共查询到20条相似文献,搜索用时 15 毫秒
1.
Interspecies differences of motor units properties in the medial gastrocnemius muscle of cat and rat
Krutki P Celichowski J Lochyński D Pogrzebna M Mrówczyński W 《Archives italiennes de biologie》2006,144(1):11-23
The purpose of the study was to analyze the interspecies differences of motor unit contractile properties in two most frequently studied mammals: cats and rats. A total sample of 166 motor units (79 in cats and 85 in rats) was investigated in the medial gastrocnemius muscle. Considerable differences were found in composition of the studied muscle. In cats, fast fatigable, fast resistant and slow units formed 68, 18 and 14% of the investigated population, whereas in rats 36, 52 and 12%, respectively. The contraction and relaxation times of motor units in the cat muscle were evidently longer than in the rat and the border values for fast/slow motor units division in these species were 44 and 20 ms, respectively. The mean values of twitch and tetanic forces appeared to be 7-8 times lower in rats, for fast, while 2-5 times for slow motor units. Also variability between the strongest and the weakest units within each type revealed differences 10-60 times in cats, whereas only 3.5-14 times in rats. The summation of twitches into tetanus for fast units was comparable in both species, but for S units was evidently more effective in the cat. In fast motor units' tetanic contractions evident interspecies differences concerned sag appearance and profiles of unfused tetani of FF and FR units. Differences in contractile properties described in the study may depend on the size, number and innervation ratio of motor units in the muscle of cat and rat, as well as their biochemical variability. Differences in composition of motor unit types and uneven mechanisms of force development may reflect biological adaptation to variable behaviour of cats and rats. 相似文献
2.
The relationship between the force of a single twitch of the medial gastrocnemius muscle of the rat and contraction and half-relaxation times, on one hand, and the load of the muscle on the other, was studied. Twitches of the whole muscle and its individual motor units were induced. The optimal load, at which the majority of motor units reached the greatest twitch force, was 10 G. Mean optimal loads for twitches of different types of motor units were very similar. Slow motor units reached a slightly greater twitch force at greater loads (12.5 G) than at 10 G. However, the optimal load for the twitch of the whole muscle was much greater. It was 47 G on the average. The contraction and half-relaxation times of motor units, as well as of the whole muscle, became longer as the force stretching the muscle increased. Half-relaxation time changed more rapidly than contraction time. Both parameters were undergoing the greatest changes in slow motor units. 相似文献
3.
Differences between motor units in hindlimb locomotor muscles of male and female Wistar rats were studied. The contractile and action potential properties of various types of motor units as well as proportions of these units in the medial gastrocnemius muscle were analyzed. Experiments were based on functional isolation and electrical stimulation of axons of single motor units. Composition of motor units was different for male and female subjects, with higher number of the fast fatigable and lower number of slow type units in male animals. The contraction and the half-relaxation times were significantly longer in male motor units, what might be due to differences in muscle size. Slower contraction of male motor units likely corresponds to lower firing rates of their motoneurons. On the other hand, no significant differences between sexes were observed with respect to force parameters of motor units (the twitch and the maximum tetanus forces), except the fast resistant units (higher force values in male muscles). The mass of the muscle was approximately 1.5 time bigger in male rats. However, the mean ratio of motor unit tetanus force to the muscle mass was almost twice smaller in this group, what indirectly suggests that muscles of male rats are composed of higher number of motor units. Finally, female muscles appeared to have higher fatigue resistance as the effect of higher proportion of resistant units (slow and fast resistant) and higher values of the fatigue index in respective motor unit types. The motor unit action potentials in female rats had slightly lower amplitudes and shorter time parameters although this difference was significant only for fast resistant units. 相似文献
4.
《Journal of Physiology》1996,90(2):75-78
Axonal conduction velocity and its relations to different contractile properties of motor units of medial gastrocnemius muscle were investigated in nine Wistar rats anaesthetized with pentobarbitone. Functionally isolated motor units were identified as slow (S), fast resistant (FR) and fast fatigable (FF). Axons of S motor units conducted significantly more slowly than of fast units, while there was considerable overlap between conduction velocities measured for FR and FF types. The mean values of conduction velocity were 50.9 m/s for S, 68.9 m/s for FR and 71.3 m/s for FF type motor units. Strong and significant negative correlation between conduction velocity and contraction time as well as half-relaxation time was demonstrated. However, only a weak correlation between conduction velocity and twitch tension, tetanic tension or fatigue index was found. The multiple regression analysis revealed that the major factor to determine conduction velocity was contraction time. 相似文献
5.
J Celichowski P Krutki D ?ochyński K Grottel W Mróczyński 《Journal of physiology and pharmacology》2004,55(2):291-303
Ability of muscle fibers to generate force is decreased when higher frequency of stimulation of motor units immediately follows lower frequency. This phenomenon called tetanic depression was found in rat medial gastrocnemius. However, it was not clear whether tetanic depression occurred only in rat muscle or it concerns all mammals. This study was conducted on motor units of cat medial gastrocnemius. Analyses were made at three successive trains of stimulation: 30 Hz, 20 and 30 Hz and again 30 Hz (the first pattern) or 40 Hz, 25 and 40 Hz and 40 Hz (the second pattern). In all fast units force generated within the middle tetanus was lower than force generated at the same, but constant frequency of stimulation applied earlier or later. The mean tetanic depression in 30 Hz tetani amounted to 10.9% for fast fatigable (FF) and 15.9% for fast resistant (FR) motor units, whereas in 40 Hz tetani mean values were 5.6% and 7.3% for FF and FR motor units, respectively. In slow motor units tetanic depression was not observed. These results proved the existence of tetanic depression in the feline muscle and indicated that its intensity depends on the fusion of tetanus. It has been concluded, that the tetanic depression is a general property of fast motor units in mammals. 相似文献
6.
H. Drzymała-Celichowska P. Krutki J. Celichowski 《Journal of electromyography and kinesiology》2010,20(4):599-607
The summation of contractile forces of motor units (MUs) was analyzed by comparing the recorded force during parallel stimulation of two and four individual MUs or four groups of MUs to the algebraic sum of their individual forces. Contractions of functionally-isolated single MUs of the medial gastrocnemius muscle were evoked by electrical stimulation of thin filaments of the split L5 or L4 ventral roots of spinal nerves. Additionally, contractions of large groups of MUs were evoked by stimuli delivered to four parts of the divided L5 ventral root. Single twitches, 40 Hz unfused tetani, and 150 Hz fused maximum tetani were recorded. In these experimental situations the summation was more effective for unfused tetani than for twitches or maximum tetani. The results obtained for pairs of MUs were highly variable (more- or less-than-linear summation), but coactivation of more units led to progressively weaker effects of summation, which were usually less-than-linear in comparison to the algebraic sums of the individual forces. The variability of the results highlights the importance of the structure of the muscle and the architecture of its MUs. Moreover, the simultaneous activity of fast and slow MUs was considerably more effective than that of two fast units. 相似文献
7.
The tension-time area is an estimation of the work performed by contracting motor units. The relationship between tension and frequency of stimulation and between tension-time area and frequency have been studied on 148 single motor units of the rat medial gastrocnemius muscle, under isometric conditions. Motor units were classified as fast fatigable (FF), fast resistant to fatigue (FR) or slow (S). Trains of stimuli of increasing frequency and constant duration were used. For all motor units a half of the maximum tetanic tension corresponded to lower frequencies compared to frequencies at a half of the maximum tension-time area. Moreover, the slopes of tension-frequency and area-frequency curves (change of tension or area per 1 Hz rise in frequency) were higher for slow than for fast motor units. The tension-time area per one pulse was calculated for different frequencies of stimulation. For slow units the maximum area per pulse corresponded to significantly lower frequencies than for fast ones, especially of FF type. However, for all three types of motor units this optimal frequency corresponded to sub-fused tetani with a tension of about 75% of the maximum tension, and with the fusion index slightly over 0.90. The absolute values of the maximum tension-time area per pulse revealed that in one contraction within the tetanus, slow units are generating greater work than FR units. The work performed by FF units is nearly two times larger than for S units, although the tension of slow units is over eight times lower. The presented results reveal that the contraction of slow motor units is much more effective than was suggested based on their low tension. 相似文献
8.
Leterme D Casasnovas B 《European journal of applied physiology and occupational physiology》1999,79(4):312-317
Contractile and fatigue-resistance properties of 71 lateral gastrocnemius muscle (LG) motor units (MU) following 14 days of hindlimb unloading (HU) were compared to those of 60 LG MU from control rats. The MU properties were assessed from isolated and stimulated individual motor axons. The MU were classified using standard criteria (shape of unfused tetani and fatigue resistance). The HU did not affect LG MU composition, but diminished the maximal tetanic tension (Po) of all MU types: P0 was significantly reduced by about 40% for the slow and fast-resistant MU, and by 18% for the fast-fatigable ones. The speed-related properties of fast-resistant MU became more similar to those of slower MU. The fatigue properties of MU were evaluated during a 5-min exercise test, using two fatigue indexes, FI2 and FI5, which expressed the relative capacity of MU to generate tension after 2 and 5 min, respectively. Results showed that 14 days of HU did not change the fatigue sensitivity of the LG MU. However, when F15 was compared to FI2, a greater decrease was observed after HU than in control conditions for the fast-resistant and fast-intermediate MU. It was concluded that a prolonged fatigue test may show changes in metabolic properties of muscle fibres during 14 days of HU. Specific adaptations of LG MU as well as comparisons with those of the soleus muscle under the same conditions are discussed. 相似文献
9.
Rositsa Raikova Jan Celichowski Magdalena Pogrzebna Hristo Aladjov Piotr Krutki 《Journal of electromyography and kinesiology》2007,17(2):121-130
Repeated stimulation of motor units (MUs) causes an increase of the force output that cannot be explained by linear summation of equal twitches evoked by the same stimulation pattern. To explain this phenomenon, an algorithm for reconstructing the individual twitches, that summate into an unfused tetanus is described in the paper. The algorithm is based on an analytical function for the twitch course modeling. The input parameters of this twitch model are lead time, contraction and half-relaxation times and maximal force. The measured individual twitches and unfused tetani at 10, 20, 30 and 40 Hz stimulation frequency of three rat motor units (slow, fast resistant to fatigue and fast fatigable) are processed. It is concluded that: (1) the analytical function describes precisely the course of individual twitches; (2) the summation of equal twitches does not follow the results from the experimentally measured unfused tetani, the differences depend on the type of the MU and are bigger for higher values of stimulation frequency and fusion index; (3) the reconstruction of individual twitches from experimental tetanic records can be successful if the tetanus is feebly fused (fusion index up to 0.7); (4) both the maximal forces and time parameters of individual twitches subtracted from unfused tetani change and influence the course of each tetanus. A discrepancy with respect to the relaxation phase was observed between experimental results and model prediction for tetani with fusion index exceeding 0.7. This phase was predicted longer than the experimental one for better fused tetani. Therefore, a separate series of physiological experiments and then, more complex model are necessary for explanation of this distinction. 相似文献
10.
The contraction and relaxation times of the twitches and the last contractions within 32 unfused tetani of FF and 27 unfused tetani of FR motor units in the rat medial gastrocnemius muscle were studied during prolonged activity. The pattern of the MU stimulation included single pulses (to evoke twitches) and series of three trains of stimuli at 40, 50 and 60 Hz (to evoke unfused tetani), repeated 30 times. The analysis concerned changes of force and time parameters at the beginning of activity, during the potentiation and then during the fatigue. It was found that changes of force during the potentiation and the fatigue were mainly accompanied by changes in the course of relaxation. The significant prolongation of the half-relaxation time during the potentiation of either twitches or unfused tetani was revealed in both types of fast MU. The twitch contraction time did not change markedly, whereas significantly shortened in the last contractions of unfused tetani during the potentiation. These changes of time parameters correlated to the increase of the fusion degree. During the fatigue, the time parameters shortened, however, changes of the half-relaxation times were remarkably higher. The shortening of relaxation was responsible for the decrease of the fusion degree. Changes of the fusion index exceeding 0.75 during the potentiation or decreasing below this value during the fatigue, were accompanied by respective appearance or disappearance of the biphasic relaxation. 相似文献
11.
Slow-twitch motor units in the medial gastrocnemius muscle of the anesthetized cat were found to have an average optimum length for active tension that was 0.8 +/- 0.5 (SE) mm longer than the whole muscle optimum. For fast-twitch units (time to peak < 50 ms), the average optimum was 1.3 +/- 0.3 mm shorter than the whole muscle optimum. After the muscle had been subjected to 10 stretches while maximally activated, beginning at the whole muscle optimum length, the optimum lengths of the 27 fast-twitch motor units shifted significantly further in the direction of longer muscle lengths (mean 4.3 +/- 0.3 mm) than for the eight slow-twitch units (2.1 +/- 0.4 mm). A shift in the muscle's length-tension relation was interpreted as being due to sarcomere disruption. Statistical analysis showed that a motor unit's optimum length for a contraction, relative to the whole muscle optimum, was a better indicator of the unit's susceptibility to damage from active lengthenings than was motor unit type. 相似文献
12.
Single, functionally isolated motor units were studied in the medial gastrocnemius (MG) muscle of cats and rats. Axons of their motoneurons were stimulated with trains of pulses at frequencies increasing from 1 to 150 Hz and forces developed by muscle fibers were measured and force-frequency curves were compared between species. The following observations were made: (1) the most steep parts of curves (related to unfused tetani of motor units) begun at lower frequencies of stimulations in all types of feline motor units, (2) for fast motor units, the same relative values of force of unfused tetani were achieved at significantly lower frequencies of stimulations in the cat than in the rat. Twitch time parameters of both species influenced the course of force-frequency curves. It was showed that the contraction times of feline units varied in the wide range (21-81 ms), and these units reached 60% of the maximum force at stimulation frequencies between 10 and 38 Hz. On the other hand, contraction times of rat units ranged from 10 to 34 ms, whereas stimulation frequencies necessary to reach 60% of the maximum force varied considerably, from 12 to 65 Hz. The correlations between the above parameters were found for motor units of each species. However, the regression lines drown for the collected population of cat and rat units did not form linear continuity. Thus it seems that interspecies differences in the twitch contraction times do not fully explain different force-frequency relationships in mammalian skeletal muscles. 相似文献
13.
Effect of aging on properties of motor unit action potentials in the rat medial gastrocnemius muscle
Piotr Krutki Iwona Ciechanowicz-Kowalczyk Dawid Łochyński Jan Celichowski 《Journal of electromyography and kinesiology》2013,23(5):1150-1157
The purpose of this study was to investigate whether age-related changes in motor unit (MU) contractile properties are reflected in parameters of motor unit action potentials (MUAPs). MUs of the medial gastrocnemius muscle were functionally isolated in anaesthetized Wistar rats. A control group of young animals (5–10 mo) was compared to two groups of old rats (24–25 mo and 28–30 mo). The basic contractile properties of MUs as well as the amplitude, total duration, peak-to-peak time, and number of turns within MUAPs were measured. Effects of aging were mainly observed for fast fatigable MUs (a prolongation of MUAPs and increased number of turns). The MUAP amplitude did not change significantly with aging in either MU type, but it correlated to the twitch or tetanic forces, which tended to increase with age, especially for slow MUs. We concluded that the prolongation of MUAPs and the greater incidence of signal turns was probably a result of a decrease in muscle fiber conduction velocity and/or an increase in their dispersion, and enlargement of MU territories – presumably caused by axonal sprouting of surviving motoneurons. The latter might also be responsible for the observed age-related tendency for a increase in MUAP amplitudes in slow MUs. 相似文献
14.
The spatial analysis of the potentials of single motor units of the rat medial gastrocnemius muscle evoked by stimulation of the fibres of split ventral roots was carried out with a bipolar electrode moving in the direction perpendicular to the longitudinal axis of the muscle fibres. During this movement of the electrode a variability was observed in the time of the biphasic potential from its maximum to minimum, and in the peak-to-peak amplitude of these potentials. The potentials recorded outside the territory of the motor unit had a lower amplitude in relation to the potentials from the territory of the unit. This made localization of the motor unit on the cross-section of the muscle possible. Differences in the duration of the potential from maximal to minimal amplitude (maximum-minimum amplitude time--M-MAT) of each investigated motor unit from successive recording sites reflected the number of fibres contributing to the action potential and the distance of the recording surface of the electrode from the zone of the motor end-plates of this motor unit. The greatest diameter of the territory of the observed motor units reached 2.5 mm. 相似文献
15.
G Horcholle-Bossavit L Jami J Lafleur F Lamy D Zytnicki 《Comptes rendus de l'Académie des sciences. Série III, Sciences de la vie》1988,307(10):591-596
Autogenetic inhibition of homonymous and synergist motoneurones can be elicited by very weak partial twitches of gastrocnemius medialis muscle, but during sustained contractions the amplitude of inhibitory post-synaptic potentials decreases quickly. A similar decrease also occurs during stronger contractions. The mechanism responsible for this decrease is still active in low spinal preparations. Pre-synaptic inhibition of Ib afferent fibres might contribute to this reduction of efficiency in the transmission of Ib afferent inputs to motoneurones. 相似文献
16.
The effects of changing muscle length on the mechanical properties of 89 motor units from adult cat medial gastrocnemius have been studied in eight experiments. Few differences were found between the effects of length on tetanic tension, twitch tension, twitch-tetanus ratio, twitch contraction time, twitch half relaxation time, rate of force development and electrical activity for fast contracting (twitch contraction time less than or equal to 45 msec) and slowly contracting (greater than 45 msec) units. Those differences that did appear did not persist when these two groups were matched by tetanic tension. It is concluded that the biophysical mechanisms responsible for the changes in mechanical and electrical properties with length must be similar for fast and slow twitch units and not related to potential differences in their muscle fiber type. The effects of changing muscle length on the mechanical properties of the eight whole muscles suggest that changes in force output with length are of minor importance during normal movements as the muscle is found to be electrically active over a relatively narrow range of lengths close to the optimum length for tetanus of the whole muscle. The very shortest muscle lengths at which there is only minimal force development are not used in natural movements, while the declining limb of the length tension curve is at muscle lengths beyond the maximum in situ length. 相似文献
17.
Malwina Taborowska Dorota Bukowska Hanna Drzymała-Celichowska Barbara Mierzejewska-Krzyżowska 《Somatosensory & motor research》2016,33(3-4):200-208
The rat medial gastrocnemius (MG) muscle is composed of the proximal and distal compartments. In this study, morphometric properties of the compartments and their muscle fibres at five levels of the muscle length and the innervation pattern of these compartments from lumbar segments were investigated. The size and number of muscle fibres in the compartments were different. The proximal compartment at the largest cross section (25% of the muscle length) had 34% smaller cross-sectional area but contained a slightly higher number of muscle fibres (max. 5521 vs. 5360) in comparison to data for the distal compartment which had the largest cross-sectional area at 40% of the muscle length. The muscle fibre diameters revealed a clear tendency within both compartments to increase along the muscle (from the knee to the Achilles tendon) up to 46.9?μm in the proximal compartment and 58.4?μm in the distal one. The maximal tetanic and single twitch force evoked by stimulation of L4, L5, and L6 ventral roots in whole muscle and compartments were measured. The MG was innervated from L4 and L5, only L5, or L5 and L6 segments. The proximal compartment was innervated by axons from L5 or L5 and L4, and the distal one from L5, L5 and L6, or L5 and L4 segments. The forces produced by the compartments summed non-linearly. The tetanic forces of the proximal and distal compartments amounted to 2.24 and 4.86?N, respectively, and their algebraic sums were 11% higher than the whole muscle force (6.37?N). 相似文献
18.
When a muscle innervation originates from more than one spinal cord segment, the injury of one of the respective ventral roots evokes an overload, and alters the activity and properties of the remaining motor units. However, it is not well documented if the three types of motor units are equally represented within the innervating ventral roots. Single motor units in the rat medial gastrocnemius muscle were studied and their contractile properties as well as distribution of different types of motor units belonging to subpopulations innervated by axons in L4 and L5 ventral roots were analyzed. The composition of the three physiological types of motor units in the two subpopulations was similar. Force parameters were similar for motor units belonging to the two subpopulations. However, the twitch time parameters were slightly longer in L4 in comparison to L5 motor units although the difference was significant only for fast resistant to fatigue motor units. The force-frequency relationships in the two subpopulations of motor units were not different. Concluding, the two subpopulations of motor units in the studied muscle differ in the number of motor units, but contain similar proportions of the three physiological types of these units and their contractile properties are similar. Therefore, the injury of one ventral root evokes various degrees of muscle denervation, but is non-selective in relation to the three types of motor units. 相似文献
19.
V S Gurfinkel 《Physiological research / Academia Scientiarum Bohemoslovaca》1992,41(6):437-443
The linear relaxation (LR) was studied in isometric unfused tetanus (UT) of the human flexor digitorum sublimis muscle. With a decrease of the force level, the shoulder on the relaxation curve, as measured from the last stimulus, shifted to the right. The length of the linear portion itself weakly depended on activation level. When steady force changed from 100 to 40-50% of the maximum, the slope of LR decreased only by 15 +/- 4%. At smaller force levels the slope began to increase. LR can probably also be hidden in the twitch. With increased tetanus duration, LR becomes longer and slower at all force levels. LR was markedly diminished in contraction on the steep part of the exponential relaxation after a smooth tetanus. Its full recovery needed a train of 4-5 pulses (near 1 s) at the new stationary level. The form of the response to the additional pulse given during relaxation remained approximately constant during the most of LR portion and differed markedly before and after it. LR did not have direct relation to fatigue: in the first UT LR was always slower and longer than in subsequent ones. 相似文献
20.
A combined histochemical, biochemical and electrophoretic study with respect to the enzymes succnic dehydrogenase(SDH), myofibrillar adenosine triphosphatase (m-ATPase), lactate dehydrogenase (LDH) isozymes and myosin light chains was carried out to investigate the response of rat gastrocnemius muscle (medial head). Twelve weeks after thyroidectomy, the results indicated a shift from fast to slow type pattern of LDH isozymes, fibre type transformation from Type II to Type I and a decrease in SDH and m-ATPase activity. The results suggest, possible thyroidal involvement in determining the phenotypic properties of skeletal muscle. 相似文献