首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quinoprotein alcohol dehydrogenase (ADH) of acetic acid bacteria is a membrane-bound enzyme that functions as the primary dehydrogenase in the ethanol oxidase respiratory chain. It consists of three subunits and has a pyrroloquinoline quinone (PQQ) in the active site and four heme c moieties as electron transfer mediators. Of these, three heme c sites and a further site have been found to be involved in ubiquinone (Q) reduction and ubiquinol (QH2) oxidation respectively (Matsushita et al., Biochim. Biophys. Acta, 1409, 154-164 (1999)). In this study, it was found that ADH solubilized and purified with dodecyl maltoside, but not with Triton X-100, had a tightly bound Q, and thus two different ADHs, one having the tightly bound Q (Q-bound ADH) and Q-free ADH, could be obtained. The Q-binding sites of both the ADHs were characterized using specific inhibitors, a substituted phenol PC16 (a Q analog inhibitor) and antimycin A. Based on the inhibition kinetics of Q2 reductase and ubiquinol-2 (Q2H2) oxidase activities, it was suggested that there are one and two PC16-binding sites in Q-bound ADH and Q-free ADH respectively. On the other hand, with antimycin A, only one binding site was found for Q2 reductase and Q2H2 oxidase activities, irrespective of the presence of bound Q. These results suggest that ADH has a high-affinity Q binding site (QH) besides low-affinity Q reduction and QH2 oxidation sites, and that the bound Q in the QH site is involved in the electron transfer between heme c moieties and bulk Q or QH2 in the low-affinity sites.  相似文献   

2.
NADH-coenzyme Q reductase from bovine heart mitochondria (complex I) was incorporated into phospholipid vesicles by the cholate dialysis procedure. Mixtures of purified phosphatidylcholine and phosphatidylethanolamine were required. Oxidation of NADH by coenzyme Q1 catalyzed by the reconstituted vesicles was coupled to proton translocation, directed inward, with an H+/2e ratio greater than 1.4. Similar experiments measuring proton translocation in submitochondrial particles gave an H+/2e ratio of 1.8. The proton translocation in both systems was not seen in the presence of uncoupling agents and was in addition to the net proton uptake from the reduction of coenzyme Q1 by NADH. Electron transfer in the reconstituted vesicles also caused the uptake of the permeant anion tetraphenylboron. The rate of electron transfer by the reconstituted vesicles was stimulated about 3-fold by uncouplers or by valinomycin plus nigericin and K+ ions. The results indicate that energy coupling can be observed with isolated NADH-coenzyme Q reductase if the enzyme complex is properly incorporated into a phospholipid vesicle.  相似文献   

3.
The mechanism of ubiquinone homologs reduction by different preparations of mitochondrial NADH dehydrogenase: complex I within submitochondrial particles, isolated NADH-ubiquinone oxidoreductase and soluble low molecular weight NADH dehydrogenase, has been investigated. It has been shown that NADH oxidation via the rotenone-insensitive reaction is associated with one-electron reduction of low molecular weight ubiquinone homologs (Q0, Q1, Q2) to semiquinone with subsequent fast oxidation of the latter by atmospheric oxygen to form a superoxide radical. The two-electron ubiquinone reduction to quinol in the rotenone-sensitive reaction is unaccompanied by the semiquinone release from the enzyme active center into the surrounding solution.  相似文献   

4.
Dimeric ubiquinol:cytochrome c reductase of Neurospora mitochondria was isolated as a protein-Triton complex and free of ubiquinol (Q). The enzyme was incorporated into phosphatidylcholine membranes together with Q. The effects of varying the molar ratio of Q to enzyme on the electron transfer from duroquinol (DHQ2) to the cytochromes c, c1 and b were studied. The rate of electron flow from DQH2 to cytochrome c was 15 times increased by Q and was maximal when one molecule of Q was bound to one enzyme dimer. The apparent Km value for DQH2 of the Q-free enzyme was 5 microM and of the Q-supplemented enzyme 25 microM. The pre-steady-state rate of electron transfer from DQH2 to cytochrome c1 was also 15 times increased by Q and was maximal with one Q molecule bound to one enzyme dimer. This effect of Q was inhibited by antimycin. The pre-steady-state rate of electron transfer from DQH2 to cytochrome b was 5 times decreased when Q was bound to the enzyme and this effect of Q was insensitive to myxothiazol. The H+/2e- stoichiometry with DQH2 as substrate of the Q-supplemented enzyme was 3.6. These results are interpreted in accordance with a Q-cycle mechanism operating in a dimeric cytochrome reductase. Each enzyme monomer catalyses a single electron transfer from the QH2-oxidation centre to the Q-reduction centre and the two monomers cooperate in the reduction of Q to QH2 at one Q-reduction centre. This centre contains two different binding sites for Q. DQH2 does not properly react at the QH2-oxidation centre. DQH2, however, binds to the loose Q-binding site of the Q-reduction centre and reduces the Q bound to the tight Q-binding site of the centre. The QH2 thus formed at the Q-reduction centre serves as electron donor for the QH2-oxidation centre.  相似文献   

5.
Dicyclohexylcarbodi-imide (DCCD) inhibition of NADH: ubiquinone oxidoreductase was studied in submitochondrial particles and in the isolated form, together with the binding of the reagent to the enzyme. DCCD inhibited the isolated enzyme in a time- and concentration-dependent manner. Over the concentration range studied, a maximum inhibition of 85% was attained within 60 min. The time course for the binding of DCCD to the enzyme was similar to that of activity inhibition. The NADH:ubiquinone oxidoreductase activity of the submitochondrial particles was also sensitive to DCCD, and the locus of binding of the inhibitor was studied by subsequent resolution of the enzyme into subunit polypeptides. Only two subunits (molecular masses 13.7 and 21.5 kDa) were labelled by [14C]DCCD, whereas, when the enzyme in its isolated form was treated with [14C]DCCD, six subunits (13.7, 16.1, 21.5, 39, 43 and 53 kDa) were labelled. Comparison with the subunit labelling of F1F0-ATPase and ubiquinol:cytochrome c oxidoreductase indicated that the labelling pattern of NADH:ubiquinone oxidoreductase, and enzyme complex with a multitude of subunits, is unique and not due to contamination by other inner-membrane proteins. The correlation between the electron- and proton-transport functions and the DCCD-binding components remains to be established.  相似文献   

6.
The initial velocity of NADH oxidation by bovine-heart submitochondrial particles was measured at pH 8.0 after pretreatment of these particles with different amounts of the inhibitor piericidine A together with 0.035 mM NADH. The amount of piericidine A required to fully inhibit the NADH oxidation activity extrapolated to exactly 1.0 per Fe-S cluster 2 of NADH:Q oxidoreductase. When no reducing equivalents from NADH were present during the pretreatment, this ratio was 1.2. The difference is explained by assuming that NADH:Q oxidoreductase binds piericidine A more effectively in the reduced state than in the oxidized state. It was also found that after Q10-extraction and reincorporation of submitochondrial particles, the amount of piericidine A required to fully inhibit the NADH oxidation activity of the particles increased with the amount of Q10 present during reincorporation. This is explained by assuming that binding of piericidine A, to the inhibitory site of NADH:Q oxidoreductase requires Q10. When 0.035 mM NADPH instead of NADH was present during the pretreatment of submitochondrial particles with piericidine A, the amount of inhibitor per cluster 2 required to fully inhibit the initial NADH-oxidation activity extrapolated to 0.5. This result strongly suggests that NADH:Q oxidoreductase is a functional dimer.  相似文献   

7.
The flavoprotein rotenone-insensitive internal NADH-ubiquinone (UQ) oxidoreductase (Ndi1) is a member of the respiratory chain in Saccharomyces cerevisiae. We reported previously that bound UQ in Ndi1 plays a key role in preventing the generation of reactive oxygen species. Here, to elucidate this mechanism, we investigated biochemical properties of Ndi1 and its mutants in which highly conserved amino acid residues (presumably involved in NADH and/or UQ binding sites) were replaced. We found that wild-type Ndi1 formed a stable charge transfer (CT) complex (around 740 nm) with NADH, but not with NADPH, under anaerobic conditions. The intensity of the CT absorption band was significantly increased by the presence of bound UQ or externally added n-decylbenzoquinone. Interestingly, however, when Ndi1 was exposed to air, the CT band transiently reached the same maximum level regardless of the presence of UQ. This suggests that Ndi1 forms a ternary complex with NADH and UQ, but the role of UQ in withdrawing an electron can be substitutable with oxygen. Proteinase K digestion analysis showed that NADH (but not NADPH) binding induces conformational changes in Ndi1. The kinetic study of wild-type and mutant Ndi1 indicated that there is no overlap between NADH and UQ binding sites. Moreover, we found that the bound UQ can reversibly dissociate from Ndi1 and is thus replaceable with other quinones in the membrane. Taken together, unlike other NAD(P)H-UQ oxidoreductases, the Ndi1 reaction proceeds through a ternary complex (not a ping-pong) mechanism. The bound UQ keeps oxygen away from the reduced flavin.  相似文献   

8.
Fang J  Beattie DS 《Biochemistry》2002,41(9):3065-3072
A rotenone-insensitive NADH dehydrogenase has been isolated from the mitochondria of the procyclic form of African parasite, Trypanosoma brucei. The active form of the purified enzyme appears to be a dimer consisting of two 33-kDa subunits with noncovalently bound FMN as a cofactor. Hypotonic treatment of intact mitochondria revealed that the NADH dehydrogenase is located in the inner membrane/matrix fraction facing the matrix. The treatment of mitochondria with increasing concentrations of digitonin suggested that the NADH dehydrogenase is loosely bound to the inner mitochondrial membrane. The NADH:ubiquinone reductase activity is insensitive to rotenone, flavone, or dicumarol; however, it was inhibited by diphenyl iodonium in a time- and concentration-dependent manner. Maximum inhibition by diphenyl iodonium required preincubation with NADH to reduce the flavin. More complete inhibition was obtained with the more hydrophobic electron acceptors, such as Q(1) or Q(2), as compared to the more hydrophilic ones, such as Q(0) or dichloroindophenol. Kinetic analysis of the enzyme indicated that the enzyme followed a ping-pong mechanism. The enzyme conducts a one-electron transfer and can reduce molecular oxygen forming superoxide radical.  相似文献   

9.
1. An NADH-ferricyanide reductase activity has been isolated from the respiratory chain of Torulopsis utilis by using detergents. The isolated enzyme contains non-haem iron, acid-labile sulphide and FMN in the molar proportions 27.5:28.4:1. The preparation is free of FAD and largely free of cytochrome. 2. The enzyme catalyses ferricyanide reduction by NADPH at about 1% of the rate with NADH, and reacts poorly with acceptors other than ferricyanide. The rates of reduction of some acceptors are, as percentages of the rate with ferricyanide: menadione, 0.35%; lipoate, 0.01%; cytochrome c, 0.065%; dichlorophenolindophenol, 0.35%; ubiquinone-1, 0.08%. 3. Several properties of submitochondrial particles of T. utilis (non-haem iron, acid-labile sulphide, FMN and an NADH-reducible electron-paramagnetic-resonance signal) were found to co-purify with the NADH-ferricyanide reductase activity. Thus about 70% of the FMN and, within the limits of accuracy of the experiments, 100% of the non-haem iron and acid-labile sulphide of submitochondrial particles derived from T. utilis cells grown under conditions of glycerol limitation (but relatively low iron availability) can be attributed to the NADH-ferricyanide reductase. 4. It was also shown that the component of submitochondrial particles specifically bleached at 460nm by NADH [species 1 of Ragan & Garland (1971)] co-purifies with the NADH-ferricyanide reductase. 5. This successful purification of an NADH dehydrogenase from T. utilis forms a starting point for investigating the molecular properties of phenotypically modified mitochondrial NADH oxidation pathways that lack energy conservation between NADH and the cytochromes.  相似文献   

10.
In contrast to the mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I), which consists of at least 43 different subunits, the internal rotenone-insensitive NADH-quinone oxidoreductase (Ndi1) of Saccharomyces cerevisiae is a single polypeptide enzyme. The NDI1 gene was stably transfected into the human embryonal kidney 293 (HEK 293) cells. The transfected NDI1 gene was then transcribed and translated in the HEK 293 cells to produce the functional enzyme. The immunochemical and immunofluorescence analyses indicated that the expressed Ndi1 polypeptide was located to the inner mitochondrial membranes. The expression of Ndi1 did not alter the content of existing complex I in the HEK 293 mitochondria, suggesting that the expressed Ndi1 enzyme does not displace the endogenous complex I. The NADH oxidase activity of the NDI1-transfected HEK 293 cells was not affected by rotenone but was inhibited by flavone. The ADP/O ratios coupled to NADH oxidation were lowered from 2.4 to 1.8 by NDI1-transfection while the ADP/O ratios coupled to succinate oxidation (1.6) were not changed. The NDI1-transfected HEK 293 cells were able to grow in media containing a complex I inhibitor such as rotenone and 1-methyl-4-phenylpyridinium ion. The potential usefulness of incorporating the Ndi1 protein into mitochondria of human cells is discussed.  相似文献   

11.
The polypeptide composition of isolated mitochondrial NADH:ubiquinone reductase (NADH dehydrogenase) is very similar to that of material immunoprecipitated from detergent-solubilized bovine heart submitochondrial particles by antisera to the holoenzyme. The specificity of the antisera for dehydrogenase polypeptides was determined by immunoblotting, which showed that antisera reacting with only a few proteins were able to immunoprecipitate all others in parallel. The polypeptide compositions of rat, rabbit and human NADH dehydrogenase were determined by immunoprecipitation of the enzyme from solubilized submitochondrial particles and proved to be very similar to that of the bovine heart enzyme, particularly in the high-Mr region. Further homologies in these and other species were explored by immunoblotting with antisera to the holoenzyme and monospecific antisera raised against iron-sulphur-protein subunits of the enzyme.  相似文献   

12.
Ndi1p(internal NADH脱氢酶)是酵母线粒体电子传递链的重要组成部分,参与酵母线粒体呼吸、凋亡等多种生理活动. 本文成功建立了酵母Ndi1p突变表达文库, 随机测序表明,每个基因平均含有2个突变. 利用本文库进行了Ndi1p温度敏感突变筛选, 获得了一定数量的温度敏感型菌株, 并对温度敏感机理做了简单探索. 结果表 明,温度敏感酵母在需要Ndi1p脱氢酶活性的培养基上对温度敏感;有趣的是,这些温度敏感株细胞如果在30 ℃生长但在37 ℃测试不表现出温度敏感性,这暗示高温影响温度敏感Ndi1p的生成, 正常温度下Ndi1p正确构象一旦生成则高温不能引起Ndi1p变性. Ndi1p突变表达文库的建立对于Ndi1p参与的细胞呼吸、凋亡等过程的机理研究将有一定意义.  相似文献   

13.
The addition of NADH to submitochondrial particles inhibited by agents which interrupt electron transport from NADH-Q oxidoreductase (Complex I) to Q10 (rotenone, piericidin A, and MPP+) results in superoxide formation and lipid peroxidation. A study of the quantitative relations now shows that oxyradical formation does not appear to be the direct result of the inhibition. Although tetraphenyl boron (TPB) greatly enhances the inhibition by MPP+, it has no effect on O2. formation or lipid peroxidation. When submitochondrial particles completely inhibited by rotenone or piericidin A are treated with bovine serum albumin to remove spuriously bound inhibitor molecules without affecting those bound at the specific inhibition site, NADH-Q activity remains inhibited and lipid peroxidation occurs but superoxide formation ceases. Thus oxyradical formation may be the result of the binding of inhibitors at sites in the membrane other than those related to the inhibition of electron transport.  相似文献   

14.
A significant consequence of ischemia/reperfusion (I/R) is mitochondrial respiratory dysfunction, leading to energetic deficits and cellular toxicity from reactive oxygen species (ROS). Mammalian complex I, a NADH-quinone oxidoreductase enzyme, is a multiple subunit enzyme that oxidizes NADH and pumps protons across the inner membrane. Damage to complex I leads to superoxide production which further damages complex I as well as other proteins, lipids and mtDNA. The yeast, S. cerevisiae, expresses internal rotenone insensitive NADH-quinone oxidoreductase (Ndi1); a single 56 kDa polypeptide which, like the multi-subunit mammalian complex I, serves as the entry site of electrons to the respiratory chain, but without proton pumping. Heterologous expression of Ndi1 in mammalian cells results in protein localization to the inner mitochondrial membrane which can function in parallel with endogenous complex I to oxidize NADH and pass electrons to ubiquinone. Expression of Ndi1 in HL-1 cardiomyocytes and in neonatal rat ventricular myocytes protected the cells from simulated ischemia/reperfusion (sI/R), accompanied by lower ROS production, and preservation of ATP levels and NAD+/NADH ratios. We next generated a fusion protein of Ndi1 and the 11aa protein transduction domain from HIV TAT. TAT-Ndi1 entered cardiomyocytes and localized to mitochondrial membranes. Furthermore, TAT-Ndi1 introduced into Langendorff-perfused rat hearts also localized to mitochondria. Perfusion of TAT-Ndi1 before 30 min no-flow ischemia and up to 2 hr reperfusion suppressed ROS production and preserved ATP stores. Importantly, TAT-Ndi1 infused before ischemia reduced infarct size by 62%; TAT-Ndi1 infused at the onset of reperfusion was equally cardioprotective. These results indicate that restoring NADH oxidation and electron flow at reperfusion can profoundly ameliorate reperfusion injury.  相似文献   

15.
Apoptosis-inducing factor (AIF) and AMID (AIF-homologous mitochondrion-associated inducer of death) are flavoproteins. Although AIF was originally discovered as a caspase-independent cell death effector, bioenergetic roles of AIF, particularly relating to complex I functions, have since emerged. However, the role of AIF in mitochondrial respiration and redox metabolism has remained unknown. Here, we investigated the redox properties of human AIF and AMID by comparing them with yeast Ndi1, a type 2 NADH:ubiquinone oxidoreductase (NDH-2) regarded as alternative complex I. Isolated AIF and AMID containing naturally incorporated FAD displayed no NADH oxidase activities. However, after reconstituting isolated AIF or AMID into bacterial or mitochondrial membranes, N-terminally tagged AIF and AMID displayed substantial NADH:O2 activities and supported NADH-linked proton pumping activities in the host membranes almost as efficiently as Ndi1. NADH:ubiquinone-1 activities in the reconstituted membranes were highly sensitive to 2-n-heptyl-4-hydroxyquinoline-N-oxide (IC50 = ∼1 μm), a quinone-binding inhibitor. Overexpressing N-terminally tagged AIF and AMID enhanced the growth of a double knock-out Escherichia coli strain lacking complex I and NDH-2. In contrast, C-terminally tagged AIF and NADH-binding site mutants of N-terminally tagged AIF and AMID failed to show both NADH:O2 activity and the growth-enhancing effect. The disease mutant AIFΔR201 showed decreased NADH:O2 activity and growth-enhancing effect. Furthermore, we surprisingly found that the redox activities of N-terminally tagged AIF and AMID were sensitive to rotenone, a well known complex I inhibitor. We propose that AIF and AMID are previously unidentified mammalian NDH-2 enzymes, whose bioenergetic function could be supplemental NADH oxidation in cells.  相似文献   

16.
Preincubation of submitochondrial particles (SMP) from beef heart in a reaction mixture containing low concentrations of Mg2+ induces a time lag in the NADH:oxidase activity. Preconditioning of the SMP by NADH, but not by NAD+, prevents the Mg2+-related time lag. The data obtained show that there exists a tight binding site for Mg2+ regulating the rate of electron transfer from NADH to the natural acceptor. The ability of Mg2+ to form a catalytically inactive complex with the enzyme is regulated by NADH.  相似文献   

17.
Tightly coupled bovine heart submitochondrial particles treated to activate complex I and to block ubiquinol oxidation were capable of rapid uncoupler-sensitive inside-directed proton translocation when a limited amount of NADH was oxidized by the exogenous ubiquinone homologue Q1. External alkalization, internal acidification and NADH oxidation were followed by the rapidly responding (t1/2 < or = 1 s) spectrophotometric technique. Quantitation of the initial rates of NADH oxidation and external H+ decrease resulted in a stoichiometric ratio of 4 H+ vectorially translocated per 1 NADH oxidized at pH 8.0. ADP-ribose, a competitive inhibitor of the NADH binding site decreased the rates of proton translocation and NADH oxidation without affecting -->H+/2e- stoichiometry. Rotenone, piericidin and thermal deactivation of complex I completely prevented NADH-induced proton translocation in the NADH-endogenous ubiquinone reductase reaction. NADH-exogenous Q1 reductase activity was only partially prevented by rotenone. The residual rotenone- (or piericidin-) insensitive NADH-exogenous Q1 reductase activity was found to be coupled with vectorial uncoupler-sensitive proton translocation showing the same -->H+/2e- stoichiometry of 4. It is concluded that the transfer of two electrons from NADH to the Q1-reactive intermediate located before the rotenone-sensitive step is coupled with translocation of 4 H+.  相似文献   

18.
Acetonitrile extracts of cigarette tar inhibit state 3 and state 4 respiration of intact mitochondria. Exposure of respiring submitochondrial particles to acetonitrile extracts of cigarette tar results in a dose-dependent inhibition of oxygen consumption and reduced nicotinamide adenine dinucleotide (NADH) oxidation. This inhibition was not due to a solvent effect since acetonitrile alone did not alter oxygen consumption or NADH oxidation. Intact mitochondria are less sensitive to extracts of tar than submitochondrial particles. The NADH-ubiquinone (Q) reductase complex is more sensitive to inhibition by tar extract than the succinate-Q reductase and cytochrome complexes. Nicotine or catechol did not inhibit respiration of intact mitochondria. Treatment of submitochondrial particles with cigarette tar results in the formation of hydroxyl radicals, detected by electron spin resonance (ESR) spin trapping. The ESR signal attributable to the hydroxyl radical spin adduct requires the presence of NADH and is completely abolished by catalase and to a lesser extent superoxide dismutase (SOD). Catalase and SOD did not protect the mitochondrial respiratory chain from inhibition by tar extract, indicating that the radicals detected by ESR spin trapping are not responsible for the inhibition of the electron transport. We propose that tar causes at least two effects: (1) Tar components interact with the electron transport chain and inhibit electron flow, and (2) tar components interact with the electron transport chain, ultimately to form hydroxyl radicals.  相似文献   

19.
Metabolic flux control analysis of NADH oxidation in bovine heart submitochondrial particles revealed high flux control coefficients for both Complex I and Complex III, suggesting that the two enzymes are functionally associated as a single enzyme, with channelling of the common substrate, Coenzyme Q. This is in contrast with the more accepted view of a mobile diffusable Coenzyme Q pool between these enzymes. Dilution with phospholipids of a mitochondrial fraction enriched in Complexes I and III, with consequent increased theoretical distance between complexes, determines adherence to pool behavior for Coenzyme Q, but only at dilution higher than 1:5 (protein:phospholipids), whereas, at lower phospholipid content, the turnover of NADH cytochrome c reductase is higher than expected by the pool equation.  相似文献   

20.
It was shown that the membrane-bound complex I is fully inactive in the absence of NADH during the reverse electron transfer from succinate to NAD+. The enzyme activation is attained by preincubation of submitochondrial particles with low concentrations of NADH; the activating effect persists after a complete oxidation of the latter during long-term (several hours) aerobic incubation. The experimental results suggest that complex I contains a redox component, whose reduction by NADH and aerobic oxidation are not involved in the overall catalytic reaction. An experimental scheme is proposed, according to which the key role of such a component is ascribed to the tightly bound ubiquinone; the activation and inactivation of the enzyme are due to a slow reversible redox conversion (ubiquinone in equilibrium ubisemiquinone), whereas the catalytic act involves a rapid reversible conversion (ubisemiquinone in equilibrium ubiquinol). It was demonstrated that the "redox" mechanism of the inactivation-activation reaction determines the strong dependence of activity of the reverse electron transfer on the mode of preparation of submitochondrial particles. The coupling properties of the submitochondrial particulate membrane and the activities of enzymes involved in the reverse electron transfer are stable at room temperature for over 14 hours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号