首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human population history in Southeast Asia was shaped by numerous migrations and population expansions. Their reconstruction based on archaeological, linguistic or human genetic data is often hampered by the limited number of informative polymorphisms in classical human genetic markers, such as the hypervariable regions of the mitochondrial DNA. Here, we analyse housekeeping gene sequences of the human stomach bacterium Helicobacter pylori from various countries in Southeast Asia and we provide evidence that H. pylori accompanied at least three ancient human migrations into this area: i) a migration from India introducing hpEurope bacteria into Thailand, Cambodia and Malaysia; ii) a migration of the ancestors of Austro-Asiatic speaking people into Vietnam and Cambodia carrying hspEAsia bacteria; and iii) a migration of the ancestors of the Thai people from Southern China into Thailand carrying H. pylori of population hpAsia2. Moreover, the H. pylori sequences reflect iv) the migrations of Chinese to Thailand and Malaysia within the last 200 years spreading hspEasia strains, and v) migrations of Indians to Malaysia within the last 200 years distributing both hpAsia2 and hpEurope bacteria. The distribution of the bacterial populations seems to strongly influence the incidence of gastric cancer as countries with predominantly hspEAsia isolates exhibit a high incidence of gastric cancer while the incidence is low in countries with a high proportion of hpAsia2 or hpEurope strains. In the future, the host range expansion of hpEurope strains among Asian populations, combined with human motility, may have a significant impact on gastric cancer incidence in Asia.  相似文献   

2.
Random insertion mutagenesis is a widely used technique for the identification of bacterial virulence genes. Most strategies for random mutagenesis involve cloning in Escherichia coli for passage of plasmids or for phenotypic selection. This can result in biased selection due to restriction or instability of the cloned DNA, or toxicity of the encoded products. We therefore created two mutant libraries in the human pathogen Helicobacter pylori using a simple, direct mutagenesis technique, which does not require E. coli as intermediate. H. pylori total DNA was digested, circularized and digested again with a frequently cutting restriction enzyme, and the resulting fragments were ligated to a kanamycin antibiotic resistance cassette. Subsequently, the ligation mixture was transformed into the parental H. pylori strain 1061. Insertion of the kanamycin cassette by double homologous recombination into the genome of H. pylori 1061 resulted in approximately 2500 kanamycin resistant colonies. Heterogeneity of kanamycin cassette insertion was confirmed by Southern blotting. The isolation of two independent H. pylori mutants defective in production of urease from this library underlines the potential of this mutagenesis strategy.  相似文献   

3.
The aim of this work was to characterize population changes occurring in aged broth cultures of Helicobacter pylori. Experiments were performed using clinical strains cultured immediately after isolation and after multiple subcultures in solid medium. Morphological changes in the ageing bacteria during a 7-day broth culture were analysed by optical and electron microscopy. The expression of the virulence factor, CagA, together with the presence of the cell cycle regulator, cGMP, were also assessed. The transition from bacillary to coccoid forms was the main morphological change observed in freshly isolated bacteria, together with the increase in cGMP from 1 to 2.25 nmoles/mg of proteins within the first 7 days of broth culture. A similar trend of morphological and physiological changes was observed in cells after multiple subcultures in solid medium with a major presence of large cell clusters. The cagA gene product was always expressed in all experimental conditions evaluated. These data show a significant morphological and physiological diversity in fresh, ageing and aged cultures of H. pylori.  相似文献   

4.
Insertions and deletions are responsible for gaps in aligned nucleotide sequences, but they have been usually ignored when the number of nucleotide substitutions was estimated. We compared six sets of nuclear and mitochondrial noncoding DNA sequences of primates and obtained the estimates of the evolutionary rate of insertion and deletion. The maximum-parsimony principle was applied to locate insertions and deletions on a given phylogenetic tree. Deletions were about twice as frequent as insertions for nuclear DNA, and single-nucleotide insertions and deletions were the most frequent in all events. The rate of insertion and deletion was found to be rather constant among branches of the phylogenetic tree, and the rate (approximately 2.0/kb/Myr) for mitochondrial DNA was found to be much higher than that (approximately 0.2/kb/Myr) for nuclear DNA. The rates of nucleotide substitution were about 10 times higher than the rate of insertion and deletion for both nuclear and mitochondrial DNA.   相似文献   

5.
In free-living microorganisms, such as Escherichia coli and Saccharomyces cerevisiae, both synonymous and nonsynonymous substitution frequencies correlate with expression levels. Here, we have tested the hypothesis that the correlation between amino acid substitution rates and expression is a by-product of selection for codon bias and translational efficiency in highly expressed genes. To this end, we have examined the correlation between protein evolutionary rates and expression in the human gastric pathogen Helicobacter pylori, where the absence of selection on synonymous sites enables the two types of substitutions to be uncoupled. The results revealed a statistically significant negative correlation between expression levels and nonsynonymous substitutions in both H. pylori and E. coli. We also found that neighboring genes located on the same, but not on opposite strands, evolve at significantly more similar rates than random gene pairs, as expected by co-expression of genes located in the same operon. However, the two species differ in that synonymous substitutions show a strand-specific pattern in E. coli, whereas the weak similarity in synonymous substitutions for neighbors in H. pylori is independent of gene orientation. These results suggest a direct influence of expression levels on nonsynonymous substitution frequencies independent of codon bias and selective constraints on synonymous sites. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Nicolas Galtier]  相似文献   

6.
Helicobacter pylori is a human pathogen that colonizes the human gastric mucosa, causing gastritis, duodenal and gastric ulcers, and gastric carcinoma. Here we announce the draft genomes of H. pylori strain 17874, commonly used for studying motility, and P79, a strain for which plasmid vectors have been developed.  相似文献   

7.
P Cary 《CMAJ》1998,158(7):869-870
  相似文献   

8.
Whole-genome clustering of the two available genome sequences of Helicobacter pylori strains 26695 and J99 allows the detection of 110 and 52 strain-specific genes, respectively. This set of strain-specific genes was compared with the sets obtained with other computational approaches of direct genome comparison as well as experimental data from microarray analysis. A considerable number of novel function assignments is possible using database-driven sequence annotation, although the function of the majority of the identified genes remains unknown. Using whole-genome clustering, it is also possible to detect species-specific genes by comparing the two H.pylori strains against the genome sequence of Campylobacter jejuni. It is interesting that the majority of strain-specific genes appear to be species specific. Finally, we introduce a novel approach to gene position analysis by employing measures from directional statistics. We show that although the two strains exhibit differences with respect to strain-specific gene distributions, this is due to the extensive genome rearrangements. If these are taken into account, a common pattern for the genome dynamics of the two Helicobacter strains emerges, suggestive of certain spatial constraints that may act as control mechanisms of gene flux.  相似文献   

9.
10.
Sýkora J  Rowland M 《Helicobacter》2011,16(Z1):59-64
This article reviewed the important publications on Helicobacter pylori research with children between April 2010 and March 2011. The most interesting studies in the last year lend further weight to the evidence for vertical transmission of H. pylori. The discovery of a potential role for jhp0562, the gene which encodes for the cell envelope protein glycosyltransferase, in the progression to peptic ulcer disease is also very interesting as it may provide a novel way to distinguish children at risk of peptic ulcer disease from those who are not, and so determine those who requires treatment to eradicate H. pylori. The rise in non-H. pylori-associated ulcers and erosions continues to be reported with no apparent risk factors for these ulcers identified to date. High levels of treatment failure continue to be reported, and there remains an urgent need for more effective treatment regimes for children.  相似文献   

11.
This review summarizes important pediatric studies published from April 2011 up to March 2012. Proteomics profile of ulcerogenic Helicobacter pylori strains was defined in the most interesting study of the last year. The antigen stool test is becoming the "gold standard" in prevalence studies, and according to the last epidemiologic studies, the prevalence of H.?pylori infection in childhood is not decreasing any more in the developed world. The resistance rate of H.?pylori strains is high in children. Therefore, among other important issues concerning H.?pylori in pediatrics, guidelines published by ESPGHAN and NASPGHAN last year also recommended culture and susceptibility testing before first-line treatment in areas with high or unknown antibiotic resistance rates.  相似文献   

12.
Comparison of open-reading frames (ORFs) H. pylori 26695 and J99 strains has been revealed prevalence of nucleotide replacements as transitions (more than 3%) above transversions (less than 1%). Prevalence of nucleotide transitions is caused by high speed of C : G to T : A transitions in a coding strand of DNA (3.5-5.3%) and not coding strand (2.9-3.9%). The correspondence rate of transversion (A --> C, A --> T, C --> A, C --> G, G --> C, G --> T, T --> A and T --> G) did not exceed 0.84%. The highest correspondence frequency between C and T was detected in ACGT-ATGT (28.3%) - the site of methylation by active methyltransferase M.Hpy99XI in H. pylori 26695 and J99. Thus one can speculate that predominant transition taking place in H. pylori is mutation of C into T, which is realized through cytosine methylation-deamination mechanism.  相似文献   

13.
14.
A search by subtractive hybridization for sequences present in only certain strains of Helicobacter pylori led to the discovery of a 2-kb transposable element to be called IS607, which further PCR and hybridization tests indicated was present in about one-fifth of H. pylori strains worldwide. IS607 contained two open reading frames (ORFs) of possibly different phylogenetic origin. One ORF (orfB) exhibited protein-level homology to one of two putative transposase genes found in several other chimeric elements including IS605 (also of H. pylori) and IS1535 (of Mycobacterium tuberculosis). The second IS607 gene (orfA) was unrelated to the second gene of IS605 and might possibly be chimeric itself: it exhibited protein-level homology to merR bacterial regulatory genes in the first approximately 50 codons and homology to the second gene of IS1535 (annotated as "resolvase," apparently due to a weak short recombinase motif) in the remaining three-fourths of its length. IS607 was found to transpose in Escherichia coli, and analyses of sequences of IS607-target DNA junctions in H. pylori and E. coli indicated that it inserted either next to or between adjacent GG nucleotides, and generated either a 2-bp or a 0-bp target sequence duplication, respectively. Mutational tests showed that its transposition in E. coli required orfA but not orfB, suggesting that OrfA protein may represent a new, previously unrecognized, family of bacterial transposases.  相似文献   

15.
Helicobacter pylori catalase   总被引:15,自引:0,他引:15  
Helicobacter pylori is the major aetiological agent of gastroduodenitis in humans. Due to the potential importance of catalase in the growth and survival of Helicobacter pylori on the surface of inflamed mucosae, we have characterized catalase from H. pylori as a prelude to further studies on the function of the enzyme in vivo. The catalase activity of H. pylori was significantly affected by the presence of blood, serum or erythrocytes in the growth medium: the greatest activity was expressed when the bacterium was grown on medium containing serum. H. pylori catalase is a tetramer with a subunit Mr of 50,000. The enzyme had a pI of 9.0-9.3, was active over a broad pH range and was stable at 56 degrees C. It was non-competitively inhibited by sodium azide, and had no detectable peroxidase activity. The Km for the purified catalase was measured as 43 +/- 3 mM-H2O2 and the V as 60 +/- 3 mmol H2O2 min-1 (mg protein)-1. The native catalase has absorption maxima at 280 nm and 405 nm with further minor shoulders or peaks at 510 nm, 535 nm and 625 nm, consistent with the presence of an iron-porphyrin prosthetic group.  相似文献   

16.
Motility is essential for Helicobacter pylori colonization. This review discusses the biochemistry, genetics and genomics of the H. pylori flagellum, and compares these features with well-characterized bacteria.  相似文献   

17.
Production of a potent urease has been described as a trait common to all Helicobacter pylori so far isolated from humans with gastritis as well as peptic ulceration. The detection of urease activity from genes cloned from H. pylori was made possible by use of a shuttle cosmid vector, allowing replication and movement of cloned DNA sequences in either Escherichia coli or Campylobacter jejuni. With this approach, we cloned a 44-kb portion of H. pylori chromosomal DNA which did not lead to urease activity when introduced into E. coli but permitted, although temporarily, biosynthesis of the urease when transferred by conjugation to C. jejuni. The recombinant cosmid (pILL585) expressing the urease phenotype was mapped and used to subclone an 8.1-kb fragment (pILL590) able to confer the same property to C. jejuni recipient strains. By a series of deletions and subclonings, the urease genes were localized to a 4.2-kb region of DNA and were sequenced by the dideoxy method. Four open reading frames were found, encoding polypeptides with predicted molecular weights of 26,500 (ureA), 61,600 (ureB), 49,200 (ureC), and 15,000 (ureD). The predicted UreA and UreB polypeptides correspond to the two structural subunits of the urease enzyme; they exhibit a high degree of homology with the three structural subunits of Proteus mirabilis (56% exact matches) as well as with the unique structural subunit of jack bean urease (55.5% exact matches). Although the UreD-predicted polypeptide has domains relevant to transmembrane proteins, no precise role could be attributed to this polypeptide or to the UreC polypeptide, which both mapped to a DNA sequence shown to be required to confer urease activity to a C. jejuni recipient strain.  相似文献   

18.
During this review period, we have definitely entered into the genomic era. The Helicobacter pylori studies reported here illustrate the use of most of the technologies currently available to globally interrogate the genome of a pathogen. Global analysis of the gene content of H. pylori strains gives insight into the extent of its genetic diversity and its in vivo evolution. Our understanding of the particularities of H. pylori as a gastric pathogen colonizing a unique niche has been improved by studies aimed at: (i) the identification of H. pylori-specific genes; (ii) the establishment of correlations between the presence of one or a group of genes (or proteins) with clinical outcome; and (iii) the analysis of global regulatory circuits or responses to the extracellular signals. The response of host cells to H. pylori infection will be developed in the chapter 'H. pylori and gastric malignancies' by Sepulveda and Coehlo. Despite our knowledge of the H. pylori genome, the function of about one third of its total proteins is still unknown. Functional genomics are straightforward approaches for the identification of new gene functions or metabolic pathways as well as for the understanding of cellular processes and the detection of new virulence factors. In silico studies combined with experimental work will undoubtedly continue to develop. To date, the expansion of proteomics with refinements in mass spectrometry technology has illustrated that through immunoproteomics and comparative studies, relevant novel antigens can be identified. Genomics not only provides invaluable information on H. pylori but also opens new perspectives for diagnostic or therapeutic applications.  相似文献   

19.
Treatment of Helicobacter pylori   总被引:7,自引:0,他引:7  
  相似文献   

20.
Genomics of Helicobacter pylori   总被引:4,自引:0,他引:4  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号