首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleases A produced by two strains of Staphylococcus aureus, which have different stabilities, differ only in the identity of the single amino acid at residue 124. The nuclease from the Foggi strain of S. aureus (by convention nuclease WT), which contains His124, is 1.9 kcal.mol-1 less stable (at pH 5.5 and 20 degrees C) than the nuclease from the V8 strain (by convention nuclease H124L), which contains Leu124. In addition, the population of the trans conformer at the Lys116-Pro117 peptide bond, as observed by NMR spectroscopy, is different for the two variants: about 15% for nuclease WT and 9% for nuclease H124L. In order to improve our understanding of the origin of these differences, we compared the properties of WT and H124L with those of the H124A and H124I variants. We discovered a correlation between effects of different residues at this position on protein stability and on stabilization of the cis configuration of the Lys116-Pro117 peptide bond. In terms of free energy, approximately 17% of the increase in protein stability manifests itself as stabilization of the cis configuration at Lys116-Pro117. This result implies that the differences in stability arise mainly from structural differences between the cis configurational isomers at Pro117 of the different variants at residue 124. We solved the X-ray structure of the cis form of the most stable variant, H124L, and compared it with the published high-resolution X-ray structure of the cis form of the most stable variant, WT (Hynes TR, Fox RO, 1991, Proteins Struct Funct Genet 10:92-105). The two structures are identical within experimental error, except for the side chain at residue 124, which is exposed in the models of both variants. Thus, the increased stability and changes in the trans/cis equilibrium of the Lys116-Pro117 peptide bond observed in H124L relative to WT are due to subtle structural changes that are not observed by current structure determination technique. Residue 124 is located in a helix. However, the stability changes are too large and follow the wrong order of stability to be explained simply by differences in helical propensity. A second site of conformational heterogeneity in native nuclease is found at the His46-Pro47 peptide bond, which is approximately 80% trans in both WT and H124L. Because proline to glycine substitutions at either residue 47 or 117 remove the structural heterogeneity at that position and increase protein stability, we determined the X-ray structures of H124L + P117G and H124L + P47G + P117G and the kinetic parameters of H124L, H124L + P47G, H124L + P117G, and H124L + P47G + P117G. The individual P117G and P47G mutations cause decreases in nuclease activity, with kcat affected more than Km, and their effects are additive. The P117G mutation in nuclease H124L leads to the same local conformational rearrangement described for the P117G mutant of WT (Hynes TR, Hodel A, Fox RO, 1994, Biochemistry 33:5021-5030). In both P117G mutants, the loop formed by residues 112-117 is located closer to the adjacent loop formed by residues 77-85, and residues 115-118 adopt a type I' beta-turn conformation with the Lys116-Gly117 peptide bond in the trans configuration, as compared with the parent protein in which these residues have a typeVIa beta-turn conformation with the Lys116-Pro117 peptide bond in the cis configuration. Addition of the P47G mutation appears not to cause any additional structural changes. However, the electron density for part of the loop containing this peptide bond was not strong enough to be interpreted.  相似文献   

2.
Human angiogenin (Ang) is an RNase in the pancreatic RNase superfamily that induces angiogenesis. Its catalytic activity is comparatively weak, but nonetheless critical for biological activity. The crystal structure of Ang has shown that enzymatic potency is attenuated in part by the obstructive positioning of Gln117 within the B(1) pyrimidine binding pocket, and that the C-terminal segment of residues 117-123 must reorient for Ang to bind and cleave RNA. The native closed conformation appears to be stabilized by Gln117-Thr44 and Asp116-Ser118 hydrogen bonds, as well as hydrophobic packing of Ile119 and Phe120. Consistent with this view, Q117G, D116H, and I119A/F120A variants are 4-30-fold more active than Ang. Here we have determined crystal structures for these variants to examine the structural basis for the activity increases. In all three cases, the C-terminal segment remains obstructive, demonstrating that none of the residues that has been replaced is essential for maintaining the closed conformation. The Q117G structure shows no changes other than the loss of the side chain of residue 117, whereas those of D116H and I119A/F120A reveal C-terminal perturbations beyond the replacement site, suggesting that the native closed conformation has been destabilized. Thus, the interactions of Gln117 seem to be less important than those of residues 116, 119, and 120 for stabilization. In D116H, His116 does not replicate either of the hydrogen bonds of Asp116 with Ser118 and instead forms a water-mediated interaction with catalytic residue His114; residues 117-121 deviate significantly from their positions in Ang. In I119A/F120A, the segment of residues 117-123 has become highly mobile and all of the interactions thought to position Gln117 have been weakened or lost; the space occupied by Phe120 in Ang is partially filled by Arg101, which has moved several angstroms. A crystal structure was also determined for the deletion mutant des(121-123), which has 10-fold reduced activity toward large substrates. The structure is consistent with the earlier proposal that residues 121-123 form part of a peripheral substrate binding subsite, but also raises the possibility that changes in the position of another residue, Lys82, might be responsible for the decreased activity of this variant.  相似文献   

3.
It has been known for several years that 1H NMR spectra of the enzyme staphylococcal nuclease contain resonances due to conformational heterogeneity [Markley, J. L., Williams, M. N., & Jardetzky, O. (1970) Proc. Natl. Acad. Sci. U.S.A. 65, 645-651]. One source of conformational heterogeneity has been attributed recently to cis/trans isomeriation of the Lys116-Pro117 peptide bond [Evans, P. A., Dobson, C. M., Kautz, R. A., Hatfull, G., & Fox, R. O. (1987) Nature (London) 329, 266-268]. In this paper we present evidence for three interconverting folded forms of nuclease. Forms N and N' are monomeric; form N" appears at higher nuclease concentrations and probably corresponds to dimerized enzyme. Saturation transfer was used to demonstrate that exchange occurs between the denatured state and N". The effects of temperature, pH, and Ca2+ and nucleotide binding on NMR spectra of nuclease were examined. When the temperature is increased or the pH is lowered, form N' is favored relative to N. Binding of a competitive inhibitor (thymidine 3',5'-bisphosphate plus calcium ion) strongly favors one form of nuclease. 1H NMR spectra of wild-type nuclease, the single-mutant nucleases L89F and H124L, and the double-mutant nuclease F76V+H124L were compared. In the unligated proteins, the equilibrium constant for the conformational equilibrium N in equilibrium with N' is approximately 0.1 in wild-type nuclease and nuclease H124L; by contrast, this equilibrium constant is about 0.7 in nuclease L89F and 1.2 in nuclease F76V+H124L under similar conditions.  相似文献   

4.
Phage F0lac is an RNA-containing phage which plates only on strains carrying the plasmid EDP208, a pilus derepressed derivative of the unique incompatibility plasmid F0lac. A host range mutant, phage F0lac h, was selected which plated on strains carrying the ungrouped plasmid pPLS::Tn5 and lysed strains carrying another ungrouped plasmid TP224::Tn10 or the Com9 plasmid R71. An RNA-containing phage, SR, was isolated from sewage on bacteria harbouring plasmid pPLS::Tn5. It was antigenically distinct from the above two phages but had the same host range as phage F0lac h. Phages F0lac h and SR adsorbed unevenly to the shafts of the conjugative pili. Another phage, SF, was filamentous and plated or propagated on strains carrying any of the above plasmids as well as on strains harbouring IncD or F-complex plasmids. Plasmids TP224::Tn10 and pPLS::Tn5 were compatible with representative plasmids of all Inc groups also encoding thick flexible pili. The four plasmids EDP208, R71, TP224::Tn10 and pPLS::Tn5 were compatible with one another except for the reaction of TP224::Tn10 in the presence of pPLS::Tn5 which was slightly ambiguous. The host ranges of the bacteriophages, together with the serological relatedness of the thick flexible pili determined by these four compatible plasmids, suggested that they constitute a new complex, here designated S.  相似文献   

5.
Active-site cysteine strategically positioned in the P-loop of protein-tyrosine phosphatases has been suggested to be further stabilized by hydrogen bonding arrays radiating out from the P-loop to neighboring residues. In this work, we investigated the structural role of histidine array in HC(X)(5)RS motif of the vaccinia H1-related protein phosphatase (VHR), using site-directed mutagenesis in conjunction with an extensive kinetic analysis. Conserved His-123 was mutated along with neighboring residues Tyr-78 and Thr-73. The increased pK(a) values of active-site Cys-124 found in Y78F and T73A mutants (6.51 and 6.75, respectively) were comparable to those of H123A and H123F mutants. Kinetic evaluation of Y78F and T73A mutants further implicates that the mutations perturb the relative position of Cys-124 within the P-loop. These results imply that Tyr-78 and Thr-73 make up an essential part of the His-123 array and structurally tune the Cys-124 position. Tyr-78 of VHR turns out to be the invariant Tyr reported in several protein-tyrosine phosphatases by a structure-based sequence alignment. Therefore, orientation of the imidazole ring of His-123 by the invariant Tyr-78 is crucial for maintaining the proper position of Cys-124 in the P-loop.  相似文献   

6.
R factor compatibility groups   总被引:22,自引:0,他引:22  
Summary Eight R factors are described which fall into four compatibility groups, distinct from previously described F-like and I-like groups. E. coli K12 carrying one of these factors, TP114, supports multiplication of the I-specific phage If1. However, TP114 is fully compatible with the I-like factor T- and with all the other R factors described in this paper. Interactions between TP114 and T- are described. Another R factor, TP122, inhibits F-fertility and is therefore fi +, although strains carrying it do not support multiplication of the F-specific phage 2. TP122 is compatible with the F-like R factor R1, but incompatible with three other factors, all of which fall into the N group. Two further factors, TP116 and TP117, are incompatible with each other and constitute a new group, designated Group H. The final factor, TP113, is compatible with all the R factors with which it has been tested, so that it represents yet a further group. A second member of this group has recently been identified.  相似文献   

7.
The solution structure of porcine pancreatic phospholipase A2 (124 residues, 14 kDa) has been studied by two-dimensional homonuclear 1H and two- and three-dimensional heteronuclear 15N-1H nuclear magnetic resonance spectroscopy. Backbone assignments were made for 117 of the 124 amino acids. Short-range nuclear Overhauser effect (NOE) data show three alpha-helices from residues 1-13, 40-58, and 90-109, an antiparallel beta-sheet for residues 74-85, and a small antiparallel beta-sheet between residues 25-26 and 115-116. A 15N-1H heteronuclear multiple-quantum correlation experiment was used to monitor amide proton exchange over a period of 22 h. In total, 61 amide protons showed slow or intermediate exchange, 46 of which are located in the three large helices. Helix 90-109 was found to be considerably more stable than the other helices. For the beta-sheets, four hydrogen bonds could be identified. The secondary structure of porcine PLA in solution, as deduced from NMR, is basically the same as the structure of porcine PLA in the crystalline state. Differences were found in the following regions, however. Residues 1-6 in the first alpha-helix are less structured in solution than in the crystal structure. Whereas in the crystal structure residues 24-29 are involved both in a beta-sheet with residues 115-117 and in a hairpin turn, the expected hydrogen bonds between residues 24-117 and 25-29 do not show slow exchange behavior. This and the absence of several expected NOEs imply that this region has a less well defined structure in solution. Finally, the hydrogen bond between residues 78-81, which is part of a beta-sheet, does not show slow exchange behavior.  相似文献   

8.
Introduction of the ColV,I-K94 plasmid into any of four strains of Escherichia coli gave derivatives which grew less well than the parent at alkaline pH. The alkali sensitivity of the 1829 derivative resulted from the presence of the plasmid rather than from its introduction into a less alkali tolerant variant. Of two other ColV plasmids tested, one (ColV-K30) conferred substantial alkali sensitivity whereas the other (ColV-41) had little effect. Of several other plasmids examined, R124-F2 (which confers derepressed transfer properties) resembled ColV,I-K94 in its effect on alkali sensitivity and ColV-K98 produced a marked effect. The other plasmids (F lac , R124 itself, R1 and R483ColIa) had only a small effect. For ColV plasmids, it appears to be the presence of transfer and colicin components together which leads to the reduced tolerance to alkaline pHs.  相似文献   

9.
Plasmids and phase variation in Xenorhabdus spp.   总被引:1,自引:0,他引:1  
Three strains of Xenorhabdus nematophilus (A24, F1, NC116) and strain Dan of Xenorhabdus bovienii were tested to evaluate whether the phase variation observed in these bacteria was in any way connected with plasmids. The plasmid patterns of both phases of A24 and F1 strains were the same, whereas the two NC116 phases had only one band each. No difference was observed between the undigested or digested plasmid patterns of the two phases from the three strains. No plasmid was detected in either phase of strain Dan. The plasmid probes were prepared from the six bands of A24 phase 1. By hybridization studies, three plasmids in two forms (open circular and supercoiled) were detected in the strain A24. Two were estimated at 12 kb, and the smallest was about 4 kb. Attempts to hybridize plasmid probes with either undigested or digested chromosomal DNA of the two phases of strain A24 were unsuccessful. The results suggest that neither a difference in plasmid content nor a plasmid recombination with the chromosome is involved in phase variation. The hybridizations revealed homologous DNA sequences among the three plasmids of strain A24 and among the plasmids of strains such as A24 and NC116, which were isolated from geographically distant countries, suggesting that plasmids may encode similar proteins.  相似文献   

10.
Plasmids and phase variation in Xenorhabdus spp.   总被引:3,自引:1,他引:2       下载免费PDF全文
Three strains of Xenorhabdus nematophilus (A24, F1, NC116) and strain Dan of Xenorhabdus bovienii were tested to evaluate whether the phase variation observed in these bacteria was in any way connected with plasmids. The plasmid patterns of both phases of A24 and F1 strains were the same, whereas the two NC116 phases had only one band each. No difference was observed between the undigested or digested plasmid patterns of the two phases from the three strains. No plasmid was detected in either phase of strain Dan. The plasmid probes were prepared from the six bands of A24 phase 1. By hybridization studies, three plasmids in two forms (open circular and supercoiled) were detected in the strain A24. Two were estimated at 12 kb, and the smallest was about 4 kb. Attempts to hybridize plasmid probes with either undigested or digested chromosomal DNA of the two phases of strain A24 were unsuccessful. The results suggest that neither a difference in plasmid content nor a plasmid recombination with the chromosome is involved in phase variation. The hybridizations revealed homologous DNA sequences among the three plasmids of strain A24 and among the plasmids of strains such as A24 and NC116, which were isolated from geographically distant countries, suggesting that plasmids may encode similar proteins.  相似文献   

11.
Chloramphenicol resistance in salmonella obtained from clinical sources in Ontario was previously found to be often mediated by R plasmids of the H2 incompatibility group. In the present study 40 salmonella strains resistant to one or more of kanamycin, streptomycin, sulfonamides, or tetracycline but sensitive to chloramphenicol, were investigated to determine if they contained R plasmids. Self-transmissible plasmids were isolated from 17 of the strains, and 7 of those showed the bacteriophage inhibition and thermosensitive mechanism of transfer characteristic of H2 plasmids. Entry exclusion and incompatibility experiments confiremd their classification. The results demonstrate that in this population of salmonella, R plasmids of the H2 group are prevalent. Experiments with plasmid-specific phages indicate that the plasmids of this sample, which are not in the H2 group, do not belong to any of the F, I, N, P, or W incompatibility groups.  相似文献   

12.
The second transmembrane domain (TM2) of neurotransmitter transporters has been invoked to control oligomerization and surface expression. This transmembrane domain lies between TM1 and TM3, which have both been proposed to contain residues that contribute to the substrate binding site. Rat serotonin transporter (SERT) TM2 was investigated by cysteine scanning mutagenesis. Six mutants in which cysteine replaced an endogenous TM2 residue had low transport activity, and two were inactive. Most of the reduction in transport activity was due to decreased surface expression. In contrast, M124C and G128C showed increased activity and surface expression. Random mutagenesis at positions 124 and 128 revealed that hydrophobic residues at these positions also increased activity. When modeled as an alpha-helix, positions where mutation to cysteine strongly affects expression levels clustered on the face of TM2 surrounding the leucine heptad repeat conserved within this transporter family. 2-(Aminoethyl)-methanethiosulfonate hydrobromide (MTSEA)-biotin labeled A116C and Y136C but not F117C, M135C, or Y134C, suggesting that these residues may delimit the transmembrane domain. None of the cysteine substitution mutants from 117 through 135 were sensitive to [2-(trimethylammonium)ethyl]methanethiosulfonate bromide (MTSET) or MTSEA. However, treatment with MTSEA increased 5-hydroxytryptamine transport by A116C. Activation of A116C by MTSEA was observed only in mutants containing Cys to Ile mutation at position 357, suggesting that modification of Cys-116 activated transport by compensating for a disruption in transport in response to Cys-357 replacement. The reactivity of A116C toward MTSEA was substantially increased in the presence of substrates but not inhibitors. This increase required Na+ and Cl-, and was likely to result from conformational changes during the transport process.  相似文献   

13.
The H/D exchange behavior of RNase A at pH 2.5 at a number of temperatures spanning the thermal transition region has been examined by NMR spectroscopy. The amide proton of V116 has a slow rate of H/D exchange even at temperatures above the midpoint of the thermal transition. The H/D exchange behavior of the peptide corresponding to residues 105-124 of RNase A and the peptide corresponding to residues 115-117 is compared with that of RNase A, showing that folding/unfolding cannot be described by a two-state model, and that both short- and long-range interactions are responsible for the slow rate of H/D exchange.  相似文献   

14.
Deoxyribonucleic acid (DNA) reassociation studies among α-hemolytic (Hly) plasmids from FVI and FIII–IV incompatibility groups showed a close similarity between the nucleotide sequences of plasmids from the same group. With respect to R plasmids from the F overgroup, they have 20–26 Mdal in common, an amount of DNA close to the amount involved in the traF operon. No more extensive sequence homology was found between pSU316 (IncFIII–IV) and the incompatible plasmids ColB-K98 (IncFIII) or R124 (IncFIV). The IncIα I2 plasmid pSU5 has only the α-hemolytic region (5 Mdal) in common with plasmid pSU316 but it is much more closely related to IncFVI plasmids where the DNA in common amounts to 22 Mdal. Finally, the genetically unrelated plasmid pSU233 shares 66% of its nucleotide sequences (40 Mdal) with the IncFVI plasmids and has 16–23 Mdal in common with various F-like plasmids.  相似文献   

15.
Summary R124 and R124/3 are R plasmids that carry the genes for two different restriction and modification systems. The phenotype of strains carrying either of these plasmids along with the F'lac + plasmid, is restriction-deficient (Res-). The Res- phenotype is not due to selection of preexisting mutants but rather to a complex mutational event caused by the F plasmid. Restriction-deficient mutants carry extensive deletions and other DNA rearrangements. Tn7 insertion is used to locate the restriction gene. Many of the Res- mutants are genetically unstable and revert at exceptionally high frequencies. Reversion is accompanied by DNA rearrangements which result in a net gain of 9 kb of DNA. F derivates of F+ which do not cause restriction-deficiency but do cause deletion were used to distinguish between the DNA rearrangements associated with restriction-deficiency and those associated with deletion. From Res+ revertants of strains carrying F'lac + and R124 or R124/3 we have isolated F plasmids that now carry the genes for the R124 or R124/3 restriction and modification systems. It is suggested that interaction between part of the F plasmid and that segment of the R plasmid which controls the switch in Res-Mod specificity which has been observed (Glover et al. 1983) is responsible for the production of restriction-deficiency.  相似文献   

16.
Molecular dynamics calculations demonstrated the conformational change in the prion protein due to Ala(117)-->Val mutation, which is related to Gerstmann-Str?ussler-Sheinker disease, one of the familial prion diseases. Three kinds of model structures of human and mouse prion proteins were examined: (model 1) nuclear magnetic resonance structures of human prion protein HuPrP (125-228) and mouse prion protein MoPrP (124-224), each having a globular domain consisting of three alpha-helices and an antiparallel beta-sheet; (model 2) extra peptides including Ala(117) (109-124 in HuPrP and 109-123 in MoPrP) plus the nuclear magnetic resonance structures of model 1; and (model 3) extra peptides including Val(117) (109-124 in HuPrP and 109-123 in MoPrP) plus the nuclear magnetic resonance structures of model 1. The results of molecular dynamics calculations indicated that the globular domains of models 1 and 2 were stable and that the extra peptide in model 2 tended to form a new alpha-helix. On the other hand, the globular domain of model 3 was unstable, and the beta-sheet region increased especially in HuPrP.  相似文献   

17.
The distribution of the IncFI basic replicons among IncFIV plasmids was assessed by DNA hybridization. In addition these and 20 other plasmids from 16 incompatibility groups were screened for the presence of IncIV, an incompatibility determinant recently found on the IncFIV plasmid R124. The IncIV determinant was found commonly but not universally among the IncFIV plasmids. It was also detected on the IncFI reference plasmid R386 and plasmids from IncB, IncI alpha and IncI gamma. The frequency and distribution of IncFI replicons among the IncFIV plasmids is similar to that observed in other F groups. The similarity of the IncFIV plasmids to plasmids of the other IncF groups and the failure to find replicons unique to IncFIV plasmids indicates that their division into a separate incompatibility group is not justified.  相似文献   

18.
The transfer inhibition systems of 28 Fin+ plasmids have been characterized, using Flac mutants insensitive to inhibition by R100 or R62. All F-like plasmids (except R455) and one N group plasmid determined systems analogous to that of R100; this is designated the FinOP system. None of these plasmids could supply a FinP component of the transfer inhibitor able to replace that of F itself. In addition to the FinOP and R62 transfer inhibition systems described previously, new systems were encoded by the F-like plasmid R455, the I-like plasmid JR66a, and the group X plasmid R485. Besides inhibiting F transfer, JR66a also inhibited F pilus formation and surface exclusion, whereas R485 inhibited only pilus formation and R455 inhibited neither. All three R factors inhibited transfer of J-independent Flac elements, indicating that they act directly on one or more genes (or products) of the transfer operon, rather than directly via traJ. The tral products and transfer origin sequences of two Fin+ F-like plasmids, ColB2 and R124, appear to have similar specificities to those of F itself.  相似文献   

19.
1. Polyacrylamide gel electrophoresis in ultra-narrow immobilized pH gradient shifted the "Hb fast" band of AA buffalo phenotype haemoglobin into two components which were named Hb1 and Hb3. 2. Urea/Triton electrophoresis and reversed-phase HPLC demonstrated that Hb1 and Hb3 differ in the presence of two structurally distinct alpha chains (alpha 1 and alpha 3), also suggesting that the alpha chains must differ for neutral amino acid substitution. 3. Extensive mass spectrometric analysis on several digests (FAB overlapping) meant to determine the complete sequence of the constituent chains. 4. Two amino acid replacements (Lys 18----His and Asn 116----His) were present in the beta chain with respect to the bovine (A phenotype) chain, whereas the alpha 1 and alpha 3 globins were found to contain four amino acid replacements compared to the bovine alpha, three of which were identical (Glu 23----Asp, Glu 71----Gly and Phe 117----Cys) and, notably, an insertion of Ala at position 123-124. 5. Furthermore, alpha 1 contains Phe at position 130 whereas alpha 3 contains Ser at position 132 (following the modified numbering as a consequence of the Ala insertion).  相似文献   

20.
In addition to alpha, beta-elimination of L-cysteine, Treponema denticola cystalysin catalyzes the racemization of both enantiomers of alanine accompanied by an overall transamination. Lys-238 and Tyr-123 or a water molecule located on the si and re face of the cofactor, respectively, have been proposed to act as the acid/base catalysts in the proton abstraction/donation at Calpha/C4' of the external aldimine. In this investigation, two site-directed mutants, K238A and Y123F, have been characterized. The Lys --> Ala mutation results in the complete loss of either lyase activity or racemase activity in both directions or transaminase activity toward L-alanine. However, the K238A mutant is able to catalyze the overall transamination of D-alanine, and only D-alanine is the product of the reverse transamination. For Y123F the k(cat)/K(m) is reduced 3.5-fold for alpha, beta-elimination, whereas it is reduced 300-400-fold for racemization. Y123F has approximately 18% of wild type transaminase activity with L-alanine and an extremely low transaminase activity with D-alanine. Moreover, the catalytic properties of the Y124F and Y123F/Y124F mutants rule out the possibility that the residual racemase and transaminase activities displayed by Y123F are due to Tyr-124. All these data, together with computational results, indicate a two-base racemization mechanism for cystalysin in which Lys-238 has been unequivocally identified as the catalyst acting on the si face of the cofactor. Moreover, this study highlights the importance of the interaction of Tyr-123 with water molecules for efficient proton abstraction/donation function on the re face.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号