首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The clinical relevance of gene therapy using the recombinant adeno-associated virus (rAAV) vectors often requires widespread distribution of the vector, and in this case, systemic delivery is the optimal route of administration. Humoral blood factors, such as antibodies or complement, are the first barriers met by the vectors administered systemically. We have found that other blood proteins, galectin 3 binding protein (G3BP) and C-reactive protein (CRP), can interact with different AAV serotypes in a species-specific manner. While interactions of rAAV vectors with G3BP, antibodies, or complement lead to a decrease in vector efficacy, systemic transduction of the CRP-deficient mouse and its respective control clearly established that binding to mouse CRP (mCRP) boosts rAAV vector 1 (rAAV-1) and rAAV-6 transduction efficiency in skeletal muscles over 10 times. Notably, the high efficacy of rAAV-6 in CRP-deficient mice can be restored by reconstitution of the CRP-deficient mouse with mCRP. Human CRP (hCRP) does not interact with either rAAV-1 or rAAV-6, and, consequently, the high efficiency of mCRP-mediated muscle transduction by these serotypes in mice cannot be translated to humans. No interaction of mCRP or hCRP was observed with rAAV-8 and rAAV-9. We show, for the first time, that serum components can significantly enhance rAAV-mediated tissue transduction in a serotype- and species-specific manner. Bioprocessing in body fluids should be considered when transfer of a preclinical proof of concept for AAV-based gene therapy to humans is planned.  相似文献   

2.
3.
The choice of adeno-associated virus serotypes for clinical applications is influenced by the animal model and model system used to evaluate various serotypes. In the present study, we sought to compare the biologic properties of rAAV2/1, rAAV2/2, and rAAV2/5 transduction in polarized human airway epithelia using viruses purified by a newly developed common column chromatography method. Results demonstrated that apical transduction of human airway epithelia with rAAV2/1 was 100-fold more efficient than rAAV2/2 and rAAV2/5. This transduction profile in human airway epithelia (rAAV2/1 > rAAV2/2 = rAAV2/5) was significantly different from that seen following nasal administration of these vectors to mouse lung (rAAV2/5 > rAAV2/1 > rAAV2/2), emphasizing differences in transduction of these serotypes between these two species. In stark contrast to rAAV2/2 and rAAV2/5, rAAV2/1 transduced both the apical and basolateral membrane of human airway epithelia with similar efficiency. However, the overall level of transduction across serotypes did not correlate with vector internalization. We hypothesized that differences in post-entry processing of these serotypes might influence the efficiency of apical transduction. To this end, we tested the effectiveness of proteasome inhibitors to augment nuclear translocation and gene expression from the three serotypes. Augmentation of rAAV2/1 apical transduction of human polarized airway epithelia was 10-fold lower than that for rAAV2/2 and rAAV2/5. Cellular fractionation studies demonstrated that proteasome inhibitors more significantly enhanced rAAV2/2 and rAAV2/5 translocation to the nucleus than rAAV2/1. These results demonstrate that AAV1 transduction biology in human airway epithelia differs from that of AAV2 and AAV5 by virtue of altered ubiquitin/proteasome sensitivities that influence nuclear translocation.  相似文献   

4.
Recombinant adeno-associated virus (rAAV) vectors can mediate long-term stable transduction in various target tissues. However, with rAAV serotype 2 (rAAV2) vectors, liver transduction is confined to only a small portion of hepatocytes even after administration of extremely high vector doses. In order to investigate whether rAAV vectors of other serotypes exhibit similar restricted liver transduction, we performed a dose-response study by injecting mice with beta-galactosidase-expressing rAAV1 and rAAV8 vectors via the portal vein. The rAAV1 vector showed a blunted dose-response similar to that of rAAV2 at high doses, while the rAAV8 vector dose-response remained unchanged at any dose and ultimately could transduce all the hepatocytes at a dose of 7.2 x 10(12) vector genomes/mouse without toxicity. This indicates that all hepatocytes have the ability to process incoming single-stranded vector genomes into duplex DNA. A single tail vein injection of the rAAV8 vector was as efficient as portal vein injection at any dose. In addition, intravascular administration of the rAAV8 vector at a high dose transduced all the skeletal muscles throughout the body, including the diaphragm, the entire cardiac muscle, and substantial numbers of cells in the pancreas, smooth muscles, and brain. Thus, rAAV8 is a robust vector for gene transfer to the liver and provides a promising research tool for delivering genes to various target organs. In addition, the rAAV8 vector may offer a potential therapeutic agent for various diseases affecting nonhepatic tissues, but great caution is required for vector spillover and tight control of tissue-specific gene expression.  相似文献   

5.
Recombinant adeno-associated virus (rAAV) is a promising vector for gene therapy. Recent isolations of novel AAV serotypes have led to significant advances by broadening the tropism and increasing the efficiency of gene transfer to the desired target cell. However, a major concern that remains is the strong preexisting immune responses to several vectors. In this paper, we describe the isolation and characterization of AAV12, an AAV serotype with unique biological and immunological properties. In contrast to those of all other reported AAVs, AAV12 cell attachment and transduction do not require cell surface sialic acids or heparan sulfate proteoglycans. Furthermore, rAAV12 is resistant to neutralization by circulating antibodies from human serum. The feasibility of rAAV12 as a vector was demonstrated in a mouse model in which muscle and salivary glands were transduced. These characteristics make rAAV12 an interesting candidate for gene transfer applications.  相似文献   

6.
Adenovirus and adeno-associated virus vectors   总被引:23,自引:0,他引:23  
Recombinant adenovirus (rAd) and recombinant adeno-associated virus (rAAV) are among the most extensively used vectors in gene therapy studies to date. These two vectors share some similar features such as a broad host range and ability to infect both proliferating and quiescent cells. However, they also possess their own unique set of properties that render them particularly attractive for gene therapy applications. rAd vectors can accommodate larger inserts, mediate transient but high levels of protein expression, and can be easily produced at high titers. Development of gutted rAd vectors has further increased the cloning capacity of these vectors. The gaining popularity of rAAV use in gene therapy can be attributed to its lack of pathogenicity and added safety due to its replication defectiveness, and its ability to mediate long-term expression in a variety of tissues. Site-specific integration, as occurs with wild-type AAV, will be a unique and valuable feature if incorporated into rAAV vectors, further improving their safety. This paper describes these properties of rAd and rAAV vectors, and discusses further development and vector improvements that continue to extend the utility of these vectors, such as cell retargeting by capsid modification, differential transduction by use of serotypes, and extension of the cloning capacity of rAAV vectors by dual vector heterodimerization.  相似文献   

7.
Enhanced delivery and expression of genes in specific neuronal systems is critical for the development of genetic models of neurodegenerative disease and potential gene therapy. Recent discovery of new recombinant adeno-associated viral (rAAV) capsid serotypes has resulted in improved transduction efficiency, but expression levels, spread of transgene, and potential toxicity can differ depending on brain region and among species. We compared the transduction efficiency of titer-matched rAAV 2/1, 2/5, and 2/8 to the commonly used rAAV2/2 in the rat nigrostriatal system via expression of the reporter transgene, enhanced green fluorescent protein. Newer rAAV serotypes 2/1, 2/5, and 2/8 demonstrated marked increase in transduction and spread of enhanced green fluorescent protein expression in dopaminergic nigrostriatal neurons and projections to the striatum and globus pallidus compared to rAAV2/2 at 2 weeks post-injection. The number of nigral cells transduced was greatest for rAAV2/1, but for serotypes 2/5 and 2/8 was still two- to threefold higher than that for 2/2. Enhanced transduction did not cause an increase in glial cell response or toxicity. New rAAV serotypes thus promise improved gene delivery to nigrostriatal system with the potential for better models and therapeutics for Parkinson disease and other neurodegenerative disorders.  相似文献   

8.
BACKGROUND: Methylmalonic aciduria (MMA) is an autosomal recessive disease with symptoms that include ketoacidosis, lethargy, recurrent vomiting, dehydration, respiratory distress, muscular hypotonia and death due to methylmalonic acid levels that are up to 1000-fold greater than normal. CblB MMA, a subset of the mutations leading to MMA, is caused by a deficiency in the enzyme cob(I)alamin adenosyltransferase (ATR). No animal model currently exists for this disease. ATR functions within the mitochondria matrix in the final conversion of cobalamin into coenzyme B(12), adenosylcobalamin (AdoCbl). AdoCbl is a required coenzyme for the mitochondrial enzyme methylmalonyl-CoA mutase (MCM). METHODS: The human ATR cDNA was cloned into a recombinant adeno-associated virus (rAAV) vector and packaged into AAV 2 or 8 capsids and delivered by portal vein injection to C57/Bl6 mice at a dose of 1 x 10(10) and 1 x 10(11) particles. Eight weeks post-injection RNA, genomic DNA and protein were then extracted and analyzed. RESULTS: Using primer pairs specific to the cytomegalovirus (CMV) enhancer/chicken beta-actin (CBAT) promoter within the rAAV vectors, genome copy numbers were found to be 0.03, 2.03 and 0.10 per cell in liver for the rAAV8 low dose, rAAV8 high dose and rAAV2 high dose, respectively. Western blotting performed on mitochondrial protein extracts demonstrated protein levels were comparable to control levels in the rAAV8 low dose and rAAV2 high dose animals and 3- to 5-fold higher than control levels were observed in high dose animals. Immunostaining demonstrated enhanced transduction efficiency of hepatocytes to over 40% in the rAAV8 high dose animals, compared to 9% and 5% transduction in rAAV2 high dose and rAAV8 low dose animals, respectively. CONCLUSIONS: These data demonstrate the feasibility of efficient ATR gene transfer to the liver as a prelude to future gene therapy experiments.  相似文献   

9.
Recombinant adeno-associated virus serotype 2 (rAAV2) vector has been widely employed for gene therapy. Recent progress suggests that the new serotypes of AAV showed a better performance than did AAV2 in normal tissues. Here, we evaluate the potential role of human vascular endothelial growth factor (VEGF) gene transfer using rAAV vector pseudotyped with serotype 1 capsid proteins (rAAV1) in the treatment of muscle ischemia. In ischemic skeletal muscles, the rAAV1-LacZ vector allowed higher level, broader distribution, and long-lasting gene expression compared with the rAAV2-LacZ vector. Muscle VEGF165 production following the rAAV1-VEGF165 vector injection was 5-10 times higher than that following the rAAV2-VEGF165 vector injection. VEGF165 production mediated by the rAAV1-VEGF165 vector stimulated a large set of neovascularization with relatively mature vascular structures and enhanced muscle regeneration in the ischemic skeletal muscles. Thus, the rAAV1-VEGF165 vector mediated gene transfer may be a therapeutic approach to peripheral vascular diseases.  相似文献   

10.
Recombinant adeno-associated viral (AAV) vectors are known to safely and efficiently transduce the retina. Among the various AAV serotypes available, AAV2/5 and 2/8 are the most effective for gene transfer to photoreceptors (PR), which are the most relevant targets for gene therapy of inherited retinal degenerations. However, the search for novel AAV serotypes with improved PR transduction is ongoing. In this work we tested vectors derived from five AAV serotypes isolated from porcine tissues (referred to as porcine AAVs, four of which are newly identified) for their ability to transduce both the murine and the cone-enriched pig retina. Porcine AAV vectors expressing EGFP under the control of the CMV promoter were injected subretinally either in C57BL/6 mice or Large White pigs. The resulting retinal tropism was analyzed one month later on histological sections, while levels of PR transduction were assessed by Western blot. Our results show that all porcine AAV transduce murine and porcine retinal pigment epithelium and PR upon subretinal administration. AAV2/po1 and 2/po5 are the most efficient porcine AAVs for murine PR transduction and exhibit the strongest tropism for pig cone PR. The levels of PR transduction obtained with AAV2/po1 and 2/po5 are similar, albeit not superior, to those obtained with AAV2/5 and AAV2/8, which evinces AAV2/po1 and 2/po5 to be promising vectors for retinal gene therapy.  相似文献   

11.
Recombinant adeno-associated viral (rAAV) vectors based on serotype 2 are currently being evaluated most extensively in animals and human clinical trials. rAAV vectors constructed from other AAV serotypes (serotypes 1, 3, 4, 5, and 6) can transduce certain tissues more efficiently and with different specificity than rAAV2 vectors in animal models. Here, we describe reagents and methods for the production and purification of AAV2 inverted terminal repeat-containing vectors pseudotyped with AAV1 or AAV5 capsids. To facilitate pseudotyping, AAV2rep/AAV1cap and AAV2rep/AAV5cap helper plasmids were constructed in an adenoviral plasmid backbone. The resultant plasmids, pXYZ1 and pXYZ5, were used to produce rAAV1 and rAAV5 vectors, respectively, by transient transfection. Since neither AAV5 nor AAV1 binds to the heparin affinity chromatography resin used to purify rAAV2 vectors, purification protocols were developed based on anion-exchange chromatography. The purified vector stocks are 99% pure with titers of 1 x 10(12) to 1 x 10(13)vector genomes/ml.  相似文献   

12.
Adeno-associated virus is an integrating DNA parvovirus with the potential to be an important vehicle for somatic gene therapy. A potential barrier, however, is the low transduction efficiencies of recombinant adeno-associated virus (rAAV) vectors. We show in this report that adenovirus dramatically enhances rAAV transduction in vitro in a way that is dependent on expression of early region 1 and 4 (E1 and E4, respectively) genes and directly proportional to the appearance of double-stranded replicative forms of the rAAV genome. Expression of the open reading frame 6 protein from E4 in the absence of E1 accomplished a similar but attenuated effect. The helper activity of adenovirus E1 and E4 for rAAV gene transfer was similarly demonstrated in vivo by using murine models of liver- and lung-directed gene therapy. Our data indicate that conversion of a single-stranded rAAV genome to a duplex intermediate limits transduction and usefulness for gene therapy.  相似文献   

13.
Alpha-1-antitrypsin (AAT) is a serine protease inhibitor whose deficiency could cause emphysema and liver disease and, as recently described, could be a risk factor for lung cancer development. Alpha-1-antitrypsin inhibits a variety of proteases but its primary target is neutrophil elastase, an extracellular endopeptidase capable of degrading most protein components of the extracellular matrix. Inhibition of neutrophil elastase by AAT has an important role in maintaining the integrity of connective tissue. The gene encoding for AAT spans over 12.2 kb, consists of seven exons and is highly polymorphic. Therefore several methods for mutation screening of alpha-1-antitrypsin gene have been developed. Method described here is based on denaturing gradient gel electrophoresis (DGGE). This method is highly efficient and reliable and allows rapid analysis of entire coding region of alpha-1-antitrypsin gene, including splice junction sites. Previously described DGGE based analysis of AAT gene included overnight electrophoresis of individually amplified fragments. The optimization of the method described in this paper is directed towards the shortening of the duration of electrophoresis and amplification of fragments in multiplex reaction in order to make the analysis less time-consuming and therefore more efficient.  相似文献   

14.
In high-capacity adenovirus (HC-Ad) vectors the size and/or composition of the vector genome influences vector stability during production and the expression profile following gene transfer. Typically, an HC-Ad vector will contain both a gene or an expression cassette and stuffer DNA that is required to balance the final vector genome to a size of between 27 and 36 kb. To gain an improved understanding of factors that may influence gene expression from HC-Ad vectors, we have generated a series of vectors that carry different combinations of human alpha-1 antitrypsin (hAAT) expression constructs and stuffer DNAs. Expression in vitro did not predict in vivo performance: all vectors expressed hAAT at similar levels when tested in cell culture. Hepatic expression was evaluated following in vivo gene transfer in C57BL/6J mice. hAAT levels obtained from genomic DNA were significantly higher than levels achieved with small cDNA expression cassettes. Expression was independent of the orientation and only marginally influenced by the location of the expression cassette within the vector genome. The use of lambda stuffer DNA resulted in low-level but stable expression for at least 3 months when higher doses were applied. A potential matrix attachment region element was identified within the hAAT gene and caused a 10-fold increase in expression when introduced in an HC-Ad vector genome carrying a phosphoglycerate kinase (pgk) hAAT cDNA construct. We also illustrate the influence of the promoter on anti-hAAT antibody formation in C57BL/6J mice: a human cytomegalovirus but not a pgk promoter resulted in an anti-hAAT antibody response. Thus, the overall design of HC-Ad vectors may significantly influence amounts and duration of gene expression at different levels.  相似文献   

15.
α1-Antitrypsin (AAT) is a member of the serine proteinase inhibitor family that impedes the enzymatic activity of serine proteinases, including human neutrophil elastase, cathepsin G and neutrophil proteinase 3. Here, we expressed recombinant AAT by fusing the intact AAT gene to the constant region of IgG1 to generate soluble recombinant AAT-Fc protein. The recombinant AAT-Fc protein was produced in Chinese hamster ovary (CHO) cells and purified using mini-protein A affinity chromatography. Recombinant AAT-Fc protein was tested for antiinflammatory function and AAT-Fc sufficiently suppressed tumor necrosis factor (TNF)-α–induced interleukin (IL)-6 in human peripheral blood mononuclear cells (PBMCs) and inhibited cytokine-induced TNFα by different cytokines in mouse macrophage Raw 264.7 cells. However, AAT-Fc failed to suppress lipopolysaccharide-induced cytokine production in both PBMCs and macrophages. In addition, our data showed that AAT-Fc blocks the development of hyperglycemia in a streptozotocin-induced mouse model of diabetes. Interestingly, we also found that plasma-derived AAT specifically inhibited the enzymatic activity of elastase but that AAT-Fc had no inhibitory effect on elastase activity.  相似文献   

16.
The serotypes of adeno-associated virus (AAV) have the potential to become important resources for clinical gene therapy. In an effort to compare the role of serotype-specific virion shells on vector transduction, we cloned each of the serotype capsid coding domains into a common vector backbone containing AAV type 2 replication genes. This strategy allowed the packaging of AAV2 inverted terminal repeat vectors into each serotype-specific virions. Each of these helper plasmids (pXR1 through pXR5) efficiently replicated the transgene DNA and expressed helper proteins at nearly equivalent levels. In this study, we observed a correlation between the amount of transgene replication and packaging efficiency. The physical titer of these hybrid vectors ranged between 1.3 x 10(11) and 9.8 x 10(12)/ml (types 1 and 2, respectively). Of the five serotype vectors, only types 2 and 3 were efficiently purified by heparin-Sepharose column chromatography, illustrating the high degree of similarity between these virions. We analyzed vector transduction in reference and mutant Chinese hamster ovary cells deficient in heparan sulfate proteoglycan and saw a correlation between transduction and heparan sulfate binding data. In this analysis, types 1 and 5 were most consistent in transduction efficiency across all cell lines tested. In vivo each serotype was ranked after comparison of transgene levels by using different routes of injection and strains of rodents. Overall, in this analysis, type 1 was superior for efficient transduction of liver and muscle, followed in order by types 5, 3, 2, and 4. Surprisingly, this order changed when vector was introduced into rat retina. Types 5 and 4 were most efficient, followed by type 1. These data established a hierarchy for efficient serotype-specific vector transduction depending on the target tissue. These data also strongly support the need for extending these analyses to additional animal models and human tissue. The development of these helper plasmids should facilitate direct comparisons of serotypes, as well as begin the standardization of production for further clinical development.  相似文献   

17.
在以病毒载体介导的基因治疗研究中,重组腺相关病毒(rAAV)因其疗效和安全性方面的优势,是最有临床应用前景的载体。但其转基因包装容量一般不能超过5.0kb,给需要转导大片段基因的应用带来了困难,限制了rAAV在基因治疗研究中的应用。随着对rAAV细胞转导生物学过程研究的不断深入,发现了一些可以突破rAAV包装容量限制的技术,如反式剪接和同源重组策略,为拓展该载体应用范围提供了可能性。另外,rAAV包装容量限制的特点还可以被用来减少生产过程中具有可复制能力的类病毒杂质的污染,为rAAV的临床安全性提供了保障。  相似文献   

18.
Dong X  Tian W  Wang G  Dong Z  Shen W  Zheng G  Wu X  Xue J  Wang Y  Chen J 《PloS one》2010,5(10):e13479

Background

The development of a convenient high-throughput gene transduction approach is critical for biological screening. Adeno-associated virus (AAV) vectors are broadly used in gene therapy studies, yet their applications in in vitro high-throughput gene transduction are limited.

Principal Findings

We established an AAV reverse infection (RI)-based method in which cells were transduced by quantified recombinant AAVs (rAAVs) pre-coated onto 96-well plates. The number of pre-coated rAAV particles and number of cells loaded per well, as well as the temperature stability of the rAAVs on the plates, were evaluated. As the first application of this method, six serotypes or hybrid serotypes of rAAVs (AAV1, AAV2, AAV5/5, AAV8, AAV25 m, AAV28 m) were compared for their transduction efficiencies using various cell lines, including BHK21, HEK293, BEAS-2BS, HeLaS3, Huh7, Hepa1-6, and A549. AAV2 and AAV1 displayed high transduction efficiency; thus, they were deemed to be suitable candidate vectors for the RI-based array. We next evaluated the impact of sodium butyrate (NaB) treatment on rAAV vector-mediated reporter gene expression and found it was significantly enhanced, suggesting that our system reflected the biological response of target cells to specific treatments.

Conclusions/Significance

Our study provides a novel method for establishing a highly efficient gene transduction array that may be developed into a platform for cell biological assays.  相似文献   

19.
Clinical usefulness of human Ad serotype 5 (HAd5) based vectors is limited primarily because of preexisting Ad immunity and lack of targeting to specific cell types. Alternative vectors based on less prevalent HAd serotypes as well as nonhuman adenoviruses such as porcine Ad serotype 3 (PAd3) and bovine Ad serotype 3 (BAd3) are being developed to overcome these shortcomings. Using virus neutralization assay, we examined whether preexisting Ad immunity in humans would cross-neutralize PAd3 or BAd3. To further evaluate the potential of PAd3 and BAd3 vectors as gene delivery vehicles, we compared their transduction efficiencies in a panel of human, murine, bovine, and porcine cell lines to those obtained with a HAd5 vector. Transduction by the HAd5 vector in the majority of human cell lines correlated with the expression levels of coxsackievirus-adenovirus receptor (CAR), the primary HAd5 receptor; while transduction by PAd3 and BAd3 vectors was CAR-independent. The results suggest that PAd3 and BAd3 vectors are promising gene delivery vehicles for human gene therapy as well as for recombinant vaccines for human and animal use.  相似文献   

20.
Some of the most successful gene therapy results have been obtained using recombinant viral vectors to treat animal models of inherited and acquired ocular diseases. Clinical trials using adenovirus vector systems have been initiated for two ocular diseases. Adeno-associated viruses (AAVs) represent an attractive alternative to adenoviral vector systems as they enable stable and long-term expression and can target a variety of different ocular cell types depending on the capsid serotype; recently clinical trails for congenital blindness was initiated with a vector-based AAV serotype 2. High levels of retinal gene transfer have been achieved using vectors based on AAV serotypes 1, 2, 4 and 5. This report compares the gene transfer efficacy and stability of expression of vector systems based on three novel AAV serotypes: AAV7, 8, 9, with the established vectors AAV1, 2, 5. We show here that AAV7 and 8 enable superior long-term transduction of retinal and also anterior chamber structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号