen was overcome, at least in part, when antigen-presenting macrophages of the same MHC type as the immune TDL donors were implanted in the peritoneal cavity. The results encourage the belief that the observed failure of immune TDL to transfer DTH to allogeneic recipients is related to the inability of sensitized donor T cells to recognize antigen displayed by allogeneic macrophages.  相似文献   

15.
The administration of C3H/He spleen cells into allogeneic BALB/c mice via portal venous (p.v.) route resulted in C3H/He alloantigen-specific tolerance for delayed-type hypersensitivity (DTH) responses. When serum from these tolerant BALB/c mice were transferred into naive syngeneic BALB/c mice, the recipient mice lost the capability of generating DTH responses as induced by s.c. immunization with C3H/He cells. Tolerance was transferred only by serum from BALB/c mice inoculated p.v. with C3H/He cells, but not by serum from C3H/He mice inoculated p.v. with C3H/He cells, or BALB/c mice inoculated i.v. with C3H/He cells. This tolerogenic activity in serum from p.v. inoculated BALB/c mice was C3H/He alloantigen specific, because the transfer of the serum did not interfere with the development of anti-C57BL/6 DTH responses in recipient BALB/c mice. Such a serum factor(s) was inducible as early as 1 wk after the inoculation of C3H/He cells into BALB/c mice and not associated with anti-C3H/He alloantibody activity. Moreover, anti-C3H/He or C57BL/6-specific tolerogenic factor(s) prepared in the respective BALB/c or C3H/He mice was successfully transferred into totally allogeneic recipient mice, indicating no requirement of H-2, as well as non-H-2 restriction for the function of serum tolerogenic factor(s). Thus this study demonstrates that p.v. inoculation of allogeneic cells generates serum factor(s) able to transfer in H-2 and non-H-2-unrestricted manners the in vivo tolerance of the alloreactivity specific for alloantigens used for p.v. inoculation.  相似文献   

16.
Age-related changes manifested in MHC-linked recognition of bone marrow (BM) cells by the thymic stroma were studied in vitro model of thymus-BM chimeras. Fetal thymuses (FT) depleted of self-lymphocytes were colonized with BM cells from syngeneic and allogeneic donor mice. When cells from young (3-month-old) or old (24-month-old) donors syngeneic to the stroma were seeded in a mixture with cells of allogeneic young origins (C57BL/6J-Thy1.2 and ARK/J-Thy1.1 seeded onto C57BL/6J FT), the syngeneic cells showed an age-related developmental advantage. Accordingly, cells from the old syngeneic mice manifested a significantly reduced capacity to compete with allogeneic cells when compared with the young syngeneic cells. When allogeneic BM cells from young or old mice were seeded onto the thymic stroma in a mixture with BM cells from young donors syngeneic to that stroma (BALB/c-Thy1.2 mixed with C57BL/Ka-Thy1.1 seeded onto C57BL/6J or C57BL/Ka FT), the Thy1+ cells which developed were mainly of syngeneic origin. The age of the allogeneic cells had no significant effect on the results. However, when old allogeneic cells were mixed with old syngeneic cells, the developmental advantage of the syngeneic cells was not manifested. When seeding of allogeneic cells was followed 1 day later by seeding of syngeneic cells, the syngeneic advantage was eliminated, suggesting that the MHC-linked competition began during the first 24 hr of contact with the thymic tissue. When BM-derived thmocytes grown in FT explants were transferred onto second FT recipient explants of the same genotype as the first ones, the syngeneic advantage was abolished, suggesting either that the thymic microenvironment was modified as a result of colonization or that it induced a change in the BM cells. In this respect, the young allogeneic BM-derived thymocytes showed a significant advantage when compared with the old cells. Thus, the MHC-linked syngeneic preference in the early development of BM cells is also manifested in aging mice, yet at a level that is significantly reduced compared with that seen in the young mice.  相似文献   

17.
Protection and delayed-type hypersensitivity (DTH) to the facultative intracellular bacterium Listeria monocytogenes (L.m.) were studied in allogeneic and syngeneic bone marrow chimeras. Lethally irradiated AKR (H-2k) mice were successfully reconstituted with marrow cells from C57BL/10 (B10) (H-2b), B10 H-2-recombinant strains or syngeneic mice. Irradiated AKR mice reconstituted with marrow cells from H-2-compatible B10.BR mice, [BR----AKR], as well as syngeneic marrow cells, [AKR----AKR], showed a normal level of responsiveness to the challenge stimulation with the listeria antigens when DTH was evaluated by footpad reactions. These mice also showed vigorous activities in acquired resistance to the L.m. By contrast, chimeric mice that had total or partial histoincompatibility at the H-2 determinants between donor and recipient, [B10----AKR], [B10.AQR----AKR], [B10.A(4R)----AKR], or [B10.A(5R)----AKR], were almost completely unresponsive in DTH and antibacterial immunity. However, when [B10----AKR] H-2-incompatible chimeras had been immunized with killed L.m. before challenge with live L.m., these mice manifested considerable DTH and resistance to L.m. These observations suggest that compatibility at the entire MHC between donor and recipient is required for bone marrow chimeras to be able to manifest DTH and protection against L.m. after a short-term immunization schedule. However, this requirement is overcome by a preceding or more prolonged period of immunization with L.m. antigens. These antigens, together with marrow-derived antigen-presenting cells, can then stimulate and expand cell populations that are restricted to the MHC (H-2) products of the donor type.  相似文献   

18.
The delayed-type hypersensitivity reaction (DTH) in mice tolerant to allo- and xenoantigens has been investigated. To induce tolerance adult mice were thymectomized and given 1 X 10(8) allogeneic or xenogeneic spleen cells and cyclophosphamide (200 mg/kg). Such mice failed to develop DTH to donor antigens, while DTH reaction to foreign allo- and xenoantigens was retained. Spleen cells of mice tolerant to alloantigens significantly suppressed the afferent and efferent DTH phases. The suppression was specific and T-cell-mediated. Spleen cells of mice tolerant to xenoantigens could suppress only the afferent DTH phase. The treatment of cells with anti-T-globulin and complement did not abrogate the suppression. The role of DTH suppressors in the induction and maintenance of transplantation tolerance is discussed.  相似文献   

19.
The role of antigen-specific helper T cells in augmenting the in vivo development of delayed-type hypersensitivity (DTH) responses was investigated. C3H/HeN mice were inoculated i.p. with vaccinia virus to generate virus-reactive helper T cell activity. These vaccinia virus-primed or unprimed mice were subsequently immunized subcutaneously (s.c.) with either trinitrophenyl (TNP)-modified syngeneic spleen cells (TNP-self), vaccinia virus-infected spleen cells (virus-self), or cells modified with TNP subsequent to virus infection (virus-self-TNP). Seven days later, these mice were tested for anti-TNP DTH responses either by challenging them directly with TNP-self into footpads or by utilizing a local adoptive transfer system. The results demonstrated that vaccinia virus-primed mice failed to generate significant anti-TNP DTH responses when s.c. immunization was provided by either virus-self or TNP-self alone. In contrast, vaccinia virus-primed mice, but not unprimed mice, could generate augmented anti-TNP DTH responses when immunized with virus-self-TNP. Anti-vaccinia virus-reactive helper activity was successfully transferred into 600 R x-irradiated unprimed syngeneic mice by injecting i.v. spleen cells from virus-primed mice. These helper T cells were found to be antigen specific and were mediated by Thy-1+, Lyt-1+2- cells. DTH effector cells enhanced by helper T cells were also antigen specific and were of the Thy-1+, Lyt-1+2- phenotype. Furthermore, vaccinia virus-reactive helper T cell activity could be applied to augment the induction of tumor-specific DTH responses by immunization with vaccinia virus-infected syngeneic X5563 tumor cells. T-T cell interaction between Lyt-1+ helper T cells and Lyt-1+ DTH effector T cells is discussed in the light of the augmenting mechanism of in vivo anti-tumor-specific immune responses.  相似文献   

20.
In vitro cultivation of normal mouse spleen cells with human serum albumin generated effector cells that mediate the delayed-type hypersensitivity (DTH) reaction. The cultured cells, when incubated in a serum-free medium for a further 24 hr, released substances (FPRF) which caused a footpad inflammatory reaction at a maximum of 6 hr after injection into normal syngeneic or allogeneic strains of mice, as well as macrophage migration inhibition factor (MIF) and macrophage activating factor (MAF). The DTH-effector cells in the culture were fractionated in the low density layers by discontinuous bovine serum albumin density gradient centrifugation. The effector cells in the low density layers were further enriched in the Lyt 1 subpopulation of T cells when fractionated on a fluorescence activated cell sorter. Cells capable of producing the inflammatory substances (FPRF), MIF and MAF were also enriched in the same fraction containing DTH-effector cells. These results suggest that low density, Lyt 1-positive T cells mediating the DTH reaction produce FPRF as well as MIF and MAF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号