首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we describe the rational synthesis and functional analysis of novel high affinity inhibitors for the mammalian peptide transporter PEPT2. Moreover, we demonstrate which structural properties convert a transported compound into a non-translocated inhibitor. Starting from Lys[Z(NO(2))]-Pro (where Z is benzyloxycarbonyl), which we recently identified as the first competitive high affinity inhibitor of the intestinal peptide transporter PEPT1, a series of different lysine-containing dipeptide derivatives was synthesized and studied for interaction with PEPT2 based on transport competition assays in Pichia pastoris yeast cells expressing PEPT2 heterologously and in renal SKPT cells expressing PEPT2. In addition, the two-electrode voltage clamp technique in Xenopus laevis oocytes expressing PEPT2 was used to determine whether the compounds are transported electrogenically or block the uptake of dipeptides. Synthesis and functional analysis of Lys-Lys derivatives containing benzyloxycarbonyl or 4-nitrobenzyloxycarbonyl side chain protections provided a set of inhibitors that reversibly inhibited the uptake of dipeptides by PEPT2 with K(i) values as low as 10 +/- 1 nm. This is the highest affinity of a ligand of PEPT2 ever reported. Moreover, based on the structure-function relationship, we conclude that the spatial location of the side chain amino protecting group in a dipeptide containing a diaminocarbonic acid and its intramolecular distance from the Calpha atom are key factors for the transformation of a substrate into an inhibitor of PEPT2.  相似文献   

2.
This study was initiated to develop inhibitors of the intestinal H(+)/peptide symporter. We provide evidence that the dipeptide derivative Lys[Z(NO(2))]-Pro is an effective competitive inhibitor of mammalian PEPT1 with an apparent binding affinity of 5-10 microM. Characterization of the interaction of Lys[Z(NO(2))]-Pro with the substrate binding domain of PEPT1 has been performed in (a) monolayer cultures of human Caco-2 cells expressing PEPT1, (b) transgenic Pichia pastoris cells expressing PEPT1, and (c) Xenopus laevis oocytes expressing PEPT1. By competitive uptake studies with radiolabeled dipeptides, HPLC analysis of Lys[Z(NO(2))]-Pro in cells, and electrophysiological techniques, we unequivocally show that Lys[Z(NO(2))]-Pro binds with high affinity to PEPT1, competes competitively with various dipeptides for uptake into cells, but is not transported itself. Lack of transport was substantiated by the absence of Lys[Z(NO(2))]-Pro in Caco-2 cell extracts as determined by HPLC analysis, and by the absence of any positive inward currents in oocytes when exposed to the inhibitor. The fact that Lys[Z(NO(2))]-Pro can bind to PEPT1 from the extracellular as well as the intracellular site was shown in the oocyte expression system by a strong inhibition of dipeptide-induced currents under voltage clamp conditions. Our findings serve as a starting point for the identification of the substrate binding domain in the PEPT1 protein as well as for studies on the physiological and pharmacological role of PEPT1.  相似文献   

3.
The interaction of the antibacterial phosphonodipeptide alafosfalin with mammalian H(+)/peptide cotransporters was studied in Caco-2 cells, expressing the low-affinity intestinal type peptide transporter 1 (PEPT1), and SKPT cells, expressing the high-affinity renal type peptide transporter 2 (PEPT2). Alafosfalin strongly inhibited the uptake of [(14)C]glycylsarcosine with K(i) values of 0.19 +/- 0.01 mm and 0.07 +/- 0.01 mm for PEPT1 and PEPT2, respectively. Saturation kinetic studies revealed that in both cell types alafosfalin affected only the affinity constant (K(t)) but not the maximal velocity (V(max)) of glycylsarcosine (Gly-Sar) uptake. The inhibition constants and the competitive nature of inhibition were confirmed in Dixon-type experiments. Caco-2 cells and SKPT cells were also cultured on permeable filters: apical uptake and transepithelial apical to basolateral flux of [(14)C]Gly-Sar across Caco-2 cell monolayers were reduced by alafosfalin (3 mm) by 73%. In SKPT cells, uptake of [(14)C]Gly-Sar but not flux was inhibited by 61%. We found no evidence for an inhibition of the basolateral to apical uptake or flux of [(14)C]Gly-Sar by alafosfalin. Alafosfalin (3 mm) did not affect the apical to basolateral [(14)C]mannitol flux. Determined in an Ussing-type experiment with Caco-2 cells cultured in Snapwells trade mark, alafosfalin increased the short-circuit current through Caco-2 cell monolayers. We conclude that alafosfalin interacts with both H(+)/peptide symporters and that alafosfalin is actively transported across the intestinal epithelium in a H(+)-symport, explaining its oral availability. The results also demonstrate that dipeptides where the C-terminal carboxyl group is substituted by a phosphonic function represent high-affinity substrates for mammalian H(+)/peptide cotransporters.  相似文献   

4.
The mechanism by which H+ alters the kinetics of the H+-coupled peptide transporters PEPT 1 and PEPT 2 was investigated in two different cell lines which differentially express these transporters, namely Caco-2 cells (PEPT 1) and SKPT cells (PEPT 2). The effects of H+ on the affinity and the maximal velocity of Gly-Sar uptake were analyzed in these cells under identical conditions. In both cells, H+ influenced only the maximal velocity of uptake and not the apparent affinity. The effects of H+ on the IC50 values (i.e., concentration necessary to cause 50% inhibition) of the cationic dipeptide Ala-Lys and the anionic dipeptide Ala-Asp for inhibition of Gly-Sar uptake were also investigated. H+ did not change the IC50 value for Ala-Lys but did decrease the IC50 value for Ala-Asp considerably. The influence of diethylpyrocarbonate (DEP) on the kinetic parameters of PEPT 1 and PEPT 2 was then studied. Histidyl residues are the most likely amino acid residues involved in H+ binding and translocation in H+-coupled transport systems and DEP is known to chemically modify histidyl residues and block their function. DEP treatment altered the maximal velocity of Gly-Sar uptake but had no effect on its Kt (Michaelis-Menten constant) or the IC50 values of Ala-Lys or Ala-Asp for the inhibition of Gly-Sar uptake. It is concluded that H+ stimulates PEPT 1 and PEPT 2 primarily by increasing the maximal velocity of the transporters with no detectable influence on the substrate affinity.  相似文献   

5.
Guo X  Meng Q  Liu Q  Wang C  Sun H  Kaku T  Liu K 《Peptides》2012,34(2):395-403
The purpose of this study was to construct stably transfected HeLa cells with human peptide transporters (hPEPT1/hPEPT2) and to identify the function of the transfected cells using the substrate JBP485 (a dipeptide) and a typical substrate for PEPTs, glycylsarcosine (Gly-Sar). An efficient and rapid method was established for the preparation and transformation of competent cells of Escherichia coli. After extraction and purification, hPEPT1/hPEPT2-pcDNA3 was transfected into HeLa cells by the liposome transfection method, respectively. HeLa-hPEPT1/hPEPT2 cells were selected by measuring the protein expression and the uptake activities of JBP485 and Gly-Sar. A simple and rapid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the simultaneous determination of JBP485 and Gly-Sar in biological samples. The Michaelis-Menten constant (K(m)) values of Gly-Sar uptake by the hPEPT1 and hPEPT2-expressing transfectants were 1.03 mM and 0.0965 mM, respectively, and the K(m) values of JBP485 uptake were 1.33 mM for PEPT1 and 0.144 mM for PEPT2. The uptake of Gly-Sar was significantly inhibited by JBP485 with a K(i) value of 8.11 mM (for PEPT1) and 1.05 mM (for PEPT2). Maximal uptake of Gly-Sar were detected at pH 5.8 (for PEPT1) and pH 6.5 (for PEPT2), suggesting that both HeLa-hPEPT1 and HeLa-hPEPT2 were H(+) dependent transporters. Stably transfected HeLa-hPEPT1/HeLa-hPEPT2 cells were constructed successfully, and the functions of hPEPT1/hPEPT2 were identified using their substrates, JBP485 and Gly-Sar. The transfected cells with transporters were used to investigate drug-drug interactions (DDIs) between JBP485 and other substrates (cephalexin or lisinopril) of PEPT1 and PEPT2.  相似文献   

6.
We determined the effects of (+)pentazocine, a selective sigma(1) ligand, on the uptake of glycylsarcosine (Gly-Sar) in the human intestinal cell line Caco-2 which expresses the low affinity/high capacity peptide transporter PEPT1. Confluent Caco-2 cells were treated with various concentrations of (+)pentazocine for desired time (mostly 24 hr). The activity of PEPT1 was assessed by measuring the uptake of [(14)C]Gly-Sar in the presence of a H(+) gradient. (+)Pentazocine increased the uptake of [(14)C]Gly-Sar mediated by PEPT1 in a concentration- and time-dependent manner. Kinetic analyses have indicated that (+)pentazocine increased the maximal velocity (V(max)) for Gly-Sar uptake in Caco-2 cells without affecting the Michaelis-Menten constant (K(t)). In addition, semi-quantitative RT-PCR revealed that treatment of (+)pentazocine increased PEPT1 mRNA in Caco-2 cells in a concentration-dependent manner. These data suggest that sigma(1) receptor ligand (+)pentazocine up-regulates PEPT1 in Caco-2 cells at the level of increased mRNA, causing an increase in the density of the transporter protein in the cell membrane.  相似文献   

7.
The proton-coupled oligopeptide transporter PEPT2 (or SLC15A2 ) is the major protein involved in the reclamation of peptide-bound amino acids and peptide-like drugs in kidney. PEPT2 is also important in effluxing peptides and peptidomimetics from CSF at the choroid plexus, thereby limiting their exposure in brain. In this study, we report a neuroprotective role for PEPT2 in modulating the toxicity of a heme precursor, 5-aminolevulinic acid (5-ALA). Our findings demonstrate that in PEPT2-deficient mice, 5-ALA administration results in reduced survivability, a worsening of neuromuscular dysfunction, and CSF concentrations of substrate that are 8–30 times higher than that in wild-type control animals. The ability of PEPT2 to limit 5-ALA exposure in CSF suggests that it may also have relevance as a secondary genetic modifier of conditions (such as acute hepatic porphyrias and lead poisoning) in which 5-ALA metabolism is altered and in which 5-ALA toxicity is important.  相似文献   

8.
USP18 (Ubiquitin-like specific protease 18) is an enzyme cleaving ubiquitin from target proteins. USP18 plays a pivotal role in antiviral and antibacterial immune responses. On the other hand, ubiquitination participates in the regulation of several ion channels and transporters. USP18 sensitivity of transporters has, however, never been reported. The present study thus explored, whether USP18 modifies the activity of the peptide transporters PEPT1 and PEPT2, and whether the peptide transporters are sensitive to the ubiquitin ligase Nedd4-2. To this end, cRNA encoding PEPT1 or PEPT2 was injected into Xenopus laevis oocytes without or with additional injection of cRNA encoding USP18. Electrogenic peptide (glycine-glycine) transport was determined by dual electrode voltage clamp. As a result, in Xenopus laevis oocytes injected with cRNA encoding PEPT1 or PEPT2, but not in oocytes injected with water or with USP18 alone, application of the dipeptide gly-gly (2 mM) was followed by the appearance of an inward current (Igly-gly). Coexpression of USP18 significantly increased Igly-gly in both PEPT1 and PEPT2 expressing oocytes. Kinetic analysis revealed that coexpression of USP18 increased maximal Igly-gly. Conversely, overexpression of the ubiquitin ligase Nedd4-2 decreased Igly-gly. Coexpression of USP30 similarly increased Igly-gly in PEPT1 expressing oocytes. In conclusion, USP18 sensitive cellular functions include activity of the peptide transporters PEPT1 and PEPT2.  相似文献   

9.
Aliphatic and ethylene glycol esters of 5-aminolevulinic acid (ALA) are very efficient precursors of the photosensitizer protoporphyrin IX (PpIX) for photodynamic therapy; however, they diffuse passively across the cell membrane and thus lack cell selectivity. We evaluated whether alpha-glucose, alpha-mannose, or beta-galactose esters of ALA would present improved properties as precursors of PpIX. Esterification was performed either at the position O-1 or O-6 of the sugars with or without an ethylene glycol linker, and these glycoside esters of ALA were evaluated in human cells. The results demonstrated that glycoside esters of ALA are efficient precursors of PpIX in human cancer and angiogenic endothelial cells, comparable to free ALA, but not in normal human fibroblasts. PpIX production was confirmed by fluorescence microscopy and photodynamic treatment of cells. The O-1 or O-6 positions of functionalization and the nature of the sugar moiety did not influence PpIX production. The presence of the ethylene glycol linker generally resulted in decreased PpIX production. The uptake of these glycoside esters of ALA by cells was not decreased in the presence of high concentrations of the related sugars. Inhibitors of alpha-glucosidases or alpha-mannosidases did not decrease PpIX production. These results suggest the involvement of active non-glycoside-specific membrane transporter(s) for uptake and of esterases rather than glycosidases in the release of ALA from the glycoside esters of ALA.  相似文献   

10.
In this study we described the design, rational synthesis and functional characterization of a novel radiolabeled hydrolysis-resistant high-affinity substrate for H(+)/peptide cotransporters. L-4,4'-Biphenylalanyl-L-Proline (Bip-Pro) was synthesized according to standard procedures in peptide chemistry. The interaction of Bip-Pro with H(+)/peptide cotransporters was determined in intestinal Caco-2 cells constitutively expressing human H(+)/peptide cotransporter 1 (PEPT1) and in renal SKPT cells constitutively expressing rat H(+)/peptide cotransporter 2 (PEPT2). Bip-Pro inhibited the [(14)C]Gly-Sar uptake via PEPT1 and PEPT2 with exceptional high affinity (K(i) = 24 microm and 3.4 microm, respectively) in a competitive manner. By employing the two-electrode voltage clamp technique in Xenopus laevis oocytes expressing PEPT1 or PEPT2 it was found that Bip-Pro was transported by both peptide transporters although to a much lower extent than the reference substrate, Gly-Gln. Bip-Pro remained intact to > 98% for at least 8 h when incubated with intact cell monolayers. Bip-[(3)H]Pro uptake into SKPT cells was linear for up to 30 min and pH dependent with a maximum at extracellular pH 6.0. Uptake was strongly inhibited, not only by unlabeled Bip-Pro but also by known peptide transporter substrates such as dipeptides, cefadroxil, Ala-4-nitroanilide and delta-aminolevulinic acid, but not by glycine. Bip-Pro uptake in SKPT cells was saturable with a Michaelis-Menten constant (K(t)) of 7.6 microm and a maximal velocity (V(max)) of 1.1 nmol x 30 min(-1) x mg of protein(-1). Hence, the uptake of Bip-Pro by PEPT2 is a high-affinity, low-capacity process in comparison to the uptake of Gly-Sar. We conclude that Bip-[(3)H]Pro is a valuable substrate for both mechanistic and structural studies of H(+)/peptide transporter proteins.  相似文献   

11.
Liu Z  Wang C  Liu Q  Meng Q  Cang J  Mei L  Kaku T  Liu K 《Peptides》2011,32(4):747-754
Cyclo-trans-4-l-hydroxyprolyl-l-serine (JBP485) is a dipeptide with anti-hepatitis activity that has been chemically synthesized. Previous experiments in rats showed that JBP485 was well absorbed by the intestine after oral administration. The human peptide transporter (PEPT1) is expressed in the intestine and recognizes compounds such as dipeptides and tripeptides. The purposes of this study were to determine if JBP485 acted as a substrate for intestinal PEPT1, and to investigate the characteristics of JBP485 uptake and transepithelial transport by PEPT1. The uptake of JBP485 was pH dependent in human intestinal epithelial cells Caco-2. And JBP485 uptake was also significantly inhibited by glycylsarcosine (Gly-Sar, a typical substrate for PEPT1 transporters), JBP923 (a derivative of JBP485), and cephalexin (CEX, a β-lactam antibiotic and a known substrate of PEPT1) in Caco-2 cells. The rate of apical-to-basolateral transepithelial transport of JBP485 was 1.84 times higher than that for basolateral-to-apical transport. JBP485 transport was obviously inhibited by Gly-Sar, JBP923 and CEX in Caco-2 cells. The uptake of JBP485 was increased by verapamil but not by cyclosporin A (CsA) and inhibited by the presence of Zn2+ or the toxic metabolite of ethanol, acetaldehyde (AcH) in Caco-2 cells. The in vivo uptake of JBP485 was increased by verapamil and decreased by ethanol in vivo, which was consisted with the in vitro study. PEPT1 mRNA levels were enhanced after exposure of the cells to JBP485 for 24 h, compared to control. In conclusion, JBP485 was actively transported by the intestinal oligopeptide transporter PEPT1. This mechanism is likely to contribute to the rapid absorption of JBP485 by the gastrointestinal tract after oral administration.  相似文献   

12.
The tyrosine kinase Janus kinase 3 (JAK3) contributes to signaling regulating the proliferation and apoptosis of lymphocytes and tumor cells. Replacement of lysine by alanine in the catalytic subunit yields the inactive K851AJAK3 mutant that underlies severe combined immune deficiency. The gain-of-function mutation A572VJAK3 is found in acute megakaryoplastic leukemia and T cell lymphoma. The excessive nutrient demand of tumor cells requires upregulation of transporters in the cell membrane including peptide transporters PEPT1 and PEPT2. The carriers further accomplish intestinal peptide transport. Little is known about signaling regulating peptide transport. The present study explored whether PEPT1 and PEPT2 are upregulated by JAK3. PEPT1 or PEPT2 was expressed in Xenopus oocytes with or without additional expression of JAK3, and electrogenic peptide (glycine–glycine) transport was determined by dual-electrode voltage clamp. PEPT2-HA membrane protein abundance was analyzed by chemiluminescence. Intestinal electrogenic peptide transport was estimated from peptide-induced current in Ussing chamber experiments. In PEPT1- and PEPT2-expressing oocytes, but not in water-injected oocytes, the dipeptide gly–gly generated an inward current, which was significantly increased following coexpression of JAK3. The effect of JAK3 on PEPT1 was mimicked by A568VJAK3 but not by K851AJAK3. JAK3 increased maximal peptide-induced current in PEPT1-expressing oocytes but rather decreased apparent affinity of the carrier. Coexpression of JAK3 enhanced the PEPT2-HA protein abundance in the cell membrane. In JAK3- and PEPT1-expressing oocytes, peptide-induced current was blunted by the JAK3 inhibitor WHI-P154, 4-[(3′-bromo-4′-hydroxyphenyl)amino]-6,7-dimethoxyquinazoline (22 μM). In intestinal segments gly–gly generated a current which was significantly smaller in JAK3-deficient mice (jak3 ?/?) than in wild-type mice (jak3 +/+). In conclusion, JAK3 is a powerful regulator of peptide transporters PEPT1 and PEPT2.  相似文献   

13.
Bacterial resistance to antibiotics has become a worldwide problem. One potential alternative for bacterial control is photodynamic therapy. 5-aminolevulinic acid is a natural precursor of the photosensitizer protoporphyrin IX. Relatively little is known about the antibacterial efficacy of photodynamic therapy using the systemic administration of 5-aminolevulinic acid; a few reports have shown that 5-aminolevulinic acid exerts photodynamic effects on methicillin-resistant Staphylococcus aureus (MRSA) in vitro. In this study, we evaluated the effectiveness of photodynamic therapy using 5-aminolevulinic acid and a 410-nm wavelength light-emitting diode in vitro and in vivo for the treatment of MRSA. We found that 5-aminolevulinic acid photodynamic therapy with the light-emitting diode had an in-vitro bactericidal effect on MRSA. In vivo, protoporphyrin IX successfully accumulated in MRSA on ulcer surfaces after intraperitoneal administration of 5-aminolevulinic acid to mice. Furthermore, 5-aminolevulinic acid photodynamic therapy accelerated wound healing and decreased bacterial counts on ulcer surfaces; in contrast, vancomycin treatment did not accelerate wound healing. Our findings indicate that 5-aminolevulinic acid photodynamic therapy may be a new treatment option for MRSA-infected wounds.  相似文献   

14.
PEPT2 is functionally active and localized to the apical membrane of rat choroid plexus epithelial cells. However, little is known about the transport mechanisms of endogenous neuropeptides in choroid plexus, and the role of PEPT2 in this process. In the present study, we examined the uptake kinetics of carnosine in rat choroid plexus primary cell cultures and choroid plexus whole tissue from wild-type (PEPT2(+/+)) and null (PEPT2(-/-)) mice. Our results indicate that carnosine is preferentially taken up from the apical as opposed to basolateral membrane of cell monolayers, and that basolateral efflux in limited. Transepithelial flux of carnosine was not distinguishable from that of paracellular diffusion. The apical uptake of carnosine was characterized by a high affinity (K(m) = 34 microM), low capacity (V(max) = 73 pmol/mg protein/min) process, consistent with that of PEPT2. The non-saturable component was small (K(d) = 0.063 microL/mg protein/min) and, under linear conditions, was only 3% of the total uptake. Studies in transgenic mice clearly demonstrated that PEPT2 was responsible for over 90% of carnosine's uptake in choroid plexus whole tissue. These findings elucidate the unique role of PEPT2 in regulating neuropeptide homeostasis at the blood-cerebrospinal fluid interface.  相似文献   

15.

Aims

The purpose of this study was to clarify the expression and function of peptide transporter 2 (PEPT2) in primary cultured alveolar type II epithelial cells and in transdifferentiated type I-like cells.

Main methods

Real-time PCR analysis, uptake study of [3H]Gly-Sar, and immunostaining were performed in alveolar epithelial cells.

Key findings

The expression of PEPT2 mRNA in type II cells isolated from rat lungs was highest at day 0, and decreased rapidly during culture of the cells. In accordance with this change, PEPT2 activity estimated as cefadroxil-sensitive [3H]Gly-Sar uptake also decreased along with transdifferentiation. The expression of PEPT2 protein in type II cells was confirmed by immunostaining and Western blot analysis. The uptake of [3H]Gly-Sar in type II cells was time- and pH-dependent. In contrast, minimal time-dependence and no pH-dependence of [3H]Gly-Sar uptake were observed in type I-like cells. The maximal [3H]Gly-Sar uptake was observed at pH 6.0, and the uptake decreased at higher pHs in type II cells. The uptake of [3H]Gly-Sar in type II cells was inhibited by cefadroxil in a concentration-dependent manner, the IC50 value being 4.3 μM. On the other hand, no significant inhibition by cefadroxil was observed in type I-like cells. In addition, [3H]Gly-Sar uptake in type II cells was saturable, the Km value being 72.0 μM.

Significance

PEPT2 is functionally expressed in alveolar type II epithelial cells, but the expression decreases along with transdifferentiation, and PEPT2 would be almost completely lost in type I cells.  相似文献   

16.
The nature of protein breakdown products and peptidomimetic drugs such as beta-lactams is crucial for their transmembrane transport across apical enterocyte membranes, which is accomplished by the pH-dependent high-capacity oligopeptide transporter PEPT1. To visualize oligopeptide transporter-mediated uptake of oligopeptides, an ex vivo assay using the fluorophore-conjugated dipeptide derivative D-Ala-Lys-N(epsilon)-7-amino-4-methylcoumarin-3-acetic acid (D-Ala-Lys-AMCA) was established in the murine small intestine and compared with immunohistochemistry for PEPT1 in murine and human small intestine. D-Ala-Lys-AMCA was accumulated by enterocytes throughout all segments of the murine small intestine, with decreasing intensity from the top to the base of the villi. Goblet cells did not show specific uptake. Inhibition studies revealed competitive inhibition by the beta-lactam cefadroxil, the angiotensin-converting enzyme inhibitor captopril, and the dipeptide glycyl-glutamine. Controls were performed using either the inhibitor diethylpyrocarbonate or an incubation temperature of 4 degrees C to exclude unspecific uptake. Immunohistochemistry for PEPT1 localized immunoreactivity to the enterocytes, with the highest intensity at the apical membrane. This is the first study that visualizes dipeptide transport across the mammalian intestine and indicates that uptake assays using D-Ala-Lys-AMCA might be useful for characterizing PEPT1-specific substrates or inhibitors.  相似文献   

17.
18.
We investigated the interaction of rat PEPT2, a high-affinity peptide transporter, with neutral, anionic, and cationic dipeptides using electrophysiological approaches as well as tracer uptake methods. D-Phe-L-Gln (neutral), D-Phe-L-Glu (anionic), and D-Phe-L-Lys (cationic) were used as representative, non-hydrolyzable, dipeptides. All three dipeptides induced H+-dependent inward currents in Xenopus laevis oocytes heterologously expressing rat PEPT2. The H+:peptide stoichiometry was 1:1 in each case. A simultaneous measurement of radiolabeled dipeptide influx and charge transfer in the same oocyte indicated a transfer of one net positive charge into the oocyte per transfer of one peptide molecule irrespective of the charged nature of the peptide. We conclude that the zwitterionic peptides are preferentially recognized by PEPT2 as transportable substrates and that the proton/peptide stoichiometry is 1 for the transport process.  相似文献   

19.
The peptide transporter PEPT2 is a polytopic transmembrane protein that mediates the cellular uptake of di- and tripeptides and a variety of peptidomimetics. It is widely expressed in mammalian tissues, including kidney, lung, mammary gland, choroid plexus, and glia cells. In renal tubular cells, PEPT2 is exclusively found at the apical membrane. The molecular mechanisms underlying this polarized expression and targeting to the brush-border membrane are not known. We have explored the role of the 36 COOH-terminal amino acid residues in PEPT2 trafficking and apical expression. EGFP-tagged PEPT2 wild-type transporter and various truncated and mutant proteins were expressed in the polarized proximal tubule cell lines SKPT and OK, and the cellular distribution of the fusion proteins was assessed using confocal microscopy. Whereas deletion of the last seven amino acids (delC7) did not alter PEPT2 surface expression, deletion of the next residue (delC8) or up to 30 terminal amino acids resulted in impaired apical expression and distinct accumulation of mutant proteins in endosomal and lysosomal vesicles. Truncation of more amino acids (delC36) containing tyrosine-based motifs led to a rather diffuse intracellular distribution pattern. Mutations introduced at isoleucine-720 (I720A) and leucine-722 (I722A) also caused an impaired surface appearance. Internalization assays revealed a higher endocytotic rate of the PEPT2 mutants I720A, L722A, and delC36. Our data suggest that a three-amino acid stretch (INL) and tyrosine-based motifs within the COOH tail of PEPT2 are involved in PEPT2's apical membrane localization and membrane steady-state level. di- and tripeptide transport; polarized epithelial cells; lysosomes  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号