首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An amperometric dimethyl sulfoxide (DMSO) sensor was constructed based on DMSO reductase (DMSO-R). DMSO-R from Rhodobacter sphaeroides f. sp. denitrificans was immobilized by BSA-glutaraldehyde cross-linking at the surface of a glassy carbon electrode. Mediators were added to the sample solution in a free form. Several mediators (methyl viologen (MV), benzyl viologen (BV), neutral red (NR), safranin T (ST), FMN, phenazine methosulfate (PMS)), which can donate electrons to DMSO-R, were examined with the DMSO-R immobilized electrode. Among them MV was selected as a model mediator because of its wide linear response range and fast response time. The response current was effected by the measurement temperature but hardly effected by the pH of the sample solution. The response current was increased with the measurement temperature up to 50 degrees C. A response current was observed at 1 microM DMSO and the response time was 20 s under the optimum conditions. The response was observed for approximately 2 weeks. By the reduction of Schiff base in the cross-linking layer the response range became narrower but most of the response current was retained at 300 microM of DMSO for more than 5 weeks.  相似文献   

2.
Absorption and EPR spectroscopic properties of purified dimethyl sulfoxide (Me2SO) reductase from Rhodobacter sphaeroides f. sp. denitrificans have been examined. The absence of prosthetic groups other than the molybdenum center in the enzyme has made it possible to study its absorption properties. The enzyme displays multiple absorbance peaks in both the oxidized and the dithionite-reduced forms. The oxidized enzyme has absorbance peaks at 280, 350, 470, 550, and 720 nm while the dithionite-reduced enzyme has peaks at 280, 374, and 645 nm with a shoulder at 430 nm. A comparison of the absorbance spectrum of oxidized Me2SO reductase with that of the molybdenum fragment of rat liver sulfite oxidase shows that the 350 and 470 peaks are common to both proteins. EPR studies of the Mo(V) form of Me2SO reductase show a rhombic signal with g1 = 1.988, g2 = 1.977, g3 = 1.961, and g(ave) = 1.975. The signal shows evidence of coupling to an exchangeable proton with A1 = 1.05, A2 = 1.13, A3 = 0.98, and Aave = 1.05 millitesla. These parameters are similar to those of other Mo enzymes, however, the epr signal of this enzyme differs from those of other Mo hydroxylases in showing only a slight sensitivity to pH and no detectable anion effect. EPR potentiometric titrations of Me2SO reductase gave midpoint potentials of +144 mV for the Mo(VI)/Mo(V) couple and +160 mV for the Mo(V)/Mo(IV) couple at room temperature and +141 mV for the Mo(VI)/Mo(V) couple and +200 mV for the Mo(V)/Mo(IV) couple at 173 K.  相似文献   

3.
Electrochemically driven catalysis of the bacterial enzyme dimethyl sulfoxide (DMSO) reductase (Rhodobacter capsulatus) has been studied using the macrocyclic complex (trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine)cobalt(III) as a mediator. In the presence of both DMSO and DMSO reductase, the normal transient CoIII/II voltammetric response of the complex is transformed into an amplified and sigmoidal (steady-state) waveform characteristic of a catalytic EC′ mechanism. At low concentrations of DMSO (approximately K M) or high mediator concentrations (more than the concentration of DMSO reductase), the steady-state character of the voltammetric response disappears and is replaced by more complicated waveforms that are a convolution of transient and steady-state behavior as different steps within the catalytic cycle become rate limiting. Through digital simulation of cyclic voltammetry performed under conditions where the sweep rate, DMSO concentration, DMSO reductase concentration and mediator concentration were varied systematically, we were able to model all voltammograms with a single set of rate and equilibrium constants which provide new insights into the kinetics of the DMSO reductase catalytic mechanism that have hitherto been inaccessible from steady state or stopped flow kinetic studies.
Paul V. BernhardtEmail:
  相似文献   

4.
Conditions for heterologous expression of Rhodobacter sphaeroides biotin sulfoxide reductase in Escherichia coli were modified, resulting in a significant improvement in the yield of recombinant enzyme and enabling structural studies of the molybdenum center. Quantitation of the guanine and the molybdenum as compared to that found in R. sphaeroides DMSO reductase demonstrated the presence of the bis(MGD)molybdenum cofactor. UV-visible absorption spectra were obtained for the oxidized, NADPH-reduced, and dithionite-reduced enzyme. EPR spectra were obtained for the Mo(V) state of the enzyme. X-ray absorption spectroscopy at the molybdenum K-edge has been used to probe the molybdenum coordination of the enzyme. The molybdenum site of the oxidized protein possesses a Mo(VI) mono-oxo site (Mo=O at 1.70 A) with additional coordination by approximately four thiolate ligands at 2.41 A and probably one oxygen or nitrogen at 1.95 A. The NADPH- and dithionite-reduced Mo(IV) forms of the enzyme are des-oxo molybdenum sites with approximately four thiolates at 2.33 A and two different Mo-O/N ligands at 2.19 and 1.94 A.  相似文献   

5.
A fully defined in vitro system has been developed for studying the mechanism of assembly of the bis(molybdopterin guanine dinucleotide)molybdenum cofactor in Rhodobacter sphaeroides dimethyl sulfoxide reductase (DMSOR). R. sphaeroides DMSOR expressed in a mobA(-) Escherichia coli strain lacks molybdopterin and molybdenum but contains a full complement of guanine in the form of GMP and GDP. Escherichia coli MobA, molybdopterin-Mo, GTP, and MgCl(2) are required and sufficient for the in vitro activation of purified DMSOR expressed in the absence of MobA. High levels of MobA inhibit the in vitro activation. A chaperone is not required for the in vitro activation process. The reconstituted DMSOR can exhibit up to 73% of the activity observed in recombinant DMSOR purified from a wild-type strain. The use of radiolabeled GTP has demonstrated incorporation of the guanine moiety from the GTP into the activated DMSOR. No role was observed for E. coli MobB in the in vitro activation of apo-DMSOR. This work also represents the first time that the MobA-mediated conversion of molybdopterin to molybdopterin guanine dinucleotide has been demonstrated directly without using the activation of a molybdoenzyme as an indicator for cofactor formation.  相似文献   

6.
Nelson KJ  Rajagopalan KV 《Biochemistry》2004,43(35):11226-11237
Rhodobacter sphaeroides biotin sulfoxide reductase (BSOR) contains the bis(molybdopterin guanine dinucleotide)molybdenum cofactor and catalyzes the reduction of D-biotin-D-sulfoxide to biotin. This protein is the only member of the dimethyl sulfoxide reductase family of molybdopterin enzymes that utilizes NADPH as the direct electron donor to the catalytic Mo center. Kinetic studies using stopped-flow spectrophotometry indicate that BSOR reduction by NADPH (>1000 s(-1)) is faster than steady-state turnover (440 s(-1)) and has shown that BSOR reduction occurs in concert with NADPH oxidation with no indication of a Mo(V) intermediate species. Because no crystallographic structure is currently available for BSOR, a protein structure was modeled using the structures for R. sphaeroides dimethyl sulfoxide reductase, Rhodobacter capsulatus dimethyl sulfoxide reductase, and Shewanella massilia trimethylamine N-oxide reductase as the templates. A potential NADPH-binding site was identified and tested by site-directed mutagenesis of residues within the area. Mutation of Arg137 or Asp136 reduced the ability of NADPH to serve as the electron donor to BSOR, indicating that the NADPH-binding site in BSOR is located in the active-site funnel of the putative structure where it can directly reduce the Mo center. Along with kinetic and spectroscopic data, the location of this binding site supports a direct hydride transfer mechanism for NADPH reduction of BSOR.  相似文献   

7.
Y Yoshida  M Takai  T Satoh    S Takami 《Journal of bacteriology》1991,173(11):3277-3281
Translocation of dimethyl sulfoxide (DMSO) reductase to the periplasmic space was studied in vivo with a photodenitrifier, Rhodobacter sphaeroides f. sp. denitrificans, using immunoblotting analysis and radioactive labeling. A polypeptide with an apparent molecular mass about 2,000 Da higher than that of DMSO reductase accumulated during induction of the reductase with DMSO. An uncoupler, carbonyl cyanide-m-chlorophenylhydrazone, inhibited the processing of the polypeptide after cells had been radioactively pulse-labeled with [35S]methionine. These results indicated that the higher-molecular-mass polypeptide was the precursor form of DMSO reductase. The precursor form accumulated in either the cytoplasm or the membrane, whereas the mature form accumulated in the periplasmic space. The membrane-bound precursor was sensitive to proteinase K treatment from both the cytoplasmic and periplasmic sides of the membrane, indicating that the polypeptide binds to the membrane, exposing it to both the outer and inner surfaces of the cytoplasmic membrane. Processing of the precursor was hampered by removal of molybdate from the medium and was restored by its readdition. It was also inhibited by the addition of tungstate in the medium.  相似文献   

8.
Rhodobacter sphaeroides 2.4.1T is a purple nonsulfur facultative phototrophic bacterium which exhibits remarkable metabolic diversity as well as genomic complexity. Under anoxic conditions, in the absence of light and the presence of dimethyl sulfoxide (DMSO) or trimethylamine N-oxide (TMAO), R. sphaeroides 2.4.1T utilizes DMSO or TMAO as the terminal electron acceptor for anaerobic respiration, which is mediated by the molybdoenzyme DMSO reductase. Sequencing of a 13-kb region of chromosome II revealed the presence of 10 putative open reading frames, of which 5 possess homology to genes encoding the TMAO reductase (the tor system) of Escherichia coli. The dorS and dorR genes encode a sensor-regulator pair of the two-component sensory transduction protein family, homologous to the torS and torR gene products. The dorC gene was shown to encode a 44-kDa DMSO-inducible c-type cytochrome. The dorB gene encodes a membrane protein of unknown function homologous to the torD gene product. The dorA gene encodes DMSO reductase, containing the molybdopterin active site. Mutations were constructed in each of these dor genes, and the resulting mutants were shown to be impaired for DMSO-dependent anaerobic growth in the dark. The mutant strains exhibited negligible levels of DMSO reductase activity compared to the wild-type strain under similar growth conditions. Further, no DorA protein was detected in DorS and DorR mutant strains with anti-DorA antisera, suggesting that the products of these genes are required for the positive regulation of dor expression in response to DMSO. This characterization of the dor gene cluster is the first evidence that genes of chromosome CII encode metabolic functions which are essential under particular growth conditions.  相似文献   

9.
H Masui  M Satoh    T Satoh 《Journal of bacteriology》1994,176(6):1624-1629
Spheroplasts prepared from a molybdenum cofactor-deficient mutant of Rhodobacter sphaeroides f. sp. denitrificans secreted dimethyl sulfoxide (DMSO) reductase which had no molybdenum cofactor and therefore no activity, whereas those from wild-type cells secreted the active reductase. The inactive DMSO reductase proteins were separated by nondenaturing electrophoresis into two forms: form I, with the same mobility as the native enzyme, and form II, with slower mobility. Both forms had the same mobility on denaturing gel. Form I and active DMSO reductase had the same profile on gel filtration chromatography. Form II was eluted a little faster than the native enzyme, suggesting that DMSO reductase form II was not an aggregated form but a compactly folded form very similar to the native enzyme. Form II was digested by trypsin and denatured with urea, whereas form I was unaffected, like native DMSO reductase. These results suggested that form II was a partially unfolded but compactly folded apoprotein of DMSO reductase.  相似文献   

10.
Raman spectroscopy has been used to investigate the structure of the molybdenum cofactor in DMSO reductase from Rhodobacter capsulatus. Three oxidized forms of the enzyme, designated 'redox cycled', 'as prepared', and DMSOR(mod)D, have been studied using 752 nm laser excitation. In addition, two reduced forms of DMSO reductase, prepared either anaerobically using DMS or using dithionite, have been characterized. The 'redox cycled' form has a single band in the Mo=O stretching region at 865 cm(-1) consistent with other studies. This oxo ligand is found to be exchangeable directly with DMS(18)O or by redox cycling. Furthermore, deuteration experiments demonstrate that the oxo ligand in the oxidized enzyme has some hydroxo character, which is ascribed to a hydrogen bonding interaction with Trp 116. There is also evidence from the labeling studies for a modified dithiolene sulfur atom, which could be present as a sulfoxide. In addition to the 865 cm(-1) band, an extra band at 818 cm(-1) is observed in the Mo=O stretching region of the 'as prepared' enzyme which is not present in the 'redox cycled' enzyme. Based on the spectra of unlabeled and labeled DMS reduced enzyme, the band at 818 cm(-1) is assigned to the S=O stretch of a coordinated DMSO molecule. The DMSOR(mod)D form, identified by its characteristic Raman spectrum, is also present in the 'as prepared' enzyme preparation but not after redox cycling. The complex mixture of forms identified in the 'as prepared' enzyme reveals a substantial degree of active site heterogeneity in DMSO reductase.  相似文献   

11.
B Adams  A T Smith  S Bailey  A G McEwan  R C Bray 《Biochemistry》1999,38(26):8501-8511
Improved assays for the molybdenum enzyme dimethylsulfoxide reductase (DMSOR) with dimethyl sulfoxide (DMSO) and with dimethyl sulfide (DMS) as substrates are described. Maximum activity was observed at pH 6.5 and below and at 8.3, respectively. Rapid-scan stopped-flow spectrophotometry has been used to investigate the reduction of the enzyme by DMS to a species previously characterized by its UV-visible spectrum [McAlpine, A. S., McEwan, A. G., and Bailey, S. (1998) J. Mol. Biol. 275, 613-623], and its subsequent reoxidation by DMSO. Both these two-electron reactions were faster than enzyme turnover under steady-state conditions, indicating that one-electron reactions with artificial dyes were rate-limiting. Second-order rate constants for the two-electron reduction and reoxidation reactions at pH 5.5 were (1.9 +/- 0.1) x 10(5) and (4.3 +/- 0.3) x 10(2) M-1 s-1, respectively, while at pH 8.0, the catalytic step was rate-limiting (62 s-1). Kinetically, for the two-electron reactions, the enzyme is more effective in DMS oxidation than in DMSO reduction. Reduction of DMSOR by DMS was incomplete below approximately 1 mM DMS but complete at higher concentrations, implying that the enzyme's redox potential is slightly higher than that of the DMS-DMSO couple. In contrast, reoxidation of the DMS-reduced state by DMSO was always incomplete, regardless of the DMSO concentration. Evidence for the existence of a spectroscopically indistinguishable reduced state, which could not be reoxidized by DMSO, was obtained. Brief reaction (less than approximately 15 min) of DMS with DMSOR was fully reversible on removal of the DMS. However, in the presence of excess DMS, a further slow reaction occurred aerobically, but not anaerobically, to yield a stable enzyme form having a lambdamax at 660 mn. This state (DMSORmod) retained full activity in steady-state assays with DMSO, but was inactive toward DMS. It could however be reconverted to the original resting state by reduction with methyl viologen radical and reoxidation with DMSO. We suggest that in this enzyme form two of the dithiolene ligands of the molybdenum have dissociated and formed a disulfide. The implications of this new species are discussed in relation both to conflicting published information for DMSOR from X-ray crystallography and to previous spectroscopic data for its reduced forms.  相似文献   

12.
Studies of intracytoplasmic membrane biogenesis utilizing synchronized cultures of Rhodobacter sphaeroides have revealed that most intracytoplasmic membrane proteins accumulate continuously throughout the cell cycle while new phospholipid appears discontinuously within the intracytoplasmic membrane. The resulting changes in the structure of the membrane lipids was proposed to influence the activities of enzymes associated with the intracytoplasmic membranes (Wraight, C.A., Leuking, D.R., Fraley, R.T. and Kaplan, S. (1978) J. Biol. Chem. 253, 465-471). We have extended the study of intracytoplasmic membrane biogenesis in R. sphaeroides to include the membrane adenosine triphosphatase. The membrane bound Mg2+-dependent, oligomycin-sensitive adenosine triphosphatase activity was measured throughout the cell cycle for steady-state synchronized cells of R. sphaeroides and found to accumulate discontinuously. Following treatment with an uncoupling reagent (2,4-dinitrophenol) the intracytoplasmic membrane associated adenosine triphosphatase activity was stimulated uniformly in membranes isolated at different stages of the cell cycle. The adenosine triphosphatase was also measured by quantitative immunoblots utilizing specific antibody to compare the enzyme activity and enzyme protein mass. Immunologic measurement of the adenosine triphosphatase in isolated membranes indicated a constant ratio of enzyme to chromatophore protein exists during the cell cycle in contrast to the discontinuous accumulation of adenosine triphosphatase activity. These results are discussed in light of the cell-cycle specific synthesis of the intracytoplasmic membrane.  相似文献   

13.
Chlorophyllide a reductase of Rhodobacter sphaeroides, which were reconstituted with the purified subunits of BchX, BchY, and BchZ, reduced ring B of chlorophyllide a using NADH under anaerobic conditions. Interestingly, suppressor mutations rescuing the inability of R. sphaeroides Fe-SOD mutant to grow in succinate-based minimal medium were predominantly mapped to BchZ subunit of chlorophyllide a reductase. The enzyme is labile in the presence of O(2). However, it generates superoxide at low O(2). The enzymes reconstituted with BchX, BchY, and the mutein subunit of BchZ from suppressor mutants showed less activity not only for chlorophyllide a reduction but also for superoxide generation compared with the enzyme reconstituted with the wild-type subunits. BchX, which contains FMN, and BchY are iron-sulfur proteins, whereas BchZ is a hemoprotein containing b-type heme. Neither chlorophyllide a reduction nor superoxide generation was observed with the enzyme reconstituted with the wild-type subunits of BchX and BchY, and the apo-subunit of BchZ that had been refolded without heme, in which FMN of BchX was fully reduced. Thus, superoxide is generated not from FMN of BchX but from heme of BchZ. Consistently, the heme of BchZ muteins was half-reduced in its redox state compared with that of wild-type BchZ.  相似文献   

14.
Studies of the molybdenum-containing dimethyl sulfoxide reductase from Rhodobacter sphaeroides have yielded new insight into its catalytic mechanism. A series of reductive titrations, performed over the pH range 6-10, reveal that the absorption spectrum of reduced enzyme is highly sensitive to pH. The reaction of reduced enzyme with dimethyl sulfoxide is found to be clearly biphasic throughout the pH range 6-8 with a fast, initial substrate-binding phase and substrate-concentration independent catalytic phase. The intermediate formed at the completion of the fast phase has the characteristic absorption spectrum of the established dimethyl sulfoxide-bound species. Quantitative reductive and oxidative titrations of the enzyme demonstrate that the molybdenum center takes up only two reducing equivalents, implying that the two pyranopterin equivalents of the molybdenum center are not formally redox active. Finally, the visible spectrum associated with the catalytically relevant "high-g split" Mo(V) species has been determined. Spectral deconvolution and EPR quantitation of enzyme-monitored turnover experiments with trimethylamine N-oxide as substrate reveal that no substrate-bound intermediate accumulates and that Mo(V) content remains near unity for the duration of the reaction. Similar experiments with dimethyl sulfoxide show that significant quantities of both the Mo(V) species and the dimethyl sulfoxide-bound complex accumulate during the course of reaction. Accumulation of the substrate-bound complex in the steady-state with dimethyl sulfoxide arises from partial reversal of the physiological reaction in which the accumulating product, dimethyl sulfide, reacts with oxidized enzyme to yield the substrate-bound intermediate, a process that significantly slows turnover.  相似文献   

15.
The dorC gene of the dimethyl sulfoxide respiratory (dor) operon of Rhodobacter capsulatus encodes a pentaheme c-type cytochrome that is involved in electron transfer from ubiquinol to periplasmic dimethyl sulfoxide reductase. DorC was expressed as a C-terminal fusion to an 8-amino acid FLAG epitope and was purified from detergent-solubilized membranes by ion exchange chromatography and immunoaffinity chromatography. The DorC protein had a subunit Mr = 46,000, and pyridine hemochrome analysis indicated that it contained 5 mol heme c/mol DorC polypeptide, as predicted from the derived amino acid sequence of the dorC gene. The reduced form of DorC exhibited visible absorption maxima at 551.5 nm (alpha-band), 522 nm (beta-band), and 419 nm (Soret band). Redox potentiometry of the heme centers of DorC identified five components (n = 1) with midpoint potentials of -34, -128, -184, -185, and -276 mV. Despite the low redox potentials of the heme centers, DorC was reduced by duroquinol and was oxidized by dimethyl sulfoxide reductase.  相似文献   

16.
A system for expressing site-directed mutants of the molybdenum enzyme dimethyl sulfoxide reductase from Rhodobacter capsulatus in the natural host was constructed. This system was used to generate and express dimethyl sulfoxide reductase with a Y114F mutation. The Y114F mutant had an increased k(cat) and increased K(m) toward both dimethyl sulfoxide and trimethylamine N-oxide compared to the native enzyme, and the value of k(cat)/K(m) was lower for both substrates in the mutant enzyme. The Y114F mutant, as isolated, was able to oxidize dimethyl sulfide with phenazine ethosulfate as the electron acceptor but with a lower k(cat) than that of the native enzyme. The pH optimum of dimethyl sulfide:acceptor oxidoreductase activity in the Y114F mutant was shown to be shifted by +1 pH unit compared to the native enzyme. The Y114F mutant did not form a pink complex with dimethyl sulfide, which is characteristic of the native enzyme. The mutant enzyme showed a large increase in the K(d) for DMS. Direct electrochemistry showed that the Mo(V)/Mo(IV) couple was unaffected by the Y114F mutant, but the midpoint potential of the Mo(VI)/Mo(V) couple was raised by about 50 mV. These data confirm that the Y114 residue plays a critical role in oxidation-reduction processes at the molybdenum active site and in oxygen atom transfer associated with sulfoxide reduction.  相似文献   

17.
Rhodobacter sphaeroides is a metabolically diverse photosynthetic alphaproteobacterium found ubiquitously in soil and freshwater habitats. Here we present the annotated genome sequence of R. sphaeroides WS8N.  相似文献   

18.
19.
Dimethyl sulfoxide reductase is a trimeric, membrane-bound, iron-sulfur molybdoenzyme induced in Escherichia coli under anaerobic growth conditions. The enzyme catalyzes the reduction of dimethyl sulfoxide, trimethylamine N-oxide, and a variety of S- and N-oxide compounds. The topology of dimethyl sulfoxide reductase subunits was probed by a combination of techniques. Immunoblot analysis of the periplasmic proteins from the osmotic shock and chloroform wash fluids indicated that the subunits were not free in the periplasm. The reductase was susceptible to proteases in everted membrane vesicles, but the enzyme in outer membrane-permeabilized cells became protease sensitive only after detergent solubilization of the E. coli plasma membrane. Lactoperoxidase catalyzed the iodination of each of the three subunits in an everted membrane vesicle preparation. Antibodies to dimethyl sulfoxide reductase and fumarate reductase specifically agglutinated the everted membrane vesicles. No TnphoA fusions could be found in the dmsA or -B genes, indicating that these subunits were not translocated to the periplasm. Immunogold electron microscopy of everted membrane vesicles and thin sections by using antibodies to the DmsABC, DmsA, DmsB subunits resulted in specific labeling of the cytoplasmic surface of the inner membrane. These results show that the DmsA (catalytic subunit) and DmsB (electron transfer subunit) are membrane-extrinsic subunits facing the cytoplasmic side of the plasma membrane.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号