首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A diglycosyl phenol phthiocerol diester that had not been previously detected was isolated from M. leprae-infected armadillo tissues. Spectroscopy methods allowed the elucidation of its structure. The diglycoside was a 2,3-di-O-methylrhamnopyranosyl (alpha 1----2)3-O-methylrhamnopyranosyl (alpha 1-linked to the phenolic hydroxyl of phthiocerol dimycocerosates). It differs from the major phenolic glycolipid (PGL I) only by the absence of the terminal 3,6-di-O-methylglucopyranosyl unit. The diglycoside could be an intermediate in the synthesis of the latter antigen or a degradative product in the host detoxification process.  相似文献   

2.
M E Breimer  P A Jovall 《FEBS letters》1985,179(1):165-172
A blood group A glycosphingolipid with the globo-series structure has been isolated from human kidney and structurally characterized. The structure was shown by mass spectrometry and proton NMR spectroscopy of the intact permethylated and permethylated-reduced derivatives together with degradation studies to be, GalNAc alpha 1----3Gal(2----1 alpha Fuc)beta 1----3GalNAc beta 1----3Gal alpha 1----4Gal beta 1----4Glc beta 1----1 Ceramide. This glycolipid reacts with both polyclonal and monoclonal anti-A blood group typing antisera and it is the major glycolipid based blood group A antigen present in the human kidney.  相似文献   

3.
The biosynthetic pathways for the difucosylated type 1 and 2 glycolipids, Leb and Y, respectively, were investigated in the gastric carcinoma cell line KATO III, using a novel chromatogram binding assay. The type of fucosylation obtained was deduced from the binding pattern of monoclonal antibodies specific for the biosynthesized glycolipid products using microsomal fractions as the source of enzyme, pure glycolipids and non-radioactive GDP-fucose as acceptor and donor substrates, respectively. The Leb glycolipid (Fuc alpha 1----2Gal beta 1----3GlcNAc(4----1 alpha Fuc) beta 1----3LacCer) was synthesized mainly via the blood group H, type 1, precursor (Fuc alpha 1----2Gal beta 1----3GlcNAc beta 1----3LacCer). However, the Lea glycolipid (Gal beta 1----3GlcNAc(4----1 alpha Fuc)beta 1----3LacCer) also served as a precursor for the alpha 1----2 fucosyltransferase, thus allowing conversion of Lea to Leb. This biosynthetic route represents either an "aberrant" specificity of the Fuc alpha 1----2 transferase associated with these gastric carcinoma cells and/or a new member of the alpha 1----2 fucosyltransferase family. The Y glycolipid (Fuc alpha 1----2Gal beta 1----4GlcNAc(3----1 alpha Fuc)beta 1----3LacCer) was synthesized exclusively via the classical pathway using the blood group H type 2 glycolipid (Fuc alpha 1----2Gal beta 1----4GlcNAc beta 1----3LacCer) as precursor. The X glycolipid (Gal beta 1----4GlcNAc(3----1 alpha Fuc)beta 1----3LacCer) did not serve as an acceptor substrate for the alpha 1----2 fucosyltransferase(s) present. The use of non-radioactive sugar-nucleotides as donor substrate, defined glycolipid precursors as acceptor substrates and of specific monoclonal anti-glycolipid antibodies for detection provides a rapid and highly specific assay for analyzing biosynthetic pathways of glycosyltransferases.  相似文献   

4.
A novel phosphonoglycosphingolipid named SGL-I containing 3 mol of 2-aminoethylphosphonate residues was isolated from the skin of a sea gastropod, Aplysia kurodai. The saccharide moiety of the glycolipid was characterized as 4-O-methyl-GlcNAc alpha 1----4GalNAc alpha-1----3 [6'-O-(2-aminoethylphosphonyl)Gal alpha 1----2] (2-aminoethylphosphonyl----6)Gal beta 1----4(2-aminoethylphosphonyl----6) Glc beta 1----1-ceramide. The major aliphatic components of the ceramide portion were palmitic acid, stearic acid, octadeca-4-sphingenine, and anteisononadeca-4-sphingenine. This glycolipid is unique in containing 4-O-methyl-N-acetylglucosamine and 3 mol of 2-aminoethylphosphonate residues, one of which is attached to C-6 of glucose.  相似文献   

5.
O-(3,6-Di-O-methyl-beta-D-glucopyranosyl)-(1----4)-2,3,-di-O-methyl-L -rhamnopyranose, which is the nonreducing disaccharide of the haptenic trisaccharide of the Mycobacterium leprae-specific, phenolic glycolipid I, O-(6-O-methyl-beta-D-glucopyranosyl)-(1----4)-2,3-di-O-methyl-L-rhamn opyranose, the nonreducing end of the specific, phenolic glycolipid III, and the nonhaptenic O-beta-(D-glucopyranosyl)-(1----4)-2,3-di-O-methyl-L-rhamnopyranose++ +, were synthesized in relatively good yield from 3-O-methyl-D-glucose, or D-glucose, and L-rhamnose via Koenigs-Knorr reactions. These disaccharides can be used as precursors in the synthesis of the trisaccharide unit of phenolic glycolipid I and of neoglycoconjugates suitable for the serodiagnosis of leprosy.  相似文献   

6.
A novel phosphonoglycosphingolipid named SGL-I' containing 1 mol of 2-aminoethylphosphonate residue was isolated from the skin of Aplysia kurodai using two silicic acid chromatography systems. Data obtained on methanolysis, permethylation, mild acid hydrolysis, and hydrogen fluoride treatment combined with thin-layer chromatography, gas liquid chromatography, gas chromatography-mass spectrometry, and proton magnetic resonance spectrometry showed that this glycolipid was 3-O-MeGal beta 1----3GalNAc alpha 1----3[6'-O-(2-aminoethylphosphonyl)Gal alpha 1----2]Gal beta 1----4Glc beta 1----1Ceramide. Palmitic acid, octadeca-4-sphingenine and anteiso-nonadeca-4-sphingenine are its major aliphatic components. The new glycolipid has essentially the same structure as another major phosphonoglycosphingolipid in the skin of Aplysia, SGL-II, that contains 2 mol of 2-aminoethylphosphonate residue, suggesting a metabolic relationship between the two.  相似文献   

7.
M Rivière  G Puzo 《Biochemistry》1992,31(14):3575-3580
A serine-containing glycopeptidolipid antigen isolated from Mycobacterium xenopi typified a new class of mycobacterial glycopeptidolipid antigens devoid of the C-mycoside core structure [Rivière, M., & Puzo, G. (1991) J. Biol. Chem. 266, 9057-9063]. The lipopeptide core assigned to C12-Ser-Ser-Phe-alloThr-OCH3 exhibits three potential sites of glycosylation. The carbohydrate parts are composed of 3-O-methyl-6-deoxy-alpha-L-talopyranosyl and 2,3,4-tri-O-methyl-L- rhamnopyranosyl(alpha 1----3)-2-O-lauroyl-L-rhamnopyranosyl(alpha 1----3)-L- rhamnopyranosyl(alpha 1----3)-2,4-di-O-(acetyl, lauroyl)-6-deoxy-alpha-L-glucopyranosyl appendages. In the present work, the carbohydrate attachment sites were successfully determined by ROESY experiments on the native glycopeptidolipid using chloroform as solvent. From the NOE contacts, we unambiguously established that the acylated serine is glycosylated by the 3-O-methyl-6-deoxy-alpha-L-talopyranosyl appendage while the 2,3,4-tri-O-methyl-L-rhamnopyranosyl(alpha 1----3)-2-O- lauroyl-L-rhamnopyranosyl(alpha 1----3)-L-rhamnopyranosyl(alpha 1----3)-2,4-di- O-(acetyl, lauroyl)-6-deoxy-alpha-L-glucopyranosyl appendage is bound to the C-terminal alloThr-OCH3. From these data, the acetyl and lauroyl residues on the C-2 and C-4 of the basal monosaccharide unit were successfully localized. Furthermore, the "L" absolute configuration for the serines and the phenylalanine residues and the "D" configuration for the allothreonine were established. The primary structure of this novel type of mycobacterial antigen, a serine-containing glycopeptidolipid, has now been fully established.  相似文献   

8.
Purified glycolipids were tested for their ability to serve as acceptors of [14C]fucose from GDP-[14C]fucose as catalyzed by cell-free extracts and purified membrane fractions of human colorectal carcinoma cells, SW1116, cultured in serum-free medium. Purified lactotetraosyl ceramide (Gal beta 1----3GlcNAc beta 1----3Gal beta 1----4Glc-Cer or LcOse4Cer) and H-1 glycolipid (Fuc alpha 1----2Gal beta 1----3GlcNAc beta 1----3Gal beta 1----4Glc-Cer or IV2 Fuc alpha LcOse4Cer) stimulated incorporation of radioactivity into lipid-soluble glycolipid at a rate greater than ten times that of Lea glycolipid [Gal beta 1----3(Fuc alpha 1----4)GlcNAc beta 1----3Gal beta 1----4Glc-Cer or III4 Fuc alpha LcOse4Cer]. The enzymatic activities in crude and purified membrane fractions were optimized for substrate concentrations (glycolipid and GDP-fucose), detergent requirement (taurocholate), pH, time and protein. The radioactive product of H-1 fucosylation migrated as discrete and distinct bands on high-performance thin-layer chromatograms (HPTLC). Evidence for their identity with Leb fucolipid described previously [Fuc alpha 1----2Gal beta 1----3(Fuc alpha 1----4)GlcNAc beta 1----3Gal beta 1----4Glc-Cer or III4IV2 (Fuc alpha) LcOse4Cer] is presented. The radioactive product of LcOse4Cer fucosylation was mainly Lea fucolipid as determined by co-migration with authentic Lea fucolipid in three HPTLC systems as native and acetylated derivatives. Our results also indicated a low level of H-1 and Leb glycolipid synthesis from LcOse4Cer. On the basis of the optima, linearity for time, and enzyme-limiting conditions, we obtained a 12-19-fold purification of the LcOse4Cer and H-1 fucosyl transferase acceptor activities in three peaks of a sucrose gradient. The peak with the highest specific activity (peak 3) was highest in density and in Na+, K+, ATPase specific activity, although NADH-cytochrome-c reductase and UDP-GalNac transferase were also present in peak 3. The apparent Km values of LcOse4Cer acceptor activity and H-1 acceptor activity in peak 3 were significantly different (p less than 0.01) by statistical tests, 2.4 microM and 0.5 microM, respectively. These apparent Km values were much lower (10(3) X) and the pH optima were lower (4.8-5.3), than the corresponding properties reported for the alpha 1----3/alpha 1----4 fucosyl transferase purified from human milk. Our results suggest a role for the non-glycosidic moieties of the acceptors and/or the tissue-specific or primitive expression of these fucosyl transferase activities.  相似文献   

9.
The complete structure is proposed for a ceramide (Cer), bis(2-aminoethylphosphono)-pentaoside, isolated from the skin of Aplysia kurodai. This new phosphonoglycosphingolipid was purified using two systems of column chromatography on silicic acid. The purity of the glycolipid was confirmed by thin-layer chromatography, analysis of its composition, and proton magnetic resonance spectrometry. The component carbohydrates were glucose, galactose, N-acetylgalactosamine, and 3-O-methylgalactose. Most (90%) of the fatty acid was palmitic acid and the major sphingosine bases were octadeca-4-sphingenine (51%) and anteisononadeca-4-sphingenine (38%). 2-Aminoethylphosphonyl-6-galactose was identified after its partial hydrolysis. From studies by methanolysis, permethylation, mild acid hydrolysis, hydrogen fluoride treatment, chromium trioxide oxidation combined with thin-layer chromatography, gas liquid chromatography, gas chromatography-mass spectrometry, and proton magnetic resonance spectrometry, the structure of the glycolipid was concluded to be 3-OMeGal beta 1----3GalNAc alpha 1----3[6'-O-(2-aminoethylphosphonyl)-Gal alpha 1----2](2-aminoethylphosphonyl----6)Gal beta 1----4Glc beta 1----1Cer.  相似文献   

10.
A glycolipid with blood group A activity detected in the non-epithelial stroma of normal rat colon but not in epithelial cells (Hansson, G.C., Karlsson, K.-A., and Thurin, J. (1984) Biochim. Biophys. Acta 792, 281-292), was purified to homogeneity from normal rat colon and rat colon adenocarcinoma. Mass spectrometry and 1H-NMR spectroscopy of the intact permethylated derivative and gas chromatography after degradation revealed the structure GalNAc alpha 1----3GAINAc beta 1----3Gal alpha 1----3Gal beta 1----4Glc beta 1----1Cer, with the predominant ceramide containing sphingosine and non-hydroxylated 24:0 fatty acid. This identifies this glycolipid as a novel Forssman-like glycolipid, which is a tumor-associated antigen by definition, since it is not present in the normal rat large intestinal epithelium cells but in rat adenocarcinoma derived from these cells.  相似文献   

11.
A novel mannose containing phenolic glycolipid from Mycobacterium kansasii   总被引:2,自引:0,他引:2  
Using high-performance liquid chromatography, a new kind of phenolic glycolipid quantitatively minor, called phenolic glycolipid-II, was isolated from a lipidic fraction of Mycobacterium kansasii. The structure was determined by fast atom bombardment-mass spectrometry and proton nuclear magnetic resonance spectroscopy, as: 2,4-di-O-Me-alpha-D-Manp(1----3) 4-O-Ac-2-O-Me-alpha-L-Fucp(1----3)2-O-Me- alpha-L-Rhap(1----3) 2,4-di-O-Me-alpha-L-Rhap 1----phenolphthiocerol dimycocerosate. Phenolic glycolipids I and II differ only by their distal monosaccharide hapten which is 2,6-dideoxy-4-O-Me-alpha-D-arabinohexopyranosyl and the 2,4-di-O-Me-alpha-D-mannopyranosyl, respectively. This sugar appears to be characteristic and apparently unique in the Mycobacterium genus. Moreover, phenolic glycolipids I and II constitute with the lipooligosaccharides two classes of antigens of M. kansasii.  相似文献   

12.
Glycolipid and cell surface carbohydrate antigens of human polymorphonuclear neutrophils (PMN) and of HL-60 myeloid leukemia cells were analyzed with a panel of defined, monoclonal anti-carbohydrate antibodies. Antigenicities of intact PMN, HL-60, and retinoic acid-induced HL-60 (r.a.-HL-60) were studied by flow cytofluorometry. These three cell populations displayed quantitative differences, some of which were induction dependent, in their expression of lactosyl, N-acetyllactosaminyl, Y-hapten (Fuc alpha 1----2Gal beta 1----4(Fuc alpha 1----3)GlcNAc beta 1----R), and sialosyl-X-hapten (SA alpha 2----3Gal beta 1----4(Fuc alpha 1----3)GlcNAc beta 1----R) specificities. Structures reactive with antibodies specific for long-chain mono-, and di- or tri- alpha 1----3 fucosylated lacto-series glycolipids were also detected. Glycosphingolipids purified from organic extracts of these cells were analyzed to seek information concerning the chemical basis for these surface antigenic differences, to assess the structural and antigenic diversity of PMN and HL-60 glycolipids, and to quantitate chemically and antigenically prominent glycolipids. Binding of monoclonal antibodies to thin-layer chromatograms demonstrated that each of the specificities on intact cells was carried by one or more distinct glycolipids. The abundance of immunoreactive glycolipids in the extracts paralleled the relative staining intensities of the intact cell populations. Several "cryptic" glycolipid antigens, including alpha 2----6 sialosylated structures enriched five- to 10-fold in PMN extracts, were not detected on intact cells. Lactosylceramide accounted for two-thirds of the approximately 1.5 X 10(9) glycolipid molecules contained in each PMN. The remaining glycolipid antigens appeared to include structurally diverse fucolipids, fucogangliosides, and neutral and sialosylated glycolipids with Gal beta 1----4GlcNAc beta 1----R terminal core structure. The abundance, diversity, and induction-dependent expression of these structures suggest that they may participate in PMN maturation and function.  相似文献   

13.
Globo-A--a new receptor specificity for attaching Escherichia coli   总被引:6,自引:0,他引:6  
Uropathogenic Escherichia coli strains designated as ONAP, based on their O negative A positive agglutination of human P1 erythrocytes, were shown to prefer the globo-A glycolipid as a receptor structure. The dependence on both the A terminal and the globoseries chain was confirmed by agglutination of human AP1, but not Ap or OP1 erythrocytes and by binding to the globo-A glycolipid on TLC plates. Neither Gal alpha 1----4Gal beta nor the A trisaccharide GalNAc alpha 1----3(Fuc alpha 1----2)Gal beta alone functioned as receptors. The bacteria thus appeared to recognize an epitope resulting from the combination of the terminal and internal structures.  相似文献   

14.
Two new flavonol glycosides from the seeds of Chenopodium quinoa have been isolated. Their structures were established as kaempferol 3-apiofuranosyl(1"'----2")rhamnopyranosyl(1"----6")galactoside and kaempferol 3-apiofuranosyl(1"'----2")rhamnopyranosyl(1"----6")galactoside. The main flavonoid glycoside was kaempferol 3-(2,6-dirhamnopyranosyl)galactoside.  相似文献   

15.
Two sublines of the epithelial cell line MDCK differ in glycosphingolipid composition (Hansson, G.C. et al. (1986) EMBO J. 5, 483-489). The Forssman pentaglycosylceramide was an abundant glycolipid in the MDCK II subline, but was absent in the MDCK I subline. The MDCK I line instead contained another five-sugar glycolipid in relatively large amounts. This component has now been isolated and characterized with mass spectrometry, methylation analysis, exoglycosidase digestion, and proton NMR spectroscopy. The structure was concluded to be Gal alpha 1----3Gal beta 1----4GlcNAc beta 1----3Gal beta 1----4Glc beta 1----1 Cer. This is a blood group B-like glycolipid lacking fucose, earlier found in rabbit and bovine erythrocytes.  相似文献   

16.
Monoclonal antibodies directed against human cancer cells were prepared by the murine hybridoma technique. These antibodies detect Lewis blood group antigens as determined by indirect solid-phase radioimmunoassay, hapten inhibition studies, and chromatogram binding assay. One monoclonal antibody is specific for the Lea terminal carbohydrate of Gal beta 1----3Glc NAc(4----1 alpha Fuc) beta 1----3LacCer. Five monoclonal antibodies react with the Leb terminal carbohydrate sequence of Fuc alpha 1----2Gal beta 1----3GlcNAc(4----1 alpha Fuc) beta 1----3LacCer, and four of these antibodies are highly specific for this glycolipid and do not react with other similar di- and monofucosylated glycolipids. One of the anti-Leb antibodies cross-reacts with blood group H glycolipid and has binding properties similar to those of the previously described antibody NS-10-17 [M. Brockhaus, J. L. Magnani, M. Blaszczyk, Z. Steplewski, H. Koprowski, K.-A. Karlsson, G. Larson, and V. Ginsburg (1981) J. Biol. Chem. 256, 13223-13225]. Two antibodies react with both the Lea and Leb antigens, though both bind preferentially to Leb.  相似文献   

17.
Two major glycolipids reactive with the monoclonal anti-Lea antibody have been isolated from human blood cell membranes. One component was identified as lactofucopentaosyl(II)ceramide and the other as a ceramide heptassaccharide with the structure described below: (formula; see text) The structure includes the Lea determinant (type 1 chain) linked to lactoneotetraosylceramide (type 2 chain); thus, it is regarded to be a hybrid between type 1 and 2 chain. In addition, a minor component having the thin-layer chromatographic mobility of a ceramide nonasaccharide, which was reactive to anti-Lea antibody, was detected. No other component with a thin-layer chromatographic mobility slower than the above components and reactive to the anti-Lea antibody was detected. In contrast, a series of slowly migrating glycolipids having X (Lex) determinant (Gal beta 1----4(Fuc alpha 1----3)GlcNAc) was detected. A similar series of long chain glycolipids having Y (Ley) determinant (Fuc alpha 1----2Gal beta 1----4(Fuc1----3)GlcNAc) was detected in human blood cells; in contrast, only one major Leb glycolipid was found with the mobility of a ceramide hexasaccharide. No glycolipid with a long carbohydrate chain composed exclusively of type 1 chain was detected. Thus, chain elongation may proceed through type 2 chain, but not through type 1 chain. Lea and X (Lex) haptens are distributed equally among blood group A, B, and O red blood cells, whereas the quantity of Leb and Y (Ley) haptens is much lower in A and B blood cells than in O blood cells.  相似文献   

18.
Retinoic acid induced differentiation of TERA-2-derived human embryonal carcinoma cells is accompanied by a dramatic reduction of extended globo-series glycolipids, including galactosyl globoside, sialylgalactosyl globoside, and globo-A antigen (each recognized by specific MoAbs). Associated with these glycolipid changes, the activities of two key enzymes, alpha 1----4 galactosyltransferase (for synthesis of globotriaosyl core structure) and beta 1----3 galactosyltransferase (for synthesis of galactosyl globoside), were found to be reduced 3- to 4-fold. The latter enzyme plays a key role in the synthesis of extended globo-series structures, and its characterization has not been reported previously. Therefore, its catalytic activity was studied in detail, including substrate specificity, detergent and phospholipid effects, pH and cation requirements, and apparent Km. During retinoic acid induced differentiation, a series of Lex glycolipid antigens (recognized by anti-SSEA-1 antibody) and their core structures (lacto-series type 2 chains) increase dramatically. In parallel with these changes in glycolipid expression, the activities of two key enzymes, beta 1----3 N-acetylglucosaminyltransferase (for extension of lacto-series type 2 chain) and alpha 1----3 fucosyltransferase (for synthesis of Lex structure), were found to increase by 4- and 2-fold, respectively. Similarly, an increase in the expression of several gangliosides (e.g., GD3 and GT3) during retinoic acid induced differentiation was mirrored by a 4-fold increase in the activity of alpha 2----3 sialyltransferase (for synthesis of ganglio core structure, GM3). The results suggest a coordinate regulation of key glycosyltransferases involved in core structure assembly and terminal chain modification.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We have analyzed the glycolipid markers of a recently cloned human embryonal carcinoma (EC) cell line, NTERA-2, which differentiates extensively into a variety of somatic cell types when exposed to retinoic acid. These tumor cells provide a model system that can be used to study the ontogeny of glycolipid diversity during human embryonic development. Glycolipid antigens were identified by cell surface immunofluorescence and thin-layer chromatography immunostaining using a comprehensive set of anticarbohydrate monoclonal antibodies. Undifferentiated NTERA-2 cells were found to express predominantly globo-series glycolipids, including Gb3, Gb5 (IV3GalGb4), globo-ganglioside (IV3NeuAc alpha 2----3GalGb4), globo-H (IV3Fuc alpha 1----2GalGb4), and globo-A (IV3GalNAc alpha 1----3[Fuc alpha 1----2]GalGb4). When NTERA-2 cells were induced to differentiate by culturing in the presence of 10(-5) M retinoic acid, a remarkable shift of cellular glycolipids from globo-series to lacto- and ganglio-series was observed: Globo-series structures declined, particularly during the period 7-20 days after first exposure to retinoic acid, while lacto-series structures, including fucosyl alpha 1----3 type 2 chain (Lex) and sialosyl type 2 chain, and ganglio-series structures, including GM3, GD3, 9-O-acetyl-GD3, GM2, GD2, and GT3, increased. The presence of globo-A and globo-H as the major ABH blood group antigens in undifferentiated NTERA-2 cells suggests that globo-series blood group antigens are embryonic antigens, synthesis of which switches to lacto-series during human development. Two-color immunofluorescence analysis indicated preferential expression of several ganglio- and lacto-series antigens on different subsets of differentiated cells and permitted the relationship of these subsets to the development of neurons in NTERA-2 cultures to be determined. The results suggest that glycosyltransferase, particularly those involved in controlling glycoconjugate core structure assembly, are key enzymes regulated during the differentiation of human EC cells and, by implication, during human embryogenesis.  相似文献   

20.
The structure of a novel antigenic glycolipid that distinguishes the opportunistic pathogen Mycobacterium haemophilum from all other mycobacteria was established by a series of degradation reactions leading to products that were analyzed by gas/liquid chromatography-mass spectrometry. The complete structure of the oligosaccharide unit was determined as 2,3-di-O-CH3-alpha-L-Rhap(1----2)3-O-CH3-alpha-L-Rhap(1----4 )-2,3-di-O-CH3-alpha-L-Rhap(1----. The lipid portion of the phenolic glycolipid was composed of two component phenolphthiocerols differing by two methylene groups, as determined by analysis of their per-O-trideuteriomethylated derivatives. The diol unit of the phenolphthiocerols has a threo relative configuration. The absolute stereochemistry of the asymmetric centers of the phenolphthiocerols is uncertain, but the centers are probably 3R, 4S, 9R, and 11R as found for phthiocerol A from Mycobacterium tuberculosis. The hydroxyl functions of the branched glycolic chain are esterified to a complex mixture of multi-methyl branched mycocerosic acids, C27, C30, C32, C34, and C37 with molecular weights (as methyl esters) of 424, 466, 494, 522, and 564, respectively. The stereochemistry of the methyl branches of the mycocerosates have R absolute configuration. The glycolipid is highly antigenic and appears to be specific for M. haemophilum. There are intriguing similarities between the product from M. haemophilum and the well-known phenolic glycolipid I of Mycobacterium leprae, a matter that is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号