首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RAPD polymorphisms detected among the flax genotrophs   总被引:6,自引:0,他引:6  
The occurrence of environmentally induced heritable changes in certain flax varieties has been shown to be accompanied by changes in the genomic DNA. A large difference in nuclear DNA contents has been characterized between the extreme types, termed genotrophs. The genomic variation between a series of genotrophs has been studied by the polymerase chain reaction using random arbitrary oligonucleotide primers. A total of 320 primers were used in the reactions and 253 polymorphic bands observed. The polymorphic bands were derived from all parts of the genome, namely the highly repetitive, middle-repetitive and low-copy-number sequences. They were also shown to be distributed thoughout the genome. In one group of genotrophs, all of which were induced by temperature treatment, there was a clustering of the polymorphisms with a high degree of shared polymorphisms. These results are in agreement with earlier studies showing that a dispersed fraction of the genome is susceptible to variation when environmentally induced heritable changes occur.  相似文献   

2.
Several flax varieties have been shown to undergo environmentally induced heritable changes resulting in stable lines termed genotrophs. The most notable of these is the variety Stormont Cirrus, also termed "plastic" or Pl. A number of morphological, biochemical and genetic differences are associated with environmental induction of heritable changes in flax. We have studied 5S rDNA alterations as a model system for understanding environmental induction of heritable changes in flax. This paper reports the isolation of a flax 5S rRNA gene variant which identifies genotroph specific restriction fragment length polymorphisms (RFLPs) in flax. Restriction fragment patterns for several enzymes were observed in both large and small genotrophs which consistently differed from the progenitor, Stormont Cirrus. Identical RFLP profiles for all restriction endonucleases tested were observed in four small genotrophs produced from separate environmental induction experiments. Comparison between Stormont Cirrus and these small genotrophs showed at least six differing bands in addition to several high molecular weight polymorphisms. Genetic data indicate that the polymorphisms were all produced from a repetitive 5S rRNA gene cluster at a single chromosomal locus. Similar, but not identical, polymorphisms are also detected in other flax varieties and Linum species suggesting that the induced variation is related to that which occurs naturally. The results are evidence that a specific set of DNA alterations occur in association with the induction of heritable changes in flax. This is the first genetic marker which is altered to an identical state in one type of genotroph. The results are discussed with respect to mechanisms for environmentally induced heritable change in plants.  相似文献   

3.
Heritable changes in plant weight and nuclear DNA content may be induced in certain varieties of flax by different fertilizer environments. The large stable form (L) has 16% more nuclear DNA that the small stable form (S). In subsequent generations in particular environments the nuclear DNA difference disappears, although the plant weight differences remain, while in other environments both DNA and plant weight differences are maintained. The large stable form has 56-70% more rRNA genes than the small stable form. The majority of this difference in rDNA is maintained in types where the nuclear difference has reverted. It is suggested that the expression of the flax genome may be susceptible to a reduction in the multiplicity of rRNA genes which limits the availability of protein synthetic machinery needed for growth.  相似文献   

4.
The 5S rRNA genes (5S DNA) comprise up to 3% of the flax genome. Large copy-number changes in 5S DNA have been observed in flax genotrophs. We have characterized the chromosomal and molecular organization of this large gene family. In situ hybridization studies indicate the 5S DNA is distributed over many chromosomes, unlike most plants studied to date. Eleven genomic clones were isolated and characterized. All but one of the clones contain both 5S DNA and non-5S DNA. The homology of the 5S DNA of each clone, to a previously isolated flax 5S plasmid clone (pBG13), was determined. Five groups of 5S DNA were identified based on shared identity and repeat unit size. Group-1 and group-2 clones are the most abundant in terms of genomic representation. The remaining groups are significantly different from the previously described flax 5S DNA and are in low representation in comparison to group-1 and group-2 5S DNA. The results establish the presence of several groups of 5S DNA which are distributed over many chromosomes. The extent of identity shared among these groups to pBG13, indicates a high degree of divergence between the different groups.  相似文献   

5.
Using a set of approaches based on the use of molecular cytogenetic markers (DAPI/C-banding, estimation of the total area of DAPI-positive regions in prophase nuclei, FISH with 26S and 5S rDNA probes) and the microsatellite (SSR-PCR) assay, we studied genomic polymorphism in 15 flax (Linum usitatissimum L.) varieties from different geographic regions belonging to three directions of selection (oil, fiber, and intermediate flax) and in the k-37 × Viking hybrid. All individual chromosomes have been identified in the karyotypes of these varieties on the basis of the patterns of differential DAPI/C-banding and the distribution of 26S and 5S rDNA, and idiograms of the chromosomes have been generated. Unlike the oil flax varieties, the chromosomes in the karyotypes of the fiber flax varieties have, as a rule, pericentromeric and telomeric DAPI-positive bands of smaller size, but contain larger intercalary regions. Two chromosome rearrangements (chromosome 3 inversions) were detected in the variety Luna and in the k-37 × Viking hybrid. In both these forms, no colocalization of 26S rDNA and 5S rDNA on the satellite chromosome was detected. The SSR assay with the use of 20 polymorphic pairs of primers revealed 22 polymorphic loci. Based on the SSR data, we analyzed genetic similarity of the flax forms studied and constructed a genetic similarity dendrogram. The genotypes studied here form three clusters. The oil varieties comprise an independent cluster. The genetically related fiber flax varieties Vita and Luna, as well as the landrace Lipinska XIII belonging to the intermediate type, proved to be closer to the oil varieties than the remaining fiber flax varieties. The results of the molecular chromosome analysis in the fiber and oil flax confirm their very close genetic similarity. In spite of this, the combined use of the chromosome and molecular markers has opened up unique possibilities for describing the genotypes of flax varieties and creating their genetic passports.  相似文献   

6.
Some flax varieties respond to nutrient stress by modifying their genome and these modifications can be inherited through many generations. Also associated with these genomic changes are heritable phenotypic variations 1,2. The flax variety Stormont Cirrus (Pl) when grown under three different nutrient conditions can either remain inducible (under the control conditions), or become stably modified to either the large or small genotroph by growth under high or low nutrient conditions respectively. The lines resulting from the initial growth under each of these conditions appear to grow better when grown under the same conditions in subsequent generations, notably the Pl line grows best under the control treatment indicating that the plants growing under both the high and low nutrients are under stress. One of the genomic changes that are associated with the induction of heritable changes is the appearance of an insertion element (LIS-1) 3, 4 while the plants are growing under the nutrient stress. With respect to this insertion event, the flax variety Stormont Cirrus (Pl) when grown under three different nutrient conditions can either remain unchanged (under the control conditions), have the insertion appear in all the plants (under low nutrients) and have this transmitted to the next generation, or have the insertion (or parts of it) appear but not be transmitted through generations (under high nutrients) 4. The frequency of the appearance of this insertion indicates that it is under positive selection, which is also consistent with the growth response in subsequent generations. Leaves or meristems harvested at various stages of growth are used for DNA and RNA isolation. The RNA is used to identify variation in expression associated with the various growth environments and/or t he presence/absence of LIS-1. The isolated DNA is used to identify those plants in which the insertion has occurred.  相似文献   

7.
Using a set of approaches based on the use of molecular cytogenetic markers (DAPI/C-banding, estimation of the total area of DAPI-positive regions in prophase nuclei, FISH with 26S and 5S rDNA probes) and the microsatellite (SSR-PCR) assay, we studied genomic polymorphism in 15 flax (Linum usitatissimum L.) varieties from different geographic regions belonging to three directions of selection (oil, fiber, and intermediate flaxes) and in the k-37 x Viking hybrid. All individual chromosomes have been identified in the karyotypes of these varieties on the basis of the patterns of differential DAPI/C-banding and the distribution of 26S and 5S rDNA, and idiograms of the chromosomes have been generated. Unlike the oil flax varieties, the chromosomes in the karyotypes of the fiber flax varieties have, as a rule, pericentromeric and telomeric DAPI-positive bands of smaller size, but contain larger intercalary regions. Two chromosomal rearrangements (chromosome 3 inversions) were discovered in the variety Luna and in the k-37 x Viking hybrid. In both these forms, no colocalization of 26S rDNA and 5S rDNA on the satellite chromosome was detected. The SSR assay with the use of 20 polymorphic pairs of primers revealed 22 polymorphic loci. Based on the SSR data, we analyzed genetic similarity of the flax forms studied and constructed a genetic similarity dendrogram. The genotypes studied here form three clusters. The oil varieties comprise an independent cluster. The genetically related fiber flax varieties Vita and Luna, as well as the landrace Lipinska XIII belonging to the intermediate type, proved to be closer to the oil varieties than the remaining fiber flax varieties. The results of the molecular chromosomal analysis in the fiber and oil flaxes confirm their very close genetic similarity. In spite of this, the combined use of the chromosomal and molecular markers has opened up unique possibilities for describing the genotypes of flax varieties and creating their genetic passports.  相似文献   

8.
Stegniĭ VN  Chudinova IuV  Salina EA 《Genetika》2000,36(10):1370-1373
Genetic polymorphism in varieties and hybrids of cultivated flax (Linum usitatissimum L.) has been investigated by RAPD-PCR. Analysis with 15 primers has revealed varietal specificity and hybrid inheritance of RAPD alleles. This allows genetic certification of the original varieties and their hybrids for breeding purposes. Polymorphic amplification products were obtained in RAPD analysis of DNA from two cultivated flax varieties with the use of 10-11 nucleotide primers.  相似文献   

9.
Field trials of fibre flax were sown in 2002 and 2003 comprising 29 and 26 flax varieties, respectively. In 2002, two nitrogen treatments of 40 and 80 kg ha?1 were imposed. The trials were sprayed with a desiccating herbicide prior to retting at 35 and 15 days after midpoint of flowering in 2002 and 2003, respectively, and were harvested once retting had completed. Fibre was extracted from the flax stems using a laboratory‐scale scutcher and hackling pins, and long and total fibre yields were determined. The breaking load of flax technical fibres was assessed using a novel technique employing ‘zero twist’ yarns. Fineness was assessed using the Wool Industries Research Association airflow method. The tenacity of a single technical fibre was then derived from the average breaking load of the yarn and knowledge of its fineness. Both flax variety and season were found to contribute to variations in fibre fineness and strength, with the dry season in 2003 leading to less variation across the varieties and much finer fibres. Few of the varieties were found to be stable across seasons, and environmental variation accounted for 96% of the variation in fibre fineness between years, and 69% of the variation in tensile strength and breaking load. Fibre yield was found to be related to fibre fineness, with the coarser fibres corresponding to higher yields. The new yarn test presented herein has been shown to be a valid and useful method for determining the tensile properties of technical flax. The varieties and the sample sizes required to adequately measure variation in fibre properties are discussed.  相似文献   

10.
Here we show that multiple DNA sequences, similar to the mitochondrial cytochrome oxidase I (COI) gene, occur within single individuals in at least 10 species of the snapping shrimp genus Alpheus. Cloning of amplified products revealed the presence of copies that differed in length and (more frequently) in base substitutions. Although multiple copies were amplified in individual shrimp from total genomic DNA (gDNA), only one sequence was amplified from cDNA. These results are best explained by the presence of nonfunctional duplications of a portion of the mtDNA, probably located in the nuclear genome, since transfer into the nuclear gene would render the COI gene nonfunctional due to differences in the nuclear and mitochondrial genetic codes. Analysis of codon variation suggests that there have been 21 independent transfer events in the 10 species examined. Within a single animal, differences between the sequences of these pseudogenes ranged from 0.2% to 20.6%, and those between the real mtDNA and pseudogene sequences ranged from 0.2% to 18.8% (uncorrected). The large number of integration events and the large range of divergences between pseudogenes and mtDNA sequences suggest that genetic material has been repeatedly transferred from the mtDNA to the nuclear genome of snapping shrimp. Unrecognized pseudogenes in phylogenetic or population studies may result in spurious results, although previous estimates of rates of molecular evolution based on Alpheus sister taxa separated by the Isthmus of Panama appear to remain valid. Especially worrisome for researchers are those pseudogenes that are not obviously recognizable as such. An effective solution may be to amplify transcribed copies of protein-coding mitochondrial genes from cDNA rather than using genomic DNA.  相似文献   

11.
12.
Variations in the nuclear DNA, mainly as a result of quantitative modulations of DNA repeats belonging to different sequence families of satellite DNA and to the activity of transposable elements, have been assessed within several angiosperm species. These variations alter the amount and organization of the DNA and therefore the genotype, rather than the genome proper. They take place on an evolutionary time scale as the result of selection processes after the occurrence of uncontrolled events in the genome or may be due to direct responses of plant genomes to environmental stimuli that occur under plant-level control within a short developmental period of a single generation. These DNA changes are correlated to changes in the developmental dynamics and phenotypic characteristics of the plants, and the capability to carry out genotypic variation is an evolutionary trait that allows plant species to adapt to different environmental conditions, as well as to the variability of conditions in a given environment. The link between developmental and environmental stimuli and repetitive DNA that elicits the intraspecific diversity of plant genotypes may provide models of evolutionary change that extend beyond the conventional view of evolution by allelic substitution and take into account epigenetic effects of the genome structure.  相似文献   

13.
Flax (Linum usitatissimum) has a genome in which changes have been associated with environmental factors. The inbred flax variety, Stormont Cirrus (Pl), served as the parent, and several lines (termed genotrophs) were derived from this parent. The phenotypes of the genotrophs were stable in a number of different growth environments, unlike the original Pl line in which changes associated with environmental factors continued to occur. These genotrophs differed from the original line in a number of characteristics, but the only known phenotypic characteristic that is shared by all the genotrophs and different from the parental, Pl, line is the lack of changes associated with the original environmental factors. However, some of these genotrophs have changed in both phenotype and nuclear DNA subsequent to their original growth and differentiation from Pl. Representational difference analysis (RDA) has been used to identify differences between Pl and all the genotrophs in an attempt to identify the loci controlling these aspects of plasticity. Subtractions between Pl DNA as a tester (target) and one of the genotrophs (individual RDA) or a mixture of different types of genotroph (L6, S6, C2, and LH) DNAs as a driver were done (combined sample RDA; csRDA). In addition, contrary RDA, where of the genotroph DNA was used as a tester and Pl DNA as a driver, was also executed. Three difference clones (163-4-2, 123-5-2, and 163-13), from 74 primary clones obtained after three rounds of subtractions with Pl DNA as tester were further characterized. In addition, 2 difference products (213-r1 and 213-r9) were characterized from contrary RDA. The clones 163-4-2 and 163-13 from the csRDA showed polymorphisms between Pl and all the genotrophs when PCR was done with primers derived from sequences of the clones, but only the clone 163-13 polymorphism was confirmed by Southern blot analysis. Four of 5 clones (163-4-2, 123-5-2, 163-13 and 213-r9) that have been characterized appear to be associated with structural changes in the DNA. From the contrary csRDA, it was observed that no clones could be recovered from subtractions between a mixture of genotrophs as a tester and Pl as a driver, and several possible explanations have been proposed.  相似文献   

14.
A bacterial housekeeping function, which requires both recombination and replication enzymes, has been identified that re-establishes inactivated replication forks under normal growth conditions. Some long-tract gene-conversion events initiated by double-strand breaks in yeast and mammalian cells can be attributed to recombination-directed DNA replication. Double-strand break repair in yeast has been shown to require both leading- and lagging-strand DNA synthesis. These observations suggest that the recombination and replication machinery cooperate to maintain genomic integrity.  相似文献   

15.
Abstract More than 190 plastid genomes have been completely sequenced during the past two decades due to advances in DNA sequencing technologies. Based on this unprecedented abundance of data, extensive genomic changes have been revealed in the plastid genomes. Inversion is the most common mechanism that leads to gene order changes. Several inversion events have been recognized as informative phylogenetic markers, such as a 30‐kb inversion found in all living vascular plants minus lycopsids and two short inversions putatively shared by all ferns. Gene loss is a common event throughout plastid genome evolution. Many genes were independently lost or transferred to the nuclear genome in multiple plant lineages. The trnR‐CCG gene was lost in some clades of lycophytes, ferns, and seed plants, and all the ndh genes were absent in parasitic plants, gnetophytes, Pinaceae, and the Taiwan moth orchid. Certain parasitic plants have, in particular, lost plastid genes related to photosynthesis because of the relaxation of functional constraint. The dramatic growth of plastid genome sequences has also promoted the use of whole plastid sequences and genomic features to solve phylogenetic problems. Chloroplast phylogenomics has provided additional evidence for deep‐level phylogenetic relationships as well as increased phylogenetic resolutions at low taxonomic levels. However, chloroplast phylogenomics is still in its infant stage and rigorous analysis methodology has yet to be developed.  相似文献   

16.
Next‐generation sequencing (NGS) is emerging as an efficient and cost‐effective tool in population genomic analyses of nonmodel organisms, allowing simultaneous resequencing of many regions of multi‐genomic DNA from multiplexed samples. Here, we detail our synthesis of protocols for targeted resequencing of mitochondrial and nuclear loci by generating indexed genomic libraries for multiplexing up to 100 individuals in a single sequencing pool, and then enriching the pooled library using custom DNA capture arrays. Our use of DNA sequence from one species to capture and enrich the sequencing libraries of another species (i.e. cross‐species DNA capture) indicates that efficient enrichment occurs when sequences are up to about 12% divergent, allowing us to take advantage of genomic information in one species to sequence orthologous regions in related species. In addition to a complete mitochondrial genome on each array, we have included between 43 and 118 nuclear loci for low‐coverage sequencing of between 18 kb and 87 kb of DNA sequence per individual for single nucleotide polymorphisms discovery from 50 to 100 individuals in a single sequencing lane. Using this method, we have generated a total of over 500 whole mitochondrial genomes from seven cetacean species and green sea turtles. The greater variation detected in mitogenomes relative to short mtDNA sequences is helping to resolve genetic structure ranging from geographic to species‐level differences. These NGS and analysis techniques have allowed for simultaneous population genomic studies of mtDNA and nDNA with greater genomic coverage and phylogeographic resolution than has previously been possible in marine mammals and turtles.  相似文献   

17.
Production of an infectious herpes simplex virus (HSV) particle requires sequential progression of maturing virions through a series of complex assembly events. Capsids must be constructed in the nucleus, packaged with the viral genome, and transported to the nuclear periphery. They then bud into the nuclear membrane to acquire an envelope, traffic through the cytoplasm, and are released from the cell. Most of these phenomena are very poorly defined, and no suitable model system has previously been available to facilitate molecular analyses of genomic DNA packaging, capsid envelopment, and intracellular virion trafficking. We report the development of such an assay system for HSV type 1 (HSV-1). Using a reversible temperature-sensitive mutation in capsid assembly, we have developed conditions in which an accumulated population of immature capsids can be rapidly, efficiently, and synchronously chased to maturity. By assaying synchronized scaffold cleavage, DNA packaging, and acquisition of infectivity, we have demonstrated the kinetics with which these events occur. Kinetic and morphological features of intranuclear and extranuclear virion trafficking have similarly been examined by indirect immunofluorescence microscopy and electron microscopy. This system should prove a generally useful tool for the molecular dissection of many late events in HSV-1 biogenesis.  相似文献   

18.
Scales are widely used to determine both the growth rates and the age of fish. Their use in this method of scale reading is however complicated by the occurrence of false checks. It has been difficult to investigate the particular environmental factors that normally cause these interruptions in growth because it usually takes many weeks before a check can be detected and the growing scale is a complex system. A technique has therefore been devised in which a scale is isolated from the fish and used to measure its metabolism of radioactive glycine. This gives a measure of protein synthesis which correlates well with the normal growth of the scale and of the whole fish. It is, however, a measurement of the'instantaneous growth rate'of the fish instead of one compounded over a long period of time and it thus opens up the possibility of investigating specific environmental factors that might cause changes in growth. The effects of handling, low oxygen levels, starvation, light and temperature changes have been studied by this technique. It has been shown that handling has the most marked effect but that oxygen levels and starvation also have direct effects that could induce false checks.  相似文献   

19.
Despite significant advances in deciphering the molecular events underlying genomic function, our understanding of these integrated processes inside the functioning cell nucleus has, until recently, met with only very limited success. A major conundrum has been the "layers of complexity" characteristic of all cell structure and function. To understand how the cell nucleus functions, we must also understand how the cell nucleus is put together and functions as a whole. The value of this neo-holistic approach is demonstrated by the enormous progress made in recent years in identifying a wide variety of nuclear functions associated with the nuclear matrix. In this article we summarize basic properties of in situ nuclear structure, isolated nuclear matrix systems, nuclear matrix-associated functions, and DNA replication in particular. Emphasis is placed on identifying current problems and directions of research in this field and illustrating the intrinsic heuristic value of this global approach to genomic organization and function.  相似文献   

20.
Neuroplasticity refers to the changes in the molecular and cellular processes of neural circuits that occur in response to environmental experiences. Clinical and experimental studies have increasingly shown that estrogens participate in the neuroplasticity involved in cognition, behavior, and memory. It is generally accepted that estrogens exert their effects through genomic actions that occur over a period of hours to days. However, emerging evidence indicates that estrogens also rapidly influence the neural circuitry through nongenomic actions. In this review, we provide an overview of the genomic and nongenomic actions of estrogens and discuss how these actions may cooperate in synaptic plasticity. We then summarize the role of epigenetic modifications, synaptic protein synthesis, and posttranslational modifications, and the splice variants of estrogen receptors in the complicated network of estrogens. The combination of genomic and nongenomic mechanisms endows estrogens with considerable diversity in modulating neural functions including synaptic plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号