首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heat-shock response of Drosophila involves the vigorous induction of a small number of new messenger RNAs and proteins as well as the repression of most preexisting RNA and protein synthesis. The experiments presented here characterize the kinetics of messenger RNA and protein synthesis at different temperatures and the patterns of induction under a variety of culture conditions. In addition to providing practical information for further studies of the heat-shock response, the data provide some valuable insights into the nature of the response. In particular, the patterns of induction and repression are not simple functions of the degree of temperature elevation, but vary strikingly in different media and depend strongly upon the speed of the temperature increase. Several heat-shock proteins are shown to have very individual induction characteristics with respect to the temperatures at which they are maximally induced, the range of temperatures over which they are synthesized, and the kinetics of their induction. Thus, although this system has often been viewed as a simple, coordinate induction, it now appears that the various heat-shock genes can be, to a rather considerable extent, regulated independently of one another. The evidence further suggests that the patterns of protein synthesis in heat-shocked cells are regulated by mechanisms which act at several different levels of gene expression.  相似文献   

2.
3.
Black beetle virus: messenger for protein B is a subgenomic viral RNA   总被引:16,自引:13,他引:3       下载免费PDF全文
Black beetle virus induces the synthesis of three new proteins, protein A (molecular weight, 104,000), protein α (molecular weight, 47,000), and protein B (molecular weight, 10,000), in infected Drosophila cells. Two of these proteins, A and α, are known to be encoded by black beetle virus RNAs 1 and 2, respectively, extracted from virions. We found that RNA extracted from infected cells directed the synthesis of all three proteins when it was added to a cell-free protein-synthesizing system. When polysomal RNA was fractionated on a sucrose density gradient, the messengers for proteins A and α cosedimented with viral RNAs 1 (22S) and 2 (15S), respectively. However, the messenger for protein B was a 9S RNA (RNA 3) not found in purified virions. Like the synthesis of viral RNAs 1 and 2, intracellular synthesis of RNA 3 was not affected by the drug actinomycin D at concentrations which blocked synthesis of host cell RNA. This indicated that RNA 3 is a virus-specific subgenomic RNA and, therefore, that protein B is a virus-encoded protein.  相似文献   

4.
《Research in virology》1991,142(1):25-31
Three major Mayaro virus proteins of 62, 50 and 34 kDa were detected in Aedes albopictus cells after 48 h postinfection at 28°C. When the infected cells were shifted from 28 to 37°C for 90 min (heat shock conditions), the synthesis of two major heat shock proteins (HSP) 82 and 70 kDa was induced concomitantly with strong inhibition of virus and normal protein synthesis. Total cellular RNA was isolated from mock and infected cells incubated at 28°C or under heat shock. Northern blot analysis with HSP genomic probes from Drosophila sp showed that (1) the probe for HSP 82 hybridized with an RNA of 2.6 kb present only in heat-shocked cells, (2) the HSP 70 probe hybridized with RNA species of 2.5 kb, present only in RNA from heat-shocked cells. These results showed that Mayaro virus was not able to alter the reprogrammation of gene expression induced by heat shock in A. albopictus cells.  相似文献   

5.
Heat shock response of Dictyostelium   总被引:24,自引:0,他引:24  
In response to a shift from 22 to 30°C the relative rate of synthesis of a small number of proteins is dramatically increased in Dictyostelium discoideum. The cells neither grow nor develop at this temperature but die slowly with a half-life of 18 hr. The major protein synthesized in response to a heat shock to 30°C in either growing cells or developing cells has an apparent molecular weight of 70,000 (70K). An increase in the relative rate of synthesis of 70K can be seen as early as 20 min following heat shock. Synthesis of 70K remains high for 4 hr at 30°C and then decreases. Similar kinetics of 70K synthesis occur during recovery at 22°C following a 1-hr heat shock. RNA synthesis during the first half-hour of heat shock is essential for the high rate of 70K measured 2 hr later. By isoelectric focusing the 70K protein can be separated into two spots, one of which overlaps one of the major heat shock proteins of Drosophila melanogaster. The relative rate of synthesis of several other proteins (82K, 60K, 43K) increases less dramatically in Dictyostelium during heat shock at 30°C. A heat shock to 34°C results in rapid synthesis of these proteins but not of 70K. The relative rates of synthesis of most other proteins made at 22°C decreases, most notably that of actin. Synthesis of heat shock proteins at 30°C does not significantly affect viability at 30°C but dramatically prolongs the period of time the cells can survive at 34°C. Thus, 30°C appears to be a stasis condition for Dictyostelium which elicits a response essential for protection from lethal temperatures. The similarity of the heat shock response in Dictyostelium to that in Drosophila and vertebrate cells suggests that certain aspects of the response may be universal in eukaryotes.  相似文献   

6.
Autonomous replication and expression of RNA 1 from black beetle virus   总被引:21,自引:14,他引:7       下载免费PDF全文
Black beetle virions contain two RNAs. The smaller one, RNA 2, has previously been shown to be a messenger for viral coat protein. It is shown here, by infecting sensitized Drosophila cells with the individually purified RNAs, that the larger one, RNA 1, carries the viral gene(s) required for RNA polymerase functions. RNA 2 was dispensible for synthesis of viral RNA 1 and subgenomic RNA 3 but was essential for synthesis of RNA 2 and virions. Cells infected with RNA 1 alone produced RNA 3 in proportions 10- to 20-fold greater than cells infected with virions. This overproduction of RNA 3 decreased with increasing proportions of RNA 2 in the infecting RNA 1. We conclude that RNA 1 is the previously unidentified progenitor of subgenomic RNA 3, whereas RNA 2 regulates the amount of RNA 3 produced in the infected cell.  相似文献   

7.
《Insect Biochemistry》1990,20(3):275-284
The transient synthesis of a class of proteins known as heat shock or stress response proteins was induced when Cf124 cells were incubated at high temperature. When cells were infected with Chilo iridescent virus and simultaneously heat shocked, heat shock protein (hsp) synthesis was delayed, and the shut-off of hsp synthesis was suppressed. In previously heat shocked cells, inhibition of hsp synthesis was dependent upon the multiplicity of infection, however, when infection preceded heat shock, the synthesis of hsp started immediately after heat shock. In all cases, hsp synthesis was dependent upon newly synthesized messenger RNA.  相似文献   

8.
The control of messenger RNA (mRNA) function by micro RNAs (miRNAs) in animal cells requires the GW182 protein. GW182 is recruited to the miRNA repression complex via interaction with Argonaute protein, and functions downstream to repress protein synthesis. Interaction with Argonaute is mediated by GW/WG repeats, which are conserved in many Argonaute-binding proteins involved in RNA interference and miRNA silencing, from fission yeast to mammals. GW182 contains at least three effector domains that function to repress target mRNA. Here, we analyze the functions of the N-terminal GW182 domain in repression and Argonaute1 binding, using tethering and immunoprecipitation assays in Drosophila cultured cells. We demonstrate that its function in repression requires intact GW/WG repeats, but does not involve interaction with the Argonaute1 protein, and is independent of the mRNA polyadenylation status. These results demonstrate a novel role for the GW/WG repeats as effector motifs in miRNA-mediated repression.  相似文献   

9.
《Insect Biochemistry》1989,19(7):679-686
The evolutionary conservation of the heat shock response suggests that plasmids containing promoters from Drosophila heat shock protein (hsp) genes will be useful in the development of gene transfer procedures for cell lines representing a variety of insect species. Conditions for induction of endogenous hsp genes and for expression of the chloramphenicol acetyltransferase (CAT) gene regulated by the Drosophila hsp 70 promoter were examined in Aedes albopictus (mosquito) cells. Five hsps, ranging in size from 27,000 to 90,000 D, were induced in A. albopictus cells during incubation at 41°C in medium containing [35S]methionine. Relative synthesis of these proteins at 37 and 41°C indicated that Aedes hsp 66 is homologous to Drosophila hsp 70. Detection of CAT activity in transfected mosquito cells was enhanced 10-fold under heat shock conditions (6 h, 41°C) based on maximal expression of hsp 66, relative to conditions defined for expression of hsp 70 in Drosophila cells. Analysis of the endogenous heat shock response may be essential to the optimal use of plasmids containing the Drosophila hsp 70 promoter with other insect cell types.  相似文献   

10.
11.
The changes in protein synthesis during differentiation of the cellular slime mold Dictyostelium were studied by SDS-polyacrylamide gel electrophoresis. Total cell protein was analyzed following a 2-hr pulse-label. It was found that during the preaggregation stage, comprising the first third of the developmental cycle, a single major band accounts for more than 20% of the total labeled protein on the gel. This species was produced in at least 5–10-fold lower amounts, relative to total cell protein synthesis, in vegetative cells and in later developing stages. Actin was purified from vegetative cells and was found to correspond to the major band in several respects. The discovery of a single protein being synthesized in such quantity at a specific developmental stage provides a powerful tool for the isolation of a specific messenger RNA molecule and for an intensive study of all the factors involved in regulating protein synthesis in a eukaryotic organism.  相似文献   

12.
13.
《Insect Biochemistry》1990,20(7):679-684
Heat shock protein synthesis is induced in response to a variety of chemical and physical stresses. Among these are heating above normal growing temperatures, treatment with heavy metals, amino acid analogues, steroid hormones and a variety of other chemicals (CRC Crit. Rev. Biochem. 18, 239–280). We have shown previously that heat shock proteins are also synthesized during recovery from prolonged 0°C treatment in Drosophila larval salivary glands. In this paper we describe the cold treatments which induce heat shock protein synthesis in more detail, and show that heat shock mRNA does not accumulate during the cold treatment, but rather during the recovery period when the larvae are returned to 25°C. The implications of these results for the regulation of heat shock mRNA levels, and for the role of heat shock proteins in recovery from cold shock are discussed.  相似文献   

14.
15.
Actinomycin D inhibited the synthesis of poly(A)-containing messenger RNA in healthy soybean (Glycine max [L.] Merr. cv. Harosoy 63) hypocotyls and in hypocotyls inoculated with the pathogenic fungus Phytophthora megasperma var. sojae A. A. Hildb., but had little effect on protein synthesis within 6 hours. Blasticidin S, conversely, inhibited protein synthesis in the hypocotyls without exhibiting significant effects on messenger RNA synthesis. The normal cultivar-specific resistance of the Harosoy 63 soybean hypocotyls to the fungus was completely diminished by actinomycin D or blasticidin S. The fungus grew as well in hypocotyls treated with either inhibitor as it did in the near isogenic susceptible cultivar Harosoy, and production of the phytoalexin glyceollin was concomitantly reduced. The effects of actinomcyin D and blasticidin S were pronounced when the treatments were made at the time of fungus inoculation or within 2 to 4 hours after inoculation, but not after longer times. These results indicated that the normal expression of resistance to the fungus and production of glyceollin both required de novo messenger RNA and protein synthesis early after infection. Furthermore, actinomycin D and blasticidin S also were effective in suppressing resistance expression and glyceollin production in soybean hypocotyls when inoculated with various Phytophthora species that were normally nonpathogenic to the plants. This indicated that the mechanism of general resistance to these normally nonpathogenic fungi also involves de novo messenger RNA and protein synthesis and production of glyceollin.  相似文献   

16.
In vitro synthesis of phase-specific flagellin of Salmonella   总被引:12,自引:0,他引:12  
Chromatography of Salmonella flagellin at pH 8 on DEAE-cellulose separated at least four serologically distinct kinds of flagellin, a, enx, i and 1,2, eluting in that order with increasing concentration of sodium chloride. By this chromatographic technique, the preincubated cell-free extract of Escherichia coli given saltprecipitable RNA of Salmonella was shown to synthesize flagellin characteristic of the flagellar antigen type of the cells from which the RNA was derived. Two of the in vitro synthesized flagellins specifically reacted with their corresponding antiserum.When RNA was extracted from the cells of the diphasic strain propagated from a single colony, expressing either phase 1 or phase 2, the in vitro synthesized flagellin was predominantly the same as that produced by the original colony. Translation of messenger RNA specific for phase 1 flagellin was not inhibited by the presence of messenger RNA specific for phase 2. RNA extracted from the cells of a diphasic strain without any selection directed synthesis of both phase 1 and phase 2 flagellins in the ratio expected if the culture was at equilibrium with respect to phase variation. Experimental evidence is presented to support the hypothesis that phase variation is due to the alternative synthesis of phase-specific messenger RNA.  相似文献   

17.
The Cbf5 protein of Saccharomyces cerevisiae was originally identified as a low-affinity centromeric DNA-binding protein, and cbf5 mutants have a defect in rRNA synthesis. A closely related protein from mammals, NAP57, is a nucleolar protein that coimmunoprecipitates with the nucleolar phosphoprotein Nopp140. To study the function of this protein family in a higher eukaryote that is amenable to genetic approaches, the gene encoding a Drosophilamelanogaster homolog, Nop60B, was identified. The predicted Drosophila protein shares a high degree of sequence identity over a 380-residue region with both the mammalian and yeast proteins, and shares several conserved motifs with the prokaryotic tRNA pseudouridine 55 synthases. Nop60B RNA is found at high levels in nurse cells and in the oocyte, and is present throughout development. Nop60B protein is localized primarily to the nucleolus of interphase cells, and is absent from the chromosomes during mitosis. Nop60B mutants were generated and shown to be homozygous lethal. The Drosophila gene can rescue the lethal phenotype of yeast cbf5 mutations, showing that the function of this protein has been conserved from yeast to Drosophila.  相似文献   

18.
The kinetics of ribonucleic acid (RNA) and protein synthesis in rifampicin-inhibited normal and ethylenediaminetetraacetic acid (EDTA)-treated Escherichia coli was measured. Approximately 200-fold higher external concentrations of rifampicin were needed to produce a level of inhibition in normal cells comparable to that observed in EDTA-treated cells. The rates of RNA and protein synthesis in both kinds of cells decreased exponentially, after an initial lag phase, at all rifampicin concentrations tested. The lag phase was longer and the final exponential slope less for protein synthesis than for RNA synthesis at a given rifampicin concentration. Below certain rifampicin concentrations, both the lag phase and the subsequent exponential decrease in the rates of RNA and protein synthesis were found to be rifampicin concentration dependent. At greater concentrations only the time of the lag phase was decreased by higher rifampicin concentrations, whereas the slope of the exponential decrease in the rates of RNA and protein synthesis was unaffected. In all cases, the exponential decrease continued to at least a 99.8% inhibition of the original rate of synthesis. These in vivo results are consistent with the mode of rifampicin action determined from in vitro studies; rifampicin prevents initiations of RNA polymerase on deoxyribonucleic acid, but not its propagation, by binding the enzyme essentially irreversibly. The results also indicate the size distribution of messenger RNA molecules in E. coli under our conditions.  相似文献   

19.
Structures at the 5′ terminus of poly (A)-containing cytoplasmic RNA and heterogeneous nuclear RNA containing and lacking poly(A) have been examined in RNA extracted from both normal and heat-shocked Drosophila cells. 32P-labeled RNA was digested with ribonucleases T2, T1 and A and the products fractionated by a fingerprinting procedure which separates both unblocked 5′ phosphorylated termini and the blocked, methylated, “capped” termini, known to be present in the messenger RNA of most eukaryotes.Approximately 80% of the 5′-terminal structures recovered from digests of poly(A)-containing Drosophila mRNA are cap structures of the general form m7G5′ppp5′X(m)pY(m)pZp. With respect to the extent of ribose methylation and the base distribution, the 5′-terminal sequences of Drosophila capped mRNA appear to be intermediate between those of unicellular eukaryotes and those of mammals. Drosophila is the first organism known in which type 0 (no ribose methylations), type 1 (one ribose methylation), and type 2 (two ribose methylations) caps are all present. In contrast to mammalian cells, the caps of Drosophila never contain the doubly methylated nucleoside N6,2′-O-dimethyladenosine. Both purines and pyrimidines can be found as the penultimate nucleoside of Drosophila caps and there is a wide variety of X-Y base combinations. The relative frequencies of these different base combinations, and the extent of ribose methylation, vary with the duration of labeling. The large majority of poly(A)-containing cytoplasmic RNA molecules from heat-shocked Drosophila cells are also capped, but these caps are unusual in having almost exclusively purines as the penultimate X base.Greater than 75% of the 5′ termini of heterogeneous nuclear RNA (hnRNA) containing poly(A) and greater than 50% of the termini of hnRNA lacking poly (A) are also capped. Triphosphorylated nucleotides, common as the 5′ nucleotides of mammalian hnRNA, are rare in the poly(A)-containing hnRNA of Drosophila. The frequency of the various type 0 and type 1 cap sequences of cytoplasmic and nuclear poly (A)-containing RNA are almost identical. The caps of hnRNA lacking poly(A) are also quite similar to those of poly-adenylated hnRNA, but are somewhat lower in their content of penultimate pyrimidine nucleosides, suggesting that these two populations of molecules are not identical.  相似文献   

20.
PERSISTENCE OF MESSENGER RNA THROUGH MITOSIS IN HELA CELLS   总被引:11,自引:6,他引:5       下载免费PDF全文
The decrease in protein synthesis which occurs in mammalian cells during cell division is associated with significant disaggregation of polyribosomes. For determining whether messenger RNA survives this disaggregation, the reformation of polyribosomes was investigated in synchronized HeLa cells as they progressed from metaphase into interphase in the presence of 2 µg/ml Actinomycin D. The persistence of messenger during cell division was evidenced by: (1) a progressive increase in the rate of protein synthesis in both treated and untreated cells for 45 min after metaphase; (2) reformation of polyribosomes, as determined by both sucrose gradients and electron microscopy, within 30 min after the addition of Actinomycin D to metaphase cells; (3) the persistence of approximately 50% of the rapidly labeled nonribosomal RNA which had associated with polyribosomes just before metaphase; (4) the resumption of synthesis, following cell division, of 6 selected peptides in Actinomycin-treated cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号