首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lake Victoria is a known hot-spot for Schistosoma mansoni, which utilises freshwater snails of the genus Biomphalaria as intermediate hosts. Different species of Biomphalaria are associated with varying parasite compatibility, affecting local transmission. It is thought that two species, B. choanomphala and B. sudanica, inhabit Lake Victoria; despite their biomedical importance, the taxonomy of these species has not been thoroughly examined. This study combined analysis of morphological and molecular variables; the results demonstrated that molecular groupings were not consistent with morphological divisions. Habitat significantly predicted morphotype, suggesting that the different Lake Victorian forms of Biomphalaria are ecophentoypes of one species. The nomenclature should be revised accordingly; the names B. choanomphala choanomphala and B. c. sudanica are proposed. From a public health perspective, these findings can be utilised by policy-makers for better understanding of exposure risk, resulting in more effective and efficient control initiatives.  相似文献   

2.
The potential value of MODIS satellite sensor data on Normalized Difference Vegetation Index (NDVI) and land surface temperatures (LST) for describing the distribution of the Schistosoma mansoni-"Biomphalaria pfeifferi"/Biomphalaria sudanica parasite-snail system in inland Uganda, were tested by developing annual and seasonal composite models, and iteratively analysing for their relationship with parasite and snail distribution. The dry season composite model predicted an endemic area that produced the best fit with the distribution of schools with > or =5% prevalence. NDVI values of 151-174, day temperatures of 26-36 degrees C, and night temperatures of 15-20 degrees C were used as criteria for the prediction model. Using the same approach with host snail data indicated that most of Uganda is suitable "B. pfeifferi"/B. sudanica habitat, except for possibly the north-eastern region of the country. The parasite, however, appears to be restricted in its distribution in both the north-eastern and the south-western regions of Uganda. The absence of disease in the south-west can not be attributed to the absence of snail hosts. Results suggest a combination of satellite sensor data on temperature and standard climate data on precipitation, as the best ecological determinants of the S. mansoni-"B. pfeifferi"/B. sudanica system. Satellite composite models and logistic regression analysis, suggest low night time temperature as one of the significant factors inhibiting S. mansoni transmission in the south-western highland areas of Uganda. The developed models are, however, unique, representing species-specific ecologic preferences of the S. mansoni-"B. Pfeifferi"/B. sudanica system in inland Uganda. Further validation studies are needed to test the value of the model in other countries in East Africa.  相似文献   

3.
Freshwater snails in the genus Biomphalaria transmit Schistosoma mansoni in Africa, South America and the Caribbean region. Although considerable attention has been given to the identification of species, little is known of evolutionary relationships among the species. A phylogenetic analysis of 25 populations representing 11 species was performed on 25 enzyme loci examined using starch gel electrophoresis. A phylogenetic analysis of the individual populations produced 60 trees of equal length. The 60 trees have a consistency index value of 75.9% and a retention index value of 76.5%. The phylogenetic analysis provided strong support for the monophyly of Biomphalaria with either 14 or 15 synapomorphies uniting all of the species included and separating them from the outgroup, two species of Helisoma. Four nominal species represented by multiple populations formed monophyletic groups. Populations of B. sudanica, B. choanomphala, and B. alexandrina were interspersed. Ten arrangements were obtained for the populations of these three species. A variety of ingroup taxa were used to root the trees, and all provided support for the use of Helisoma species as an outgroup. In all of the trees obtained, the African species together formed a monophyletic group. In none of the trees obtained did the neotropical species form a monophyletic group. A constrained analysis requiring the monophyly of the neotropical species as well as the African species resulted in 90 trees just two steps longer than the shortest trees. Analysis of the species from either hemisphere alone resulted in decreased resolution, as measured by an increase in the number of trees obtained. This finding suggests that further comparisons of species from the two hemispheres will be of considerable value. Finally, two species which are resistant to infection with S. mansoni were included among the eleven studied. Neither of these species formed the sister group to all of the other species included, indicating that susceptibility is the plesiomorphic state, and that resistance is derived. Similarly, in none of the trees obtained did the two resistant species fall out as sister taxa, indicating that resistance arose independently twice.  相似文献   

4.
Studies of inbreeding and outcrossing have traditionally concentrated on matings within populations. The influence of geographical origin on mate choice in animals from different populations has received less attention. We investigated whether planorbid snails mated preferentially within their own population or with snails from other populations. Snails from three Biomphalaria pfeifferi strains and three B. glabrata strains were allowed to mate with conspecifics in the laboratory. We recorded their matings at night using time-lapse video. When they could choose between sympatric and allopatric snails, Biomphalaria snails significantly preferred the former: snails of each population mated more often with sympatric than with allopatric snails. This tendency to avoid outcrossing may indicate that, in some species, local adaptations can be more valuable than genetic novelties. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

5.
Hymenopteran species with single-locus complimentary sex-determination (sl-CSD) face an additional cost of inbreeding because of a loss of diversity at the sex-determining locus. Laboratory studies of a range of Hymenoptera have found that a small percentage of diploid males produce viable diploid sperm, and that if these males mate, then the resultant females produce triploid offspring that are sterile. Here, we use microsatellite markers to determine the frequency of triploid individuals of Bombus muscorum and B. jonellus in a model island system. Triploids were found in populations of both species. Observed triploid frequencies of up to 8% were detected, and estimated total frequencies peaked at 20% with respect to normal diploid workers. For both species, triploid frequency was negatively correlated with surrogates of population size, providing direct evidence for inbreeding in small populations. Populations limited to <~15 km(2) of suitable habitat were particularly likely to harbour triploids. Estimated total triploid frequencies were higher in B. muscorum than in B. jonellus, perhaps due to the greater dispersal range of the latter species. Implications for the conservation of rare social hymenopterans are discussed.  相似文献   

6.
The historical phylogeography of the two most important intermediate host species of the human blood fluke Schistosoma mansoni, B. glabrata in the New World, and B. pfeifferi in the Old World, was investigated using partial 16S and ND1 sequences from the mitochondrial genome. Nuclear sequences of an actin intron and internal transcribed spacer (ITS)-1 were also obtained, but they were uninformative for the relationships among populations. Phylogenetic analyses based on mtDNA revealed six well-differentiated clades within B. glabrata: the Greater Antilles, Venezuela and the Lesser Antilles, and four geographically overlapping Brazilian clades. Application of a Biomphalaria-specific mutation rate gives an estimate of the early Pleistocene for their divergence. The Brazilian clades were inferred to be the result of fragmentation, due possibly to climate oscillations, with subsequent range expansion producing the overlapping ranges. Within the Venezuela and Lesser Antilles clade, lineages from each of these areas were estimated to have separated approximately 740 000 years ago. Compared to B. glabrata, mitochondrial sequences of B. pfeifferi are about 4x lower in diversity, reflecting a much younger age for the species, with the most recent common ancestor of all haplotypes estimated to have existed 880 000 years ago. The oldest B. pfeifferi haplotypes occurred in southern Africa, suggesting it may have been a refugium during dry periods. A recent range expansion was inferred for eastern Africa less than 100 000 years ago. Several putative species and subspecies, B. arabica, B. gaudi, B. rhodesiensis and B. stanleyi, are shown to be undifferentiated from other B. pfeifferi populations.  相似文献   

7.
Owing to habitat loss populations of many organisms have declined and become fragmented. Vertebrate conservation strategies routinely consider genetic factors, but their importance in invertebrate populations is poorly understood. Bumblebees are important pollinators, and many species have undergone dramatic declines. As monoandrous social hymenopterans they may be particularly susceptible to inbreeding due to low effective population sizes. We study fragmented populations of a bumblebee species, on a model island system, and on mainland Great Britain where it is rare and declining. We use microsatellites to study: population genetic structuring and gene flow; the relationships between genetic diversity, population size and isolation; and frequencies of (sterile) diploid males - an indicator of inbreeding. We find significant genetic structuring (theta = 0.12) and isolation by distance. Populations > 10 km apart are all significantly differentiated, both on oceanic islands and on the mainland. Genetic diversity is reduced relative to closely related common species, and isolated populations exhibit further reductions. Of 16 populations, 10 show recent bottlenecking, and 3 show diploid male production. These results suggest that surviving populations of this rare insect suffer from inbreeding as a result of geographical isolation. Implications for the conservation of social hymenopterans are discussed.  相似文献   

8.
Ecological genetic studies have demonstrated that spatial patterns of mating dispersal, the dispersal of gametes through mating behaviour, can facilitate inbreeding avoidance and strongly influence the structure of populations, particularly in highly philopatric species. Elements of breeding group dynamics, such as strong structuring and sex-biased dispersal among groups, can also minimize inbreeding and positively influence levels of genetic diversity within populations. Rock-wallabies are highly philopatric mid-sized mammals whose strong dependence on rocky terrain has resulted in series of discreet, small colonies in the landscape. Populations show no signs of inbreeding and maintain high levels of genetic diversity despite strong patterns of limited gene flow within and among colonies. We used this species to investigate the importance of mating dispersal and breeding group structure to inbreeding avoidance within a 'small' population. We examined the spatial patterns of mating dispersal, the extent of kinship within breeding groups, and the degree of relatedness among brush-tailed rock-wallaby breeding pairs within a colony in southeast Queensland. Parentage data revealed remarkably restricted mating dispersal and strong breeding group structuring for a mid-sized mammal. Breeding groups showed significant levels of female kinship with evidence of male dispersal among groups. We found no evidence for inbreeding avoidance through mate choice; however, anecdotal data suggest the importance of life history traits to inbreeding avoidance between first-degree relatives. We suggest that the restricted pattern of mating dispersal and strong breeding group structuring facilitates inbreeding avoidance within colonies. These results provide insight into the population structure and maintenance of genetic diversity within colonies of the threatened brush-tailed rock-wallaby.  相似文献   

9.
Populations are from time to time exposed to stressful temperatures. Their thermal resistance levels are determined by inherent and plastic mechanisms, which are both likely to be under selection in natural populations. Previous studies on Drosophila species have shown that inherent resistance is highly species specific, and differs among ecotypes (e.g., tropical and widespread species). Apart from being exposed to thermal stress many small and fragmented populations face genetic challenges due to, for example, inbreeding. Inbreeding has been shown to reduce inherent resistance levels toward stressful temperatures, but whether adaptation to thermal stress through plastic responses also is affected by inbreeding is so far not clear. In this study, we test inherent cold resistance and the ability to respond plastically to temperature changes through developmental cold acclimation in inbred and outbred lines of five tropical and five widespread Drosophila species. Our results confirm that tropical species have lower cold resistance compared to widespread species, and show that (1) inbreeding reduces inherent cold resistance in both tropical and widespread species, (2) inbreeding does not affect the ability to respond adaptively to temperature acclimation, and (3) tropical species with low basal resistance show stronger adaptive plastic responses to developmental acclimation compared to widespread species.  相似文献   

10.
Populations forced through bottlenecks typically lose genetic variation and exhibit inbreeding depression. ‘Genetic rescue’ techniques that introduce individuals from outbred populations can be highly effective in reversing the deleterious effects of inbreeding, but have limited application for the majority of endangered species, which survive only in a few bottlenecked populations. We tested the effectiveness of using highly inbred populations as donors to rescue two isolated and bottlenecked populations of the South Island robin (Petroica australis). Reciprocal translocations significantly increased heterozygosity and allelic diversity. Increased genetic diversity was accompanied by increased juvenile survival and recruitment, sperm quality, and immunocompetence of hybrid individuals (crosses between the two populations) compared with inbred control individuals (crosses within each population). Our results confirm that the implementation of ‘genetic rescue’ using bottlenecked populations as donors provides a way of preserving endangered species and restoring their viability when outbred donor populations no longer exist.  相似文献   

11.
Deleting species from model food webs   总被引:1,自引:0,他引:1  
Although self-fertilization and its evolutionary consequences have been widely studied, the relative influence of genetic and environmental factors on the determination of mixed-mating systems remains poorly known. In 1999 and 2000, we surveyed the mating system, the population dynamics and some life-history traits of four populations of the freshwater snail Biomphalaria pfeifferi , the major intermediate host of Schistosoma mansoni in Africa, in two areas of Madagascar (Itasy and Antananarivo). We confirmed that B. pfeifferi is a predominant selfer, with selfing rates ranging between 80 and 100%. Temporal and geographical variation of the selfing rate was observed at both local and large spatial scale. Historical processes of colonization and invasion of B. pfeifferi in Madagascar could explain the geographical variation of the mating system observed at regional scale. Pure selfing has probably evolved in the two populations of Antananarivo area as a reproductive assurance strategy in a metapopulation where extinction is frequent and migration rare. The reproductive assurance hypothesis does not explain the spatio-temporal mating system variations observed in Itasy area. However genetic factors including inbreeding depression-the expression of which can be environmentally mediated-and metapopulation dynamics could influence the mating system in both populations sampled in Itasy and lead to different levels of evolutionary stable intermediate selfing rate in this region. Our results therefore highlight the influence of environmental heterogeneity and stochasticity on mating system.  相似文献   

12.
The distribution of Schistosoma genotypes among individuals in snail populations provides insights regarding the dynamics of transmission and compatibility between schistosome and snail hosts. A survey of Biomphalaria alexandrina from Damietta (Nile Delta, Egypt), an area subjected to persistent schistosomiasis control efforts, provided only 17 snails infected with Schistosoma mansoni (6.1% overall prevalence), each shown by microsatellite analysis to have a single genotype infection. By contrast, recent studies of uncontrolled S. mansoni transmission foci in Kenya revealed that 4.3% Biomphalaria pfeifferi and 20-25% Biomphalaria sudanica snails had multiple genotype infections. Compared with the 3 Kenyan populations, the Egyptian population of S. mansoni also showed a lesser degree of genetic variability and was genetically differentiated from them. We suggest that tracking of genotype diversity in infected snails could be further developed to serve as an additional and valuable independent indicator of efficacy of schistosomiasis control in Egypt and elsewhere.  相似文献   

13.

Background

Environmental gradients caused by altitudinal gradients may affect genetic variation within and among plant populations and inbreeding within populations. Populations in the upper range periphery of a species may be important source populations for range shifts to higher altitude in response to climate change. In this study we investigate patterns of population genetic variation at upper peripheral and lower more central altitudes in three common plant species of semi-dry grasslands in montane landscapes.

Methodology/Principal Findings

In Briza media, Trifolium montanum and Ranunculus bulbosus genetic diversity, inbreeding and genetic relatedness of individuals within populations and genetic differentiation among populations was characterized using AFLP markers. Populations were sampled in the Swiss Alps at 1800 (upper periphery of the study organisms) and at 1200 m a.s.l. Genetic diversity was not affected by altitude and only in B. media inbreeding was greater at higher altitudes. Genetic differentiation was slightly greater among populations at higher altitudes in B. media and individuals within populations were more related to each other compared to individuals in lower altitude populations. A similar but less strong pattern of differentiation and relatedness was observed in T. montanum, while in R. bulbosus there was no effect of altitude. Estimations of population size and isolation of populations were similar, both at higher and lower altitudes.

Conclusions/Significance

Our results suggest that altitude does not affect genetic diversity in the grassland species under study. Genetic differentiation of populations increased only slightly at higher elevation, probably due to extensive (historic) gene flow among altitudes. Potentially pre-adapted genes might therefore spread easily across altitudes. Our study indicates that populations at the upper periphery are not genetically depauperate or isolated and thus may be important source populations for migration under climate change.  相似文献   

14.
In a review of the evidence for reduction in the severity of inbreeding depression in Speke's gazelle [Templeton and Read, pp. 241–261 in Genetics and Conservation: A Reference for Managing Wild Animal and Plant Populations, C.M. Schoenwald-Cox, S.M. Chambers, B. MacBryde, and L. Thomas, eds., Reading, MA, Addison-Weley, 1983; Templeton and Read, Zoo Biology 3:177–199, 1984] a flaw was found in the statistical analysis. Reanalysis of the 1983 data showed no significant reduction in the severity of inbreeding depression. An updated analysis using data from the 1992 Speke's Gazelle North American Regional Studbook [Fischer, St. Louis, St. Louis Zoological Park, 1993] also showed no significant reduction in the severity of inbreeding depression. While there is empirical evidence suggesting reduction in the severity of inbreeding depression in captive populations is possible through reduction of the founder base, maintenance of genetic variation must remain the primary goal of genetic management strategies for captive populations of exotic wildlife. Zoo Biol 16:9–16, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
Inbreeding species of hermaphroditic animals practising copulation have been characterized by few copulations, no waiting time (the time that an isolated individual waits for a partner before initiating reproduction compared with paired individuals) and limited inbreeding (self-fertilization) depression. This syndrome, which has never been fully studied before in any species, is analysed here in the highly selfing freshwater snail Biomphalaria pfeifferi. We conducted an experiment under laboratory conditions over two generations (G1 and G2) using snails sampled from two populations (100 individuals per population). G1 individuals were either isolated or paired once a week (potentially allowing for crosses), and monitored during 29 weeks for growth, fecundity and survival. Very few copulations were observed in paired snails, and there was a positive correlation in copulatory activity (e.g. number of copulations) between the male and female sexual roles. The waiting time was either null or negative, meaning that isolated individuals initiated reproduction before paired ones. G2 offspring did not differ in hatching rate and survival (to 28 days) between treatments, but offspring from paired individuals grew faster than those from isolated individuals. On the whole, the self-fertilization depression was extremely low in both populations. Another important result is that paired G1 individuals began laying (selfed) eggs several weeks prior to initiating copulation: this is the first characterization of prior selfing (selfing initiated prior to any outcrossing) in a hermaphroditic animal. A significant population effect was observed on most traits studied. Our results are discussed with regard to the maintenance of low outcrossing rates in highly inbreeding species.  相似文献   

16.
Inbreeding causes increases in homozygosity and is commonly associated with reductions in fertility and embryogenesis. Although the mechanisms underlying such effects are unknown, recent work has suggested that inbred males may suffer impaired ejaculate quality, thus providing a functional explanation for reductions in reproductive function in inbred populations. However, the relationship between inbreeding and sperm quality remains controversial, particularly in wild populations where the level of inbreeding is typically estimated using neutral molecular markers. Such markers are thought to reflect genome-wide levels of heterozygosity only under restricted conditions, and rarely in outbred populations. Here we employ a comparative approach that takes account of these criticisms and evaluates the evidence linking inbreeding to reductions in sperm quality in 20 mammal species. We focus on sperm abnormalities and sperm motility, which are key determinants of male fertility in many species. We show that species with reduced mean heterozygosity have impaired ejaculated quality, although subsequent analyses revealed that these effects were confined to endangered populations. Our findings therefore support the notion that inbreeding can severely impair sperm quality while concomitantly addressing criticisms surrounding the use of heterozygosity estimates to estimate the level of inbreeding.  相似文献   

17.
In endangered species, it is critical to analyse the level at which populations interact (i.e. dispersal) as well as the levels of inbreeding and local adaptation to set up conservation policies. These parameters were investigated in the endangered species Parnassia palustris living in contrasted habitats. We analysed population structure in 14 populations of northern France for isozymes, cpDNA markers and phenotypic traits related to fitness. Within population genetic diversity and inbreeding coefficients were not correlated to population size. Populations seem not to have undergone severe recent bottleneck. Conversely to pollen migration, seed migration seems limited at a regional scale, which could prevent colonization of new sites even if suitable habitats appear. Finally, the habitat type affects neither within-population genetic diversity nor genetic and phenotypic differentiation among populations. Thus, even if unnoticed local adaptation to habitats exists, it does not influence gene flow between populations.  相似文献   

18.
Many species require captive breeding to ensuretheir survival. The eventual aim of suchprograms is usually to reintroduce the speciesinto the wild. Populations in captivitydeteriorate due to inbreeding depression, lossof genetic diversity, accumulation of newdeleterious mutations and genetic adaptationsto captivity that are deleterious in the wild.However, there is little evidence on themagnitude of these problems. We evaluatedchanges in reproductive fitness in populationsof Drosophila maintained under benigncaptive conditions for 50 generations witheffective population sizes of 500 (2replicates), 250 (3), 100 (4), 50 (6) and 25(8). At generation 50, fitness in the benigncaptive conditions was reduced in smallpopulations due to inbreeding depression andincreased in some of the large populations dueto modest genetic adaptation. When thepopulations were moved to `wild' conditions,all 23 populations showed a marked decline(64–86%percnt;) in reproductive fitness compared tocontrols. Reproductive fitness showed acurvilinear relationship with population size,the largest and smallest population sizetreatments being the worst. Genetic analysesindicated that inbreeding depression andgenetic adaptation were responsible for thegenetic deterioration in `wild' fitness.Consequently, genetic deterioration incaptivity is likely to be a major problem whenlong-term captive bred populations ofendangered species are returned to the wild. Aregime involving fragmentation of captivepopulations of endangered species is suggestedto minimize the problems.  相似文献   

19.
The compatibility between strains of Schistosoma mansoni from Egypt, Kenya, Sudan, Uganda, the West Indies, and Zaire (two strains which came from Katanga and from Kinshasa), and various species and strains of Biomphalaria, i.e. Biomphalaria pfeifferi, B. alexandrina, B. glabrata and B. camerunensis was investigated. Data as mortality, rate of infection of the surviving snails, duration of infection, cercarial production per day per positive snail, etc., were observed. The main emphasis was placed on determining the total cercarial production per 100 exposed snails for each snail population. It was possible to infect all the tested populations of B pfeifferi with the various strains of S. mansoni, but the observation as e.g. TCP/100 exposed snails varied greatly according to the population of snail and the strain of S. mansoni. The results for the remaining species of Biomphalaria varied greatly, depending on the combination, e.g. B. alexandrina was only susceptible to the local S. mansoni from Egypt. The highest TCP/100 exposed snails was more than 1 million for the strains of S. mansoni from Egypt, Kenya and the West Indies in B. alexandrina, B. pfeifferi and B. glabrata, respectively. The next group, with a TCP/100 exposed snails on 7--800 000 consists of S. mansoni from Sudan, Uganda and Zaire (Katanga) all in B. pfeifferi. The last tested strain of S. mansoni, Zaire (Kinshasa) yielded a cercarial production on 500 000 per 100 exposed snails in B. pfeifferi and B. camerunensis. The shortest prepatent period, 19 days, was observed for S. mansoni from Kinshasa, Zaire, in B. camerunensis, and the longest prepatent period, 25 days, was found for strains from Egypt and from the West Indies in B. alexandrina and B. glabrata, respectively. In general, a very long duration of infection, lasting up to 200 days, was observed.  相似文献   

20.
Madagascar has a highly distinctive flora and is one of the world biodiversity hot spots. There are more than 170 species of palms, the majority of which are vulnerable, endangered or critically endangered endemics. Palms are utilized for many human uses, many of which lead to plant death or seed harvesting. Combined with reduced populations resulting from extensive forest clearing, those species which are harvested from the wild are under additional threat of extinction. Species recovery programmes have the potential to save some of the most iconic species before it is too late. This study documented the current known populations of the critically endangered palm Beccariophoenix madagascariensis, a species utilized for both local and international purposes. The study specifically investigated the genetic diversity and inbreeding within populations and the potential differentiation between populations and with the newly described species B. alfredii . We found that despite critically small population sizes there was considerable genetic diversity within populations. We also found that ecologically and or geographically distinct populations were genetically distinct. Populations within 3 km of each other exhibited considerable gene flow, probably owing to seed dispersal. The populations were inbred but reproductive viability had been maintained. Conservation and recovery options are discussed. © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 154 , 589–608.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号