首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates the effect of platelet/neutrophil interactions on eicosanoid production. Human platelets and polymorphonuclear leukocytes (PMNs) were stimulated alone and in combination, with calcium ionophore A23187 and the resulting eicosanoids 12S-hydroxy-(5Z,8Z,10E,14Z)-eicosatetraenoic acid (12-HETE), 12S-heptadecatrienoic acid (HHT), 5S,12R-dihydroxy-(6Z,8E,10E,14Z)-eicosatetraenoi c acid (LTB4) and 5S-hydroxy-(6E,8Z,11Z,14Z)-eicosatetraenoic acid (5-HETE) were measured by HPLC. The addition of PMNs to platelet suspensions caused a 104% increase in 12-HETE, a product of 12-lipoxygenase activity, but had only a modest effect on the cyclooxygenase product HHT (increase of 18%). By using PMNs labelled with [14C]arachidonic acid it was shown that the increases in these platelet eicosanoids could be accounted for by translocation of released arachidonic acid from PMNs to platelets and its subsequent metabolism. The observation that 12-lipoxygenase was about five times more efficient than cyclooxygenase at utilising exogenous arachidonic acid during the platelet/PMN interactions was confirmed in experiments in which platelets were stimulated with A23187 in the presence of [14C]arachidonic acid. Stimulations of platelets with thrombin in the presence of PMNs resulted in a decrease in 12-HETE and HHT levels of 40% and 26%, respectively. The presence of platelets caused a small increase in neutrophil LTB4 output but resulted in a decrease in 5-HETE production of 43% during stimulation with A23187. This study demonstrates complex biochemical interactions between platelets and PMNs during eicosanoid production and provides evidence of a mechanism to explain the large enhancement in 12-HETE production.  相似文献   

2.
The sensitivity of the 5-lipoxygenase to inhibition by 5,8,11,14-eicosatetraynoic acid (ETYA) is species- and/or tissue-dependent. Guinea pig peritoneal polymorphonuclear leukocytes prelabeled with [3H]arachidonic acid and stimulated with ionophore A23187 formed 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE), as well as several dihydroxy fatty acids, including 5(S),12(R)-dihydroxy-6,8,10-(cis/trans/trans)-14-(cis)-eicosatetraenoic acid. ETYA (40 microM) did not inhibit, but, rather, increased the incorporation of 3H label into 5-HETE. In contrast, ETYA markedly inhibited the formation of radiolabeled dihydroxy acid metabolites by the A23187-stimulated cells. Assay of products from polymorphonuclear leukocytes incubated with exogenous arachidonic acid plus A23187, by reverse phase high performance liquid chromatography combined with ultraviolet absorption, showed a concentration-dependent inhibition of the formation of dihydroxy acid metabolite by ETYA (1-50 microM) and an increase in 5-HETE levels (maximum of 2- to 3-fold). The latter finding was verified by stable isotope dilution assay with deuterated 5-HETE as the internal standard. Another lipoxygenase inhibitor, nordihydroguaiaretic acid, potently inhibited the formation of both 5-HETE and dihydroxy acids, with an IC50 of 2 microM. The data suggest that ETYA can inhibit the enzymatic step whereby 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid is converted to leukotriene A4 in guinea pig polymorphonuclear leukocytes.  相似文献   

3.
The cytosolic fraction of human polymorphonuclear leukocytes precipitated with 60% ammonium sulfate produced 5-lipoxygenase products from [14C]arachidonic acid and omega-6 lipoxygenase products from both [14C]linoleic acid and, to a lesser extent, [14C]- and [3H]arachidonic acid. The arachidonyl 5-lipoxygenase products 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE) and 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) derived from [14C]arachidonic acid, and the omega-6 lipoxygenase products 13-hydroperoxy-9,11-octadecadienoic acid (13-OOH linoleic acid) and 13-hydroxy-9,11-octadecadienoic acid (13-OH linoleic acid) derived from [14C]linoleic acid and 15-hydroxyperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE), and 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE) derived from [14C]- and [3H]arachidonic acid were identified by TLC-autoradiography and by reverse-phase high-performance liquid chromatography (RP-HPLC). Products were quantitated by counting samples that had been scraped from replicate TLC plates and by determination of the integrated optical density during RP-HPLC. The arachidonyl 5-lipoxygenase had a pH optimum of 7.5 and was 50% maximally active at a Ca2+ concentration of 0.05 mM; the Km for production of 5-HPETE/5-HETE from arachidonic acid was 12.2 +/- 4.5 microM (mean +/- S.D., n = 3), and the Vmax was 2.8 +/- 0.9 nmol/min X mg protein (mean +/- S.D., n = 3). The omega-6 linoleic lipoxygenase had a pH optimum of 6.5 and was 50% maximally active at a Ca2+ concentration of 0.1 mM in the presence of 5 mM EGTA. When the arachidonyl 5-lipoxygenase and the omega-6 lipoxygenase were separated by DEAE-Sephadex ion exchange chromatography, the omega-6 lipoxygenase exhibited a Km of 77.2 microM and a Vmax of 9.5 nmol/min X mg protein (mean, n = 2) for conversion of linoleic acid to 13-OOH/13-OH linoleic acid and a Km of 63.1 microM and a Vmax of 5.3 nmol/min X mg protein (mean, n = 2) for formation of 15-HPETE/15-HETE from arachidonic acid.  相似文献   

4.
Lipoxygenases of bovine and human corneal epithelia were investigated. The bovine epithelium contained an arachidonate 12-lipoxygenase and a 15-lipoxygenase. The 12-lipoxygenase was found in the microsomal fraction, while the 15-lipoxygenase was mainly present in the cytosol (100 000 × g supernatant). 12S-Hydroxyeicosatetraenoic acid (12S-HETE) and 15S-hydroxyeicosa-tetraenoic acid (15S-HETE) were identified by GC-MS and chiral HPLC. BW A4C, an acetohydroxamic acid lipoxygenase inhibitor, reduced the biosynthesis of 12S-HETE and 15S-HETE by over 90% at 10 μ M. IC50 for the 12-lipoxygenase was 0.3 μM. The bovine corneal 12-lipoxygenase was compared with the 12-lipoxygenases of bovine platelets and leukocytes. All three enzymes metabolized 14C-labelled linoleic acid and α-linolenic acid poorly (5–16%) in comparison with [l4C]arachidonic acid. [14C]Docosahexaenoic acid and [14C]4,7,10,13,16-docosapentaenoic acid appeared to be less efficiently converted by the corneal enzyme than by the platelet and leukocyte enzymes. Immunohistochemical analysis of the bovine corneal epithelium using a polyconal antibody against porcine leukocyte 12-lipoxygenase gave positive staining. The cytosol of human corneal epithelium converted [14C]arachidonic acid to one prominent metabolite. The product co-chromatographed with 15S-HETE on reverse phase HPLC, straight phase HPLC and chiral HPLC. Our results suggest that human corneal epithelium contains a 15-lipoxygenase and that bovine corneal epithelium contains both a 15-lipoxygenase and a 12-lipoxygenase. The corneal 12-lipoxygenase appears to differ catalytically from earlier described bovine 12-lipoxygenases.  相似文献   

5.
Human peripheral blood polymorphonuclear leukocytes (PMNs) metabolized [14C]arachidonic acid predominantly by lipoxygenase pathways. The major products were 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) and 15-HETE. These and other lipoxygenase products, including their derived leukotrienes, have been implicated as mediators of inflammatory and allergic reactions. In human platelets, the nonsteroidal anti-inflammatory drug ibuprofen inhibited production of the cyclooxygenase product thromboxane B2 (I50 = 65 microM), whereas the lipoxygenase product 12-HETE was not appreciably affected even at 5 mM ibuprofen. The 5-lipoxygenase of human PMNs (measured by 5-HETE formation) was inhibited by ibuprofen but was about six times less sensitive (I50 = 420 microM) than the platelet cyclooxygenase. The unexpected observation was made that the human PMN 15-lipoxygenase/leukotriene pathway was selectively activated by 1-5 mM ibuprofen. Metabolites were identified by ultraviolet spectroscopy, by radioimmunoassay, or by retention times on high pressure liquid chromatography in comparison with authentic standards. The major product was 15-HETE; and in all of 19 donors tested, 15-HETE formation was stimulated up to 20-fold by 5 mM ibuprofen. Other identified products included 12-HETE and 15- and 12-hydroperoxyeicosatetraenoic acid. Activation of the 15-lipoxygenase by ibuprofen occurred within 1 min and was readily reversible. The effects of aspirin, indomethacin, and ibuprofen on the PMN 15-lipoxygenase were compared in six donors. Ibuprofen produced an average 9-fold stimulation of the enzyme, whereas aspirin and indomethacin resulted in an average 1.5- and 2-fold enhancement, respectively.  相似文献   

6.
12-Hydroxyeicosatetraenoic acid (12-HETE), a lipoxygenase product released by activated platelets and macrophages, reduced prostacyclin (PGI2) formation in bovine aortic endothelial cultures by as much as 70%. Maximal inhibition required 1 to 2 h to occur and after 2 hr, a concentration of 1 microM 12-HETE produced 80% of the maximum inhibitory effect. 5-HETE and 15-HETE also inhibited PGI2 formation. The inhibition was not specific for PGI2; 12-HETE reduced the formation of all of the radioactive eicosanoids synthesized from [1-14C]arachidonic acid by human umbilical vein endothelial cultures. Inhibition occurred in the human cultures when PGI2 formation was elicited with arachidonic acid, ionophore A23187 or thrombin. These findings suggest that prolonged exposure to HETEs may compromise the antithrombotic and vasodilator properties of the endothelium by reducing its capacity to produce eicosanoids, including PGI2.  相似文献   

7.
Addition of tracer (pg) amounts of [3H]arachidonic acid to the 120,000 x g cytosolic fraction of human polymorphonuclear leukocytes (PMNs) produced [3H]-15-HETE, the product of the 15-lipoxygenase, as the major metabolite. In the presence of nanomolar and low micromolar amounts of calcium, [3H]-15-HETE formation was increased as much as 15-fold which corresponded to 17% conversion of added substrate. This enhancement of the cytosolic 15-lipoxygenase activity, which was reversible by EGTA, was inhibited by phosphatidyl serine and phosphatidyl choline. Millimolar levels of calcium inhibited the cytosolic 15-lipoxygenase and the 5-lipoxygenase product 5-HETE could reverse this inhibition. These results indicate that calcium is an important modulator of the PMN 15-lipoxygenase when the enzyme is in a cytosolic milieu.  相似文献   

8.
We have previously reported that 15-hydroxyeicosatetraenoic acid (15-HETE) stimulated the 5-lipoxygenase in the murine PT-18 mast/basophil cell line to produce leukotriene B4 and 5-HETE from exogenously added arachidonic acid. In order to determine the structural requirements in the HETE molecule that are necessary for the activation of this 5-lipoxygenase, various isomeric HETEs, derivatives and analogs were prepared, purified and tested. The order of stimulatory potencies was: 15-HETE acetate greater than 15-HETE = 15-hydroperoxyeicosatetraenoic acid (15-HPETE) greater than 5-HPETE = 12-HPETE greater than 5-HETE. 15-HETE methyl ester, 12-HETE and prostaglandin E2 were ineffective over the concentration range tested. Several diHETEs were also tested. 5S,15S-DiHETE was somewhat less potent than 15-HETE, whereas both 8S,15S-diHETE and leukotriene B4 were inactive. The calcium ionophore A23187 was much less effective than 15-HETE. These structure-activity studies indicate the importance of the nature, position and location of the various functional groups in the HETE molecule and suggest that a specific recognition site is involved in the activation of the 5-lipoxygenase in PT-18 cells.  相似文献   

9.
The effects of an inhalation anesthetic, halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) on the formation of 5-lipoxygenase metabolites such as leukotriene B4, 5(S)-hydroxyeicosatetraenoic acid (5-HETE), 6-trans-isomers of leukotriene B4 and leukotriene C4 were studied in human leukocytes stimulated with calcium ionophore A23187. Halothane inhibited the formation of all these metabolites dose dependently and the formation was restored by removal of the drug. The anesthetic also reversibly inhibited the release of [3H]arachidonic acid from neutrophils with a half-inhibition concentration of less than 0.19 mM. The formation of 5-lipoxygenase metabolites was not inhibited by the anesthetic when leukocytes were stimulated with the ionophore in the presence of exogenous arachidonic acid. These observations indicate that the inhibitory effect of halothane on the formation of 5-lipoxygenase metabolites in leukocytes is mainly due to the inhibition of arachidonic acid release.  相似文献   

10.
When human neutrophils, previously labeled in their phospholipids with [14C]arachidonate, were stimulated with the Ca2+-ionophore, A23187, plus Ca2+ in the presence of [3H]acetate, these cells released [14C]arachidonate from membrane phospholipids, produced 5-hydroxy-6,8,11,14-[14C]eicosatetraenoic acid (5-HETE) and 14C-labeled 5S,12R-dihydroxy-6-cis,8,10-trans, 14-cis-eicosatetraenoic acid ([14C]leukotriene B4), and incorporated [3H]acetate into platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine). Ionophore A23187-induced formation of these radiolabeled products was greatly augmented by submicromolar concentrations of exogenous 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE), 5-HETE, and leukotriene B4. In the absence of ionophore A23187, these arachidonic acid metabolites were virtually ineffective. Nordihydroguaiaretic acid (NDGA) and several other lipoxygenase/cyclooxygenase inhibitors (butylated hydroxyanisole, 3-amino-1-(3-trifluoromethylphenyl)-2-pyrazoline and 1-phenyl-2-pyrazolidinone) caused parallel inhibition of [14C]arachidonate release and [3H]PAF formation in a dose-dependent manner. Specific cyclooxygenase inhibitors, such as indomethacin and naproxen, did not inhibit but rather slightly augmented the formation of these products. Furthermore, addition of 5-HPETE, 5-HETE, or leukotriene B4 (but not 8-HETE or 15-HETE) to neutrophils caused substantial relief of NDGA inhibition of [3H]PAF formation and [14C]arachidonate release. As opposed to [3H]acetate incorporation into PAF, [3H]lyso-PAF incorporation into PAF by activated neutrophils was little affected by NDGA. In addition, NDGA had no effect on lyso-PAF:acetyl-CoA acetyltransferase as measured in neutrophil homogenate preparations. It is concluded that in activated human neutrophils 5-lipoxygenase products can modulate PAF formation by enhancing the expression of phospholipase A2.  相似文献   

11.
Mammalian 5-lipoxygenase systems exist in inactive or cryptic states and have to be stimulated in order to metabolize exogenous [14C]arachidonic acid to 5-HETE and leukotrienes. In most cells, both the activation process and the 5-lipoxygenase activity are calcium-dependent. However, the cryptic 5-lipoxygenase system in the murine PT-18 mast/basophil cell line, which can be stimulated by 15-hydroxyeicosatetraenoic acid (15-HETE), is unusual. Studies with fura-2 loaded PT-18 cells indicate that increases in cytosolic calcium do not appear to correlate with enhanced 5-lipoxygenase product formation. Thus, both the calcium ionophore ionomycin and arachidonic acid increase cytosolic calcium levels but have very little effect on [14C]5-HETE formation, whereas 15-HETE induces large increases in [14C]5-HETE production but no concomitant enhancement in cytosolic calcium is observed. Chelation of extracellular calcium by 3 mM EGTA resulted in a 30-40% inhibition of [14C]5-HETE formation induced by 15 HETE, whereas 3 mM EGTA has no appreciable effect on a crude PT-18 5-lipoxygenase homogenate. These results indicate that in PT-18 cells, calcium does not appear to play an important role in either the 15-HETE-induced activation process, or the enzymatic activity of the cryptic 5-lipoxygenase system.  相似文献   

12.
Products of the 5-lipoxygenase pathway were analyzed after different stimuli in human polymorphonuclear leukocytes prelabeled with 3H-arachidonic acid. Upon stimulation with the Ca2+ ionophore, A23187, polymorphonuclear leukocytes generate 118.2 +/- 18 pg [3H]dihydroxyeicosatetraenoic acids (diHETEs, including 3H-leukotriene B4 and its 6-trans-stereoisomers), after exposure to serum coated zymosan (35.8 +/- 9 pg) and N-fMet-Leu-Phe (39.5 +/- 9 pg). Conversion of 3H-arachidonic acid paralleled its release after A23187 and fMet-Leu-Phe exposure leaving only 13.8 +/- 7% and 13.6 +/- 3% of the released 3H-arachidonic acid unmetabolized, respectively. In contrast, after stimulation with serum-coated zymosan only a small fraction of the released 3H-arachidonate was converted to 5-lipoxygenase products leaving 73.0 +/- 5% of the released 3H-arachidonic acid unmetabolized. In parallel, leukotriene B4 synthesis was studied in unlabeled polymorphonuclear leukocytes, resulting in 40 +/- 15 ng upon A23187 stimulation, 4 +/- 0.9 ng upon stimulation with fMet-Leu-Phe and 1.8 +/- 0.9 ng after serum-coated zymosan, showing a different ratio of leukotriene B4 to 3H-diHETE for A23187 in contrast to serum-coated zymosan and fMet-Leu-Phe. These results indicate that the coupling between the release of the precursor fatty acid and the metabolism via the 5-lipoxygenase pathway differs greatly between different stimuli.  相似文献   

13.
12-Hydroxyeicosatetraenoic acid (12-HETE), a lipoxygenase product released by activated platelets and macrophages, reduced prostacyclin (PGI2) formation in bovine aortic endothelial cultures by as much as 70%. Maximal inhibition required 1 to 2 h to occur and after 2 hr, a concentration of 1 μM 12-HETE produced 80% of the maximum inhibitory effect. 5-HETE and 15-HETE also inhibited PGI2 formation. The inhibition was not specific for PGI2; 12-HETE reduced the formation of all of the radioactive eicosanoids synthesized from [1-14C]arachidonic acid by human umbilical vein endothelial cultures. Inhibition occurred in the human cultures when PGI2 formation was elicited with arachidonic acid, ionophore A23187 or thrombin. These findings suggest that prolonged exposure to HETEs may compromise the antithrombotic and vasodilator properties of the endothelium by reducing its capacity to produce eicosanoids, including PGI2.  相似文献   

14.
Resident mouse peritoneal macrophages when exposed to zymosan during the first day of cell culture synthesize and secrete large amounts of prostaglandin E2 (PGE2) and leukotriene C4 (LTC4), the respective products of cyclo-oxygenase- and 5-lipoxygenase-catalysed oxygenations of arachidonic acid. Under these conditions of cell stimulation only small amounts of hydroxyeicosatetraenoic acids (HETEs) are concomitantly produced. However, exogenously added arachidonic acid is metabolized to large amounts of 12- and 15-HETE and only relatively small amounts of PGE2. No LTC4 is formed under these conditions. In contrast, resident mouse peritoneal macrophages in cell culture for 4 days synthesized less PGE2 and LTC4 when exposed to zymosan. However, these macrophage populations continue to synthesize 12-HETE from exogenously added arachidonic acid. Zymosan induced the secretion of a lysosomal enzyme, N-acetyl-beta-glucosaminidase, equally in both 1- and 4-day cultures. Both 12- and 15-hydroperoxyeicosatetraenoic acids (HPETEs), the precursors of 12- and 15-HETE, were found to be irreversible inhibitors of the cyclo-oxygenase pathway and reversible inhibitors of the 5-lipoxygenase pathway in macrophages. 15-HETE were found to be reversible inhibitors of both pathways. Thus the oxidation of arachidonic oxidation of arachidonic acid to both prostaglandins and leukotrienes may be under intracellular regulation by products of 12- and 15-lipoxygenases.  相似文献   

15.
Abstract: Rat cerebrum, prelabeled in vivo by intraventric-ular injection of [1-14C]arachidonic acid, was used to assess cyclooxygenase and lipoxygenase reaction products in total homogenates, cytosol, synaptosomes, and microsomes. Effects of bicuculline-induced status epilepticus on arachi-donic acid metabolism in synaptosomes and microsomes were also measured. Lipoxygenase activity, resulting in the synthesis of hydroxyeicosatetraenoic acids (HETEs), and cyclooxygenase activity, resulting in the synthesis of prostaglandins (PGs), were measured by reverse-phase and normal-phase HPLC with flow scintillation detection. Endogenous lipoxygenase products in synaptosomes were identified by capillary gas chromatography-mass spectrometry. PGs and HETEs were detected in all subcellular fractions. The synaptosomal fraction showed the highest lipoxygenase activity, with 5-HETE, 12-HETE, and leukotriene B4 as the major products. Following bicuculline-induced status epilepticus, endogenous free arachidonic acid and other fatty acids accumulated in synaptosomes, but not in microsomes. Incorporation of [1-l4C]arachidonic acid into synaptosomal and microsomal phospholipids was decreased after bicuculline treatment. Bicuculline-induced status epilepticus resulted in increased synthesis of HETEs in synaptosomes. PG synthesis increased in the microsomal fraction. When [1-14C]arachidonic acid-labeled synaptosomes and microsomes were incubated for 1 h at 37°C the synthesis of eicosa-noids, particularly PGD2, was increased significantly in bi-cuculline-treated rats, as compared with untreated rats. Depolarization (45 mM K+) of synaptosomes induced a loss of [1-14C]arachidonic acid from phosphatidylinositol, and increased the synthesis of PGD2 and HETEs, an effect that was enhanced in bicuculline-treated rats. This study localizes changes in arachidonic acid metabolism and lipoxygenase activity resulting from bicuculline-induced status epilepticus in the brain subcellular fraction enriched in nerve endings.  相似文献   

16.
The metabolism of exogenous and endogenous [14C] arachidonc acid was studied in purified human peripheral blood lymphocytes carefully freed of contaminating platelets. Formation of products co-migrating in a number of different solvent systems with 5-hydroxyarachidonic acid (5-HETE), thromboxane B2 (TB2), prostaglandins and probably 12-hydroxyarachidonic acid (12-HETE) was demonstrated. In cells prelabeled with [14C] arachidonic acid, phytohemagglutinin (PHA) produced substantial (3.5- to 12-fold) increases in 5-HETE, 12-HETE, and TB2 radiolabeling. The metabolism of exogenous [14C] arachidonic acid was much less affected by PHA. Since PHA releases cell-bound arachidonic acid, it appears that the response involving endogenous label is due to increased availability of free arachidonic acid rather than induction of arachidonic acid-metabolizing enzymes. Various inhibitors of arachidonic acid metabolism exerted similar effects in lymphocytes to those described previously in other tissues providing a possible basis for interpreting their inhibitory effects on mitogenesis, described in the preceding paper.  相似文献   

17.
Eicosanoid biosynthesis was examined with a human megakaryocytic cell line (Dami). Megakaryocytes incubated with [1-14C]arachidonic acid and either ionophore A23187 or thrombin generated both thromboxane and 12-hydroxyheptadecatrienoic acid (HHTrE). Exposure to phorbol myristate acetate (PMA) for 1 through 9 days induced differentiation and revealed an increase in the conversion of [1-14C]arachidonate to cyclooxygenase- and lipoxygenase (LO)-derived products. The LO-derived product was identified as 12S-HETE by its physical characteristics including GC/MS and chiral column SP-HPLC. PMA-treated Dami cells did not generate 5-HETE, leukotrienes or lipoxins from exogenous arachidonic acid while they did convert leukotriene A4 (LTA4) to lipoxin A4, lipoxin B4 and their respective all-trans isomers. In addition, COS-M6 cells transfected with a human 12-lipoxygenase cDNA and incubated with either arachidonic acid or LTA4 generated 12-HETE and lipoxins, respectively. The lipoxin profile generated by transfected COS-M6 cells incubated with LTA4 was similar to that generated by the PMA-treated Dami cells. Results indicate that human megakaryocytes can transform arachidonate and LTA4 to bioactive eicosanoids and that the 12-lipoxygenase appears upon further differentiation of these cells. In addition, they indicate that the 12-LO of human megakaryocytes and the 12-LO expressed by transfected COS cells can generate both lipoxins A4 and B4. Together they suggest that the human 12-LO can serve as a model of LX-synthetase activity with LTA4.  相似文献   

18.
Biochemical evidence in support of a role for arachidonic acid 5-lipoxygenase activity in pancreatic islet insulin secretion has been obtained. Peptidyl leukotriene metabolism was studied in rat islets using a dual-labeling technique in extended culture, with analysis of arachidonic acid metabolites by reverse-phase high-performance liquid chromatography. The production of [3H]arachidonoyl/[35S]cysteinyl leukotrienes C4 and E4 by islets was compared with that by mouse resident peritoneal macrophages and with the lipoxygenase metabolism of rabbit polymorphonuclear leukocytes. The stimulus-specific nature of leukotriene biosynthesis was characterized by low basal biosynthesis in unstimulated islet cells with a calcium-mediated activation of 5-lipoxygenase product formation.  相似文献   

19.
WHHL rabbits develop progressive atherosclerosis. There are no visible signs of the disease at 1 month, however, by 12 months, the formation of aortic plaques is extensive. This study characterized arachidonic acid (AA) metabolism in 1 and 12 month old WHHL and NZW rabbit aortas. Vessels incubated with 14C-AA and A23187 metabolized AA to a number of oxygenated products as identified by high pressure liquid chromatography. The major AA metabolites produced by WHHL and NZW aortas were 6-keto PGF1 alpha, PGE2, 12- and 15-hydroxyeicosatetraenoic acids (HETEs). The structures of the HETEs were confirmed by gas chromatography-mass spectrometry. Indomethacin blocked the synthesis of prostaglandins (PGs) but not HETEs whereas ETYA, NDGA or removal of the endothelium attenuated the production of both PGs and HETEs. Measurement of 6-keto PGF1 alpha, 12- and 15-HETE by specific radioimmunoassays indicated that as the rabbits aged and as atherosclerosis progressed, aortas lost the ability to synthesize 6-keto PGF1 alpha and 15-HETE. Prior to the development of atherosclerosis, 1 month old WHHL aortas produced 70% less 15-HETE than did NZW aortas. Atherosclerotic aortas from 12 month old WHHLs synthesized 60% less 6-keto PGF1 alpha during stimulation with AA or A23187 than did 12 month old NZW aortas. We conclude that the development and expression of atherosclerosis in WHHL rabbits impairs the ability of aortas to metabolize AA to both PGs and HETEs.  相似文献   

20.
Endothelial cells release several factors which influence vascular tone, leukocyte function and platelet aggregation. Some of these factors are metabolites of arachidonic acid, most notably prostacyclin. However, many of the endothelial metabolites of arachidonic acid have not been positively identified. The purpose of these studies is to identify the arachidonic acid metabolites synthesized by bovine coronary endothelial cells. Cultured bovine coronary artery endothelial cells were incubated with [ 14C]arachidonic acid. The incubation media was extracted and the radioactive metabolites resolved by a combination of reverse phase- and normal phase-high pressure liquid chromatography (HPLC). The cells synthesized 6-keto prostaglandin (PG)F, PGE2, 12-hydroxyheptadecatrienoic acid (HHT), 12-, 15-, and 11- hydroxyeicosatetraenoic acids (HETE), and 14,15-, 11,12-, 8,9-, and 5,6-epoxyeicosatrienoic acids (EET). Several of the HETEs were further analyzed by chiral-phase HPLC. The cells synthesized predominately 12(S)-, 15(S)-, and 11(R)-HETE. The synthesis of the S optical isomers of 12- and 15-HETE suggested that the 12- and 15-lipoxygenases were present in these cells. 11(R)-HETE is probably derived from cyclooxygenase. They also synthesized smaller amounts of 9-, 8- and 5-HETEs. The structures of the HETEs and EETs were confirmed by mass spectrometry. The release of 6-keto PGF and 15-HETE was measured by specific radioimmunoassays. Melittin, thrombin, arachidonic acid and A23187 stimulated the release of both eicosanoids in a concentration-related matter. Under all conditions, the release of 6-keto PGF exceed the release of 15-HETE. Therefore, cultured bovine coronary artery endothelial cells synthesize cyclooxygenase, lipoxygenase and cytochrome P-450 metabolites of arachidonic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号