首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously described the use of a counter-rotating cone and plate rheoscope to measure the time and force dependence of break-up of doublets of sphered, swollen, and fixed red cells (SSRC) cross-linked by monoclonal IgM antibody. It has been shown that doublet break-up can occur by extraction of receptors from the membrane, rather than by antibody-antigen bond break-up, and is a stochastic process. We therefore prepared 4.62-microns carboxyl modified latex spheres with a covalently coupled synthetic blood group B antigen trisaccharide. Using a two-step carbodiimide process, ethylene diamine was covalently linked to the carboxyl modified latex spheres, and the trisaccharide, having an eight carbon spacer modified to bear a terminal carboxyl group, was linked to the ethylene diamine. Using these antigen spheres we carried out studies in Couette flow, in a transparent cone and plate rheoscope, of the shear-induced break-up of doublets cross-linked by monoclonal IgM anti-B antibody in 19% and 15% Dextran 40. As previously found with SSRC, over a range of normal force from 55 to 175 pN, there was a distribution in times to break-up. However, the fraction of antigen sphere doublets broken up, which increased from 0.08 to 0.43 at 75 pM IgM, and from 0.06 to 0.20 at 150 pM IgM, was significantly lower than that for the SSRC, where the fraction broken up at 150 pM IgM increased from 0.10 to 0.47. Thus, significantly higher forces were required to achieve the same degree of break-up for doublets of antigen-linked spheres than for SSRC. Computer simulation using a stochastic model of break-up showed that the differences between antigen sphere and SSRC doublet break-up were due to a change in bond character (the range and depth of the bond energy minimum) rather than to an increase in the number of bonds linking antigen-sphere doublets. This supports the notion that antibody-antigen bonds are ruptured in the case of antigen spheres, whereas antigen is able to be extracted from the membrane of SSRC, although changes of receptor substrate from cell to latex and the possibility of latex strand extraction from the microspheres are potential complicating factors.  相似文献   

2.
Fixed spherical swollen human red blood cells of blood type B adhering on a glass surface through antigen-antibody bonds to monoclonal mouse antihuman IgM, adsorbed or covalently linked on the surface, were detached by known hydrodynamic forces created in an impinging jet. The dynamic process of detachment of the specifically bound cells was recorded and analyzed. The fraction of adherent cells remaining on the surface decreased with increasing hydrodynamic force. For an IgM coverage of 0.26%, a tangential force on the order of 100 pN was able to detach almost all of the cells from the surface within 20 min. After a given time of exposure to hydrodynamic force, the fraction of adherent cells remaining increased with time, reflecting an increase in adhesion strength. The characteristic time for effective aging was approximately 4 h. Results from experiments in which the adsorbed antibody molecules were immobilized through covalent coupling and from evanescent wave light scattering of adherent cells, imply that deformation of red cells at the contact area was the principal cause for aging, rather than local clustering of the antibody through surface diffusion. Experiments with latex beads specifically bound to red blood cells suggest that, instead of breaking the antigen-antibody bonds, antigen molecules were extracted from the cell membrane during detachment.  相似文献   

3.
We report on an extension of a previously described method to measure the hydrodynamic force to separate doublets of fixed, sphered and swollen red cells cross-linked by antibody (S. P. Tha, J. Shuster, and H. L. Goldsmith. 1986. Biophys. J. 50:1117-1126). With a traveling microtube apparatus, doublets are tracked and videotaped in a slowly accelerating Poiseuille flow in 150-microns-diameter tubes, and the hydrodynamic normal force at break-up, Fn, is computed from the measured doublet velocity and radial position. Previous results showed a large range of Fn, the mean of which increased with [antiserum], and an absence of clustering at discrete values of Fn. Since it was assumed that the cells separate the instant a critical force to break all crossbridges was reached, lack of clustering could have been due to the use of a polyclonal antiserum. We therefore studied the effect of monoclonal IgM or IgA antibody on the distribution of Fn. The results showed that the data are as scattered as ever, with Fn varying from 2 to 200 pN, and exhibit no evidence of clustering. However, the scatter in Fn could be due to the stochastic nature of intercellular bonds (E. Evans, D. Berk, and A. Leung. 1991a. Biophys. J. 59:838-848). We therefore studied the force dependence of the time to break-up under constant shear stress (Fn from 30 to 200 pN), both in Poiseuille and Couette flow, the latter by using a counter-rotating cone and plate rheoscope. When 280 doublets were rapidly accelerated in the traveling microtube and then allowed to coast in steady flow for up to 180 s, 91% survived into the constant force region; 16% of these broke up after time intervals, tP, of 2-30s. Of 340 doublets immediately exposed to constant shear in the rheoscope, 37% broke after time intervals, tc, from < 1 to 10 s. Thus, doublets do indeed break up under a constant shear stress, if given time. The average time to break-up decreased significantly with increasing force, while the fraction of doublets broken up increased. At a given Fn, the fraction of break-ups decreased with increasing [IgM], suggesting that the average number of bonds had also increased.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
We studied the shear-induced breakup of doublets of aldehyde/sulfate (A/S) latex spheres covalently linked with purified platelet GPIIb-IIIa receptor, and cross-linked by fibrinogen. Flow cytometry with fluorescein isothiocyanate-fibrinogen showed than an average of 22,500 molecules of active GPIIb-IIIa were captured per sphere, with a mean K(d) = 56 nM for fibrinogen binding. The spheres, suspended in buffered 19% Ficoll 400 containing 120 or 240 pM fibrinogen, were subjected to Couette flow in a counter-rotating cone-plate rheoscope. Doublets, formed by two-body collisions at low shear rate (G = 8 s(-1)) for < or =15 min, were subjected to shear stress from 0.6 to 2.9 Nm(-2), their rotations recorded until they broke up or were lost to view. Although breakup was time dependent, occurring mostly in the first 2 rotations after the onset of shear, the percentage of doublets broken up after 10 rotations were almost independent of normal hydrodynamic force, F(n): at 240 pN, 15.6, 16.0, and 17.0% broke up in the force range 70-150 pN, 150-230 pN, and 230-310 pN. Unexpectedly, at both [fibrinogen], the initial rate of breakup was highest in the lowest force range, and computer simulation using a stochastic model of breakup was unable to simulate the time course of breakup. When pre-sheared at low G for >15 min, no doublets broke up within 10 rotations at 70 < F(n) < 310 pN; it required >3 min shear (>1110 rotations) at F(n) = 210 pN for significant breakup to occur. Other published work has shown that binding of fibrinogen to GPIIb-IIIa immobilized on plane surfaces exhibits an initial fast reversible process with relative low affinity succeeded by transformation of GPIIb-IIIa to a stable high-affinity complex. We postulate that most doublet breakups observed within 10 rotations were from a population of young doublets having low numbers of bonds, by dissociation of the initial receptor complex relatively unresponsive to force. The remaining, older doublets with GPIIb-IIIa in the high-affinity complex were not broken up in the time or range of forces studied.  相似文献   

5.
During inflammation, neutrophil capture by vascular endothelial cells is dependent on L-selectin and beta(2)-integrin adhesion receptors. One of us (S.I.S.) previously demonstrated that homotypic neutrophil aggregation is analogous to this process in that it is also mediated by these receptors, thus providing a model for studying the dynamics of neutrophil adhesion. In the present work, we set out to confirm the hypothesis that cell-cell adhesion via selectins serves to increase the lifetimes of neutrophil doublets formed through shear-induced two-body collisions. In turn, this would facilitate the engagement of more stable beta(2)-integrin bonds and thus increase the two-body collision efficiency (fraction of collisions resulting in the formation of nonseparating doublets). To this end, suspensions of unstimulated neutrophils were subjected to a uniform shear field in a transparent counter-rotating cone and plate rheoscope, and the formation of doublets and growth of aggregates recorded using high-speed videomicroscopy. The dependence of neutrophil doublet lifetime and two-body collision-capture efficiency on shear rate, G, from 14 to 220 s(-1) was investigated. Bond formation during a two-body collision was indicated by doublets rotating well past the orientation predicted for break-up of doublets of inert spheres. A striking dependence of doublet lifetime on shear rate was observed. At low shear (G = 14 s(-1)), no collision capture occurred, and doublet lifetimes were no different from those of neutrophils pretreated with a blocking antibody to L-selectin, or in Ca(++)-depleted EDTA buffers. At G > or = 66 s(-1), doublet lifetimes increased, with increasing G reaching values twice those for the L-selectin-blocked controls. This correlated with capture efficiencies in excess of 20%, and, at G > or = 110 s(-1), led to the rapid formation of large aggregates, and this in the absence of exogenous chemotactic stimuli. Moreover, the aggregates almost completely broke up when the shear rate was reduced below 66 s(-1). Partial inhibition of aggregate formation was achieved by blocking beta(2)-integrin receptors with antibody. By direct observation of the shear-induced interactions between neutrophils, these data reveal that steady application of a threshold level of shear rate is sufficient to support homotypic neutrophil aggregation.  相似文献   

6.
M Long  H L Goldsmith  D F Tees    C Zhu 《Biophysical journal》1999,76(2):1112-1128
A model was constructed to describe previously published experiments of shear-induced formation and breakage of doublets of red cells and of latexes cross-linked by receptor-ligand bonds (. Biophys. J. 65:1318-1334; Tees and Goldsmith. 1996. Biophys. J. 71:1102-1114;. Biophys. J. 71:1115-1122). The model, based on McQuarrie's master equations (1963. J. Phys. Chem. 38:433-436), provides unifying treatments for three distinctive time periods in the experiments of particles in a Couette flow in which a doublet undergoes 1) formation upon two-body collision between singlets; 2) evolution of bonds at low shear rate; and 3) break-up at high shear rate. Neglecting the applied force at low shear rate, the probability of forming a doublet per collision as well as the evolution of probability distribution of bonds in a preformed doublet were solved analytically and found to be in quite good agreement with measurements. At high shear rate with significant force acting to accelerate bond dissociation, the predictions for break-up of doublets were obtained numerically and compared well with data in both individual and population studies. These comparisons enabled bond kinetic parameters for three types of particles cross-linked by two receptor-ligand systems to be calculated, which agreed well with those computed from Monte Carlo simulations. This work can be extended to analyze kinetics of receptor-ligand binding in cell aggregates, such as those of neutrophils and platelets in the circulation.  相似文献   

7.
Human IgG2 antibodies display disulfide-mediated structural isoforms   总被引:1,自引:0,他引:1  
In this work, we present studies of the covalent structure of human IgG2 molecules. Detailed analysis showed that recombinant human IgG2 monoclonal antibody could be partially resolved into structurally distinct forms caused by multiple disulfide bond structures. In addition to the presently accepted structure for the human IgG2 subclass, we also found major structures that differ from those documented in the current literature. These novel structural isoforms are defined by the light chain constant domain (C(L)) and the heavy chain C(H)1 domain covalently linked via disulfide bonds to the hinge region of the molecule. Our results demonstrate the presence of three main types of structures within the human IgG2 subclass, and we have named these structures IgG2-A, -B, and -A/B. IgG2-A is the known classic structure for the IgG2 subclass defined by structurally independent Fab domains and hinge region. IgG2-B is a structure defined by a symmetrical arrangement of a (C(H)1-C(L)-hinge)(2) complex with both Fab regions covalently linked to the hinge. IgG2-A/B represents an intermediate form, defined by an asymmetrical arrangement involving one Fab arm covalently linked to the hinge through disulfide bonds. The newly discovered structural isoforms are present in native human IgG2 antibodies isolated from myeloma plasma and from normal serum. Furthermore, the isoforms are present in native human IgG2 with either kappa or lambda light chains, although the ratios differ between the light chain classes. These findings indicate that disulfide structural heterogeneity is a naturally occurring feature of antibodies belonging to the human IgG2 subclass.  相似文献   

8.
The expressions derived in the previous paper for the respective normal, F3, and shear forces, Fshear, acting along and perpendicular to the axis of a doublet of rigid spheres, were used to determine the hydrodynamic forces required to separate two red cell spheres of antigenic type B crosslinked by the corresponding antibody. Cells were sphered and swollen in isotonic buffered glycerol containing 8 X 10(-5) M sodium dodecyl sulfate, fixed in 0.085% glutaraldehyde, and suspended in aqueous glycerol (viscosity: 15-34 mPa s), containing 0.15 M NaCl and anti-B antibody from human hyperimmune antiserum at concentrations from 0.73 to 3.56 vol%. After incubating and mixing for 12 h, doublets were observed through a microscope flowing in a 178-micron tube by gravity feed between two reservoirs. Using a traveling microtube apparatus, the doublets were tracked in a constantly accelerating flow and the translational and rotational motions were recorded on videotape until breakup occurred. From a frame by frame replay of the tape, the radial position, velocity and orientation of the doublet were obtained and the normal and shear forces of separation at breakup computed. Both forces increased significantly with increasing antiserum concentration, the mean values of F3 increasing from 0.060 to 0.197 nN, and Fshear from 0.023 to 0.072 nN. There was no significant effect of glycerol viscosity on the forces of separation. It was not possible to determine whether the shear or normal force was responsible for doublet separation. Measurements of the mean dimensionless period of rotation, TG, of doublets in suspensions containing 0.73 and 2.40% antiserum undergoing steady flow were also made to test whether the spheres were rigidly linked or capable of some independent rotation. A fairly narrow distribution in TG about the value 15.64, predicted for rigidly-linked doublets, was obtained at both antiserum concentrations.  相似文献   

9.
The development of new immunosensors based on surface-concentration-measuring devices requires a stable and reproducible immobilization of antibodies on well-characterized solid surfaces. We here report on the immobilization of immunoglobulin G (IgG) on chemically modified silica surfaces. Such surfaces may be used in various surface-oriented analytical methods. Reactive groups were introduced to the silica surfaces by chemical-vapour deposition of silane. The surfaces were characterized by ellipsometry, contact-angle measurements and scanning electron microscopy. IgG covalently bound by the use of thiol-disulphide exchange reactions, thereby controlling the maximum number of covalent bonds to the surface, was compared with IgG adsorbed on various silica surfaces. This comparison showed that the covalently bound IgG has a superior stability when the pH was lowered or incubation with detergents, urea or ethylene glycol was carried out. The result was evaluated by ellipsometry, an optical technique that renders possible the quantification of amounts of immobilized IgG. The results outline the possibilities of obtaining a controlled covalent binding of biomolecules to solid surfaces with an optimal stability and biological activity of the immobilized molecules.  相似文献   

10.
Ligand-bearing liposomes are used to enhance the agglutination ‘signal’ of a typical latex assay for the detection of human rheumatoid factor. Heat-denatured IgG, the antigen to which rheumatoid factor binds naturally, was covalently attached to latex spheres. The liposomes were covalently coated with a ‘second ligand’ which also recognizes rheumatoid factor, anti-human IgM Fab′ fragments. In the present test configuration, rheumatoid factor present in a patient's serum binds to the IgG attached to the latex particles. The liposomes, in turn, bind rapidly to rheumatoid factor-sensitized latex, via the second ligand, promoting the formation of large, clearly visible latex aggregates. When latex spheres bearing the same type and density of second ligand were used to replace the liposomes they failed to improve agglutination, suggesting that multivalent presentation of the second ligand is not sufficient to insure the improvement. These results suggest that fluidity of the liposomal membrane is a requirement for the effect. Sensitivity as well as ‘readability’ are improved by the liposomes while specificity remains unaffected. The principle of using ligand-bearing liposomes to enhance particle agglutination is applicable to a wide range of other diagnostic assays.  相似文献   

11.
A general method of calculating forces, torques, and translational and rotational velocities of rigid, neutrally buoyant spheres suspended in viscous liquids undergoing a uniform shear flow has been given by Arp and Mason (1977). The method is based on the matrix formulation of hydrodynamic resistances in creeping flow by Brenner and O'Neill (1972). We describe the solution of the Brenner-O'Neill force-torque vector equation in terms of the particle and external flow field coordinates and derive expressions for the normal force acting along, and the shear force acting perpendicular to, the axis of the doublet of spheres, the latter explicitly given for the first time. The equations consist of a term comprising force and torque coefficients obtained from the matrices of the hydrodynamic resistances (functions of the distance h between sphere surfaces which have been computed), and terms comprising the orientation of the doublet axis relative to the coordinates of the external flow field and the shear stress (which can be experimentally determined). We have applied the theory to a system of doublets of sphered, hardened human red cells of group A or B antigenic type cross-linked by the corresponding antibody at a fixed interparticle distance. Working from studies of the breakup of doublets of red cells in an accelerating Poiseuille flow, given in the succeeding paper, we are able to compute the hydrodynamic force required to separate the two spheres. Previous work has shown that the theory can be applied to doublets in a variable shear, Poiseuille flow, provided the ratio of particle to tube diameter is small. In calculating the force-torque coefficients it was assumed that the cells are crosslinked by antibody with h = 20 nm.  相似文献   

12.
An ultrasensitive electrochemical immunosensor for a protein using a Ag (I)-cysteamine complex (Ag-Cys) as a label was fabricated. The low detection of a protein was based on the electrochemical stripping of Ag from the adsorbed Ag-Cys complex on the gold nanoparticles (AuNPs) conjugated human immunoglobulin G (anti-IgG) antibody (AuNPs-anti-IgG). The electrochemical immunosensor was fabricated by immobilizing anti-IgG antibody on a poly-5,2':5',2'-terthiophene-3'-carboxylic acid (polyTTCA) film grown on the glassy carbon electrode through the covalent bond formation between amine groups of anti-IgG and carboxylic acid groups of polyTTCA. The target protein, IgG was sandwiched between the anti-IgG antibody that covalently attached onto the polyTTCA layer and AuNPs-anti-IgG. Using square wave voltammetry, well defined Ag stripping voltammograms were obtained for the each target concentration. Various experimental parameters were optimized and interference effects from other proteins were checked out. The immunosensor exhibited a wide dynamic range with the detection limit of 0.4 ± 0.05 fg/mL. To evaluate the analytical reliability, the proposed immunosensor was applied to human IgG spiked serum samples and acceptable results were obtained indicating that the method can be readily extended to other bioaffinity assays of clinical or environmental significance.  相似文献   

13.
The objective of this study was to determine the effect of receptor-ligand affinity on the strength of endothelial cell adhesion. Linear and cyclic forms of the fibronectin (Fn) cell-binding domain peptide Arg-Gly-Asp (RGD) were covalently immobilized to glass, and Fn was adsorbed onto glass slides. Bovine aortic endothelial cells attached to the surfaces for 15 min. The critical wall shear stress at which 50% of the cells detached increased nonlinearly with ligand density and was greater with immobilized cyclic RGD than with immobilized linear RGD or adsorbed Fn. To directly compare results for the different ligand densities, the receptor-ligand dissociation constant and force per bond were estimated from data for the critical shear stress and contact area. Total internal reflection fluorescence microscopy was used to measure the contact area as a function of separation distance. Contact area increased with increasing ligand density. Contact areas were similar for the immobilized peptides but were greater on surfaces with adsorbed Fn. The dissociation constant was determined by nonlinear regression of the net force on the cells to models that assumed that bonds were either uniformly stressed or that only bonds on the periphery of the contact region were stressed (peeling model). Both models provided equally good fits for cells attached to immobilized peptides whereas the peeling model produced a better fit of data for cells attached to adsorbed Fn. Cyclic RGD and linear RGD both bind to the integrin alpha v beta 3, but immobilized cyclic RGD exhibited a greater affinity than did linear RGD. Receptor affinities of Fn adsorbed to glycophase glass and Fn adsorbed to glass were similar. The number of bonds was calculated assuming binding equilibrium. The peeling model produced good linear fits between bond force and number of bonds. Results of this study indicate that 1) bovine aortic endothelial cells are more adherent on immobilized cyclic RGD peptide than linear RGD or adsorbed Fn, 2) increased adhesion is due to a greater affinity between cyclic RGD and its receptor, and 3) the affinity of RGD peptides and adsorbed Fn for their receptors is increased after immobilization.  相似文献   

14.
Preformed immune aggregates, containing antigen and either IgG (immunoglobulin G) or F(ab')2 rabbit antibody, were incubated with normal human serum under conditions allowing activation of only the alternative pathway of complement. Both the IgG and F(ab')2 immune aggregates bound C3b, the activated form of the complement component C3, in a similar manner, 2-3% of the C3 available in the serum being bound to the aggregates as C3b, and the rest remaining in the fluid phase as inactive C3b or uncleaved C3. It was found that the C3b was probably covalently bound to the IgG in the aggregates, since C3b-IgG complexes could be demonstrated on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, after repeated washing with buffers containing high salt or boiling under denaturing conditions. Incubation of the C3b-antibody-antigen aggregates in buffers known to destroy ester linkages had little effect on the C3b-IgG complexes, which suggested that C3b and IgG might be linked by an amide bond. Two main types of C3b-IgG complexes were found that had apparent mol.wts. of 360000 and 580000, corresponding to either one to two C3b molecules respectively bound to one molecule of antibody. On reduction of the C3b-IgG complexes it was found that the beta-chain, but not the alpha'-chain, of C3b was released along with all the light chain of IgG but only about half or less of the heavy chain of IgG. These results indicate that, during activation of the alternative pathway of complement by immune aggregates containing IgG antibody, the alpha'-chain of C3b may become covalently bound at one or two sites in the Fd portion of the heavy chain of IgG.  相似文献   

15.
Antibodies have evolved to function in oxidative, extracellular environments. A pair of cysteines in close proximity will oxidatively react to form a disulfide bond that fixes and stabilizes the tertiary structure of a protein. Immunoglobulin G (IgG) includes several disulfide bonds, and the patterns of inter-chain disulfide bonds characterize different IgG sub-classes. Moreover, the Ig-fold domains are characterized by a buried intra-domain disulfide bond, which is important for its structural stability. However, the intra-domain disulfide bond can be replaced without crucial effects on the structure and function, if the domain structure is intrinsically stable or has been stabilized by protein engineering. In previous studies, disulfide bonds were removed by amino-acid substitution indicating that Val and/or Ala (i.e. Ala–Ala, Ala–Val, Val–Ala, and Val–Ala) pairs were preferred for cysteine replacement in the Ig-fold domain. As such, these mutations may be useful for the intracellular use of antibodies. Recently, additional intra-domain disulfide bonds have been shown to stabilize Ig-fold domains and whole IgGs. In heavy chain variable or light chain variable domains, the introduction of additional disulfide bonds into the framework region did not reduce antigen-binding affinity, suggesting that generating disulfide bonds may be a method for stabilizing IgG and antibody fragments, such as the antigen-binding fragment, and single-chain and single-domain antibodies. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.  相似文献   

16.
Ink jet printed carbon nanotube forest arrays capable of detecting picomolar concentrations of immunoglobulin G (IgG) using electrochemiluminescence (ECL) are described. Patterned arrays of vertically aligned single walled carbon nanotube (SWCNT) forests were printed on indium tin oxide (ITO) electrodes. Capture anti-IgG antibodies were then coupled through peptide bond formation to acidic functional groups on the vertical nanotubes. IgG immunoassays were performed using silica nano particles (Si NP) functionalized with the ECL luminophore [Ru(bpy)(2)PICH(2)](2+)], and IgG labelled G1.5 acid terminated PAMAM dendrimers. PAMAM is poly(amido amine), bpy is 2,2'-bipyridyl and PICH(2) is (2-(4-carboxyphenyl)imidazo[4,5-f][1,10]phenanthroline). The carboxyl terminal of [Ru(bpy)(2)PICH(2)](2+) (fluorescence lifetime ≈ 682±5 ns) dye was covalently coupled to amine groups on the 800 nm diameter silica spheres in order to produce significant ECL enhancement in the presence of sodium oxalate as co-reactant in PBS at pH 7.2). Significantly, this SWCNT-based sensor array shows a wide linear dynamic range for IgG coated spheres (10(6) to 10(12) spheres) corresponding to IgG concentrations between 20 pM and 300 nM. A detection limit of 1.1±0.1 pM IgG is obtained under optimal conditions.  相似文献   

17.
Monoclonal antibody (mAb) therapy applications have been growing rapidly in recent years. Like other recombinant protein drugs, therapeutic mAb's need to be well characterized to ensure their structural and functional integrity. IgG mAb's are composed of two heavy and two light chains covalently linked by interchain disulfide bonds. Each domain of the heavy or light chain contains one additional disulfide bond. Native IgG mAb's, with completely formed disulfide bonds, should not bear any free sulfhydryl. This report describes detection and quantification of free sulfhydryl in recombinant mAb's produced in Chinese hamster ovary (CHO) cells using a fluorescent technique. The method utilizes the fluorescent probe N-(1-pyrenyl)maleimide (NPM). The purified mAb's appear to be homogeneous under native conditions with approximately 0.02 mol of free sulfhydryl per mole of protein. Upon denaturation, minor species related to the mAb's are observed on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and the free sulfhydryl level is determined to be approximately 0.1 mol/mol of protein. These results suggest that a small portion of these recombinant mAb's lack in intermolecular disulfide bonds but remain noncovalently associated under native conditions. The formation of the free sulfhydryl containing mAb species is likely to occur during the culture process and/or protein folding process in the endoplasmic reticulum (ER).  相似文献   

18.
A method for the detection of collagenous proteins within cyanogen bromide digests of tissues has been devised. The peptides produced by digestion with cyanogen bromide were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to a nitrocellulose filter. They were stained on the filter by incubation first with antibodies to collagen and then with a second antibody covalently linked to horseradish peroxidase, 4-chloro-1-naphthol was added, and the bound enzyme was assayed. This procedure is useful for the identification and characterization of collagens of types I, III, IV, and V in tissues. In addition, we have developed a sensitive and specific competitive enzyme-linked immunosorbent assay (ELISA) which is convenient for quantifying collagens (types I, III, and IV) in tissues. In this kind of assay, soluble cyanogen bromide peptides compete with cyanogen bromide peptides adsorbed onto a solid-phase support for rabbit anti-collagen antibodies. We determined the amount of bound antibody by using goat anti-rabbit immunoglobulin G covalently conjugated to horseradish peroxidase and then provided a substrate for the enzymatic reaction. The sensitivity range of the ELISA is 0.09 micrograms/ml in the region of 90 to 10% binding.  相似文献   

19.
Protein A from Staphylococcus aureus (SpA) is a receptor for the Fc domain of several classes of antibodies including immunoglobin G (IgG). A hybrid protein consisting of protein A and the enzyme beta-lactamase has been constructed using recombinant DNA techniques. The functional characteristics of the hybrid protein adsorbed on IgG-coated Sepharose matrices were studied in detail and compared to those of (i) the hybrid protein in solution and (ii) beta-lactamase covalently immobilized on CNBr-activated Sepharose. Protein A--beta-lactamase bound tightly and specifically to IgG-Sepharose and could be stored for at least 4 weeks without dissociation. The rate of penicillin G hydrolysis by the beta-lactamase domain of the immobilized hybrid protein was found to depend on the amount of IgG covalently coupled to the support. For all IgG loads, higher specific activities and lower Km values relative to covalently immobilized beta-lactamase were obtained. Adsorption of the hybrid protein on the support resulted in increased stability to thermal deactivation. These results indicate that bifunctional hybrid proteins can be useful for the affinity immobilization of enzymes.  相似文献   

20.
B Packard  M Edidin  A Komoriya 《Biochemistry》1986,25(12):3548-3552
We have designed and synthesized crabescein, the first member of a class of fluorescent labels that add across disulfide bonds. Crabescein is a fluorescein derivative that reports the rotational correlation time of the immunoglobulin G (IgG) segment to which it is covalently bound. Chemical analysis of the IgG labeled with crabescein indicates that the fluorophore is inserted into the third disulfide bond (cysteine-229 of mouse IgG2a) in the hinge region. The rotational correlation time of this labeled macromolecule was measured as a single exponential with a decay constant of 26.8 ns. This is in contrast to the double exponential with decay constants of 14.3 and 0.2 ns for the same IgG when labeled with fluorescein via a conventional labeling reagent in which the probe is bound to the macromolecule by one-point attachments. Thus, crabescein is the prototype of a class of fluorescent and phosphorescent probes that, by virtue of their two-point attachments to proteins, faithfully report on the dynamics of the segment of macromolecule to which they are covalently bound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号