共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
TNFalpha has been proposed to underlie synaptic scaling, but the mechanism and functional significance of this remain unclear. In this issue of Neuron, Cingolani et al. demonstrate that TNFalpha can mediate scaling through the regulation of beta3 integrins. Kaneko et al. show that TNFalpha-dependent synaptic scaling plays an important role in visual cortical plasticity. 相似文献
3.
In this issue of Molecular Cell, Skaug et al. (2011) propose a polyubiquitin-dependent, noncatalytic mechanism by which the deubiquitinase A20 inhibits IκB kinase and NF-κB activation. 相似文献
4.
5.
Structure-function studies have defined two classes of viral membrane-fusion proteins that have radically different architectures but adopt a similar overall 'hairpin' conformation to induce fusion of the viral and cellular membranes and therefore initiate infection. In both classes, the hairpin conformation is achieved after a conformational change is triggered by interaction with the target cell. This review will focus in particular on the properties of the more recently described class II proteins. 相似文献
6.
Glick BS 《Current biology : CB》2001,11(9):R361-R363
Protein export from the ER is mediated by COPII vesicles. Glycosylphosphatidylinositol-linked proteins seem to be segregated from other cargo proteins during ER export, suggesting that ER membranes produce more than one type of vesicle. 相似文献
7.
Because of its importance in directing evolutionary trajectories, there has been considerable interest in comparing variation among genetic variance-covariance (G) matrices. Numerous statistical approaches have been suggested but no general analysis of the relationship among these methods has previously been published. In this study, we used data from a half-sib experiment and simulations to explore the results of applying eight tests (T method, modified Mantel test, Bartlett's test, Flury hierarchy, jackknife-manova, jackknife-eigenvalue test, random skewers, selection skewers). Whereas a randomization approach produced acceptable estimates, those from a bootstrap were typically unacceptable and we recommend randomization as the preferred method. All methods except the jackknife-eigenvalue test gave similar results although a fine-scale analysis suggested that the former group can be subdivided into two or possibly three groups, hierarchical tests, skewers and the rest (jackknife-manova, modified Mantel, T method, probably Bartlett's). An advantage of the jackknife methods is that they permit tests of association with other factors, such as in this case, temperature and sex. We recommend applying all the tests described in this article, with the exception of the T method, and provide R functions for this purpose. 相似文献
8.
Several different cytokinetic mechanisms operate in flowering plants. During 'conventional' somatic cytokinesis, the mitotic spindle remnants give rise to a phragmoplast that serves as a framework for the assembly of the cell plate. Cell plates fuse with the parental plasma membrane at specific cortical sites previously defined by the preprophase band of microtubules. In nuclear endosperms, meiocytes, and gametophytic cells, cytokinesis occurs without preprophase bands. The position of the new cell walls is determined instead by interacting arrays of microtubules that radiate from the nuclear envelope surfaces. The nuclear cytoplasmic domains defined by these microtubule arrays demarcate the boundaries of the future cells. Recent studies have provided new insights into the ultrastructural similarities and dissimilarities between conventional and non-conventional cytokinesis. Numerous proteins have also been localized to cytokinesis-related cytoskeletal arrays and cell plates but the functions of most of them have yet to be elucidated. 相似文献
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
How do embryos establish differences between their left and right sides? Previous studies have implicated various signaling molecules and directional beating of cilia. Now, a new player enters the scene: the proton-potassium pump. 相似文献
20.
The establishment of a functional, integrated vascular system is instrumental for tissue growth and homeostasis. Without blood vessels no adequate nutrition and oxygen would be provided to cells, nor could the undesired waste products be efficiently removed. Blood vessels constitute therefore one of the largest and most complex body network whose assembly depends on the precise balance of growth factors acting in a complementary and coordinated manner with cells of several identities. However, the vessels that are crucial for life can also foster death, given their involvement in cancer progression towards malignancy and metastasis. Targeting tumor vasculature has thus arisen as an appealing anti-cancer therapeutic approach. Since the milestone achievements that vascular endothelial growth factor (VEGF) blockade suppressed angiogenesis and tumor growth in mice and prolonged the survival of cancer patients when administered in combination with chemotherapy, the clinical development of anti-VEGF(R) drugs has accelerated remarkably. FDA has approved the use of bevacizumab – a humanized monoclonal antibody against VEGF – in colorectal, lung and metastatic breast cancers in combination with standard chemotherapy. Additional broad-spectrum VEGF receptor tyrosine kinase inhibitors, such as sunitinib and sorafenib, are used in monotherapy for metastatic renal carcinoma, while sunitinib is also approved for imatinib resistant gastrointestinal stromal tumors and sorafenib for advanced stage hepatocellular carcinoma. Nevertheless, the survival benefit offered by VEGF(R) blockers, either as single agents or in combination with chemotherapy, is calculated merely in the order of months. Posterior studies in preclinical models have reported that despite reducing primary tumor growth, the inhibition of VEGF increased tumor invasiveness and metastasis. The clinical implications of these findings urge the need to reconcile these conflicting results. Anti-angiogenic therapy represents a significant step forth in cancer therapy and in our understanding of cancer biology, but it is also clear that we need to learn how to use it. What is the biological consequence of VEGF-blockade? Does VEGF inhibition starve the tumor to death – as initially postulated – or does it rather foster malignancy? Can anti-VEGF(R) therapy favor tumor vessel formation by VEGF-independent means? Tumors are very diverse and plastic entities, able to adapt to the harshest conditions; this is also reflected by the tumor vasculature. Lessons from the bench to the bedside and vice versa have taught us that the diversity of signals underlying tumor vessel growth will likely be responsive (or resistant) to distinct therapeutic approaches. In this review, we propose a reflection of the different strategies tumors use to grow blood vessels and how these can have impact on the (un)success of current anti-angiogenic therapies. 相似文献