首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high resolution, two-dimensional electrophoresis system for the separation of proteins described by O'Farrell, (O'Farrell, P.H. (1975) J. Biol. Chem. 250, 4007–4021) has been modified for the separation of Acholeplasma laidlawii proteins.Reproducible protein patterns have been obtained from A. laidlawii cell, membrane and soluble protein preparations. The isoelectric focusing of membrane proteins was greatly improved by removing the bulk of the membrane lipid before solubilizing the protein.A. laidlawii peripheral membrane proteins were removed from the membrane by low ionic strength washing and by treatment with EDTA. The effect of an exhaustive EDTA treatment and a rapid, warm EDTA treatment were compared. By comparing the protein patterns obtained in these ways it was possible to distinguish two separate groups of peripheral membrane proteins and one integral membrane protein group. The peripheral membrane proteins which were removed from the membrane at low ionic strength (group I) were also insoluble in Triton X-100, whereas additional peripheral membrane proteins extractable by subsequent EDTA treatment (group II) were soluble in Triton X-100.Exterior-facing membrane proteins were distinguished from the interiorfacing ones by lactoperoxidase-catalyzed iodination of intact cells and membranes. Group I peripheral membrane proteins faced the cell interior whereas group II proteins faced the cell exterior. We counted approximately 320 individual whole cell proteins. Of these, about 140 were membrane associated and a maximum of 40 proteins were iodinated after iodinationg intact cells.A. laidlawii was also grown in the presence of NaH232PO4 and whole cell proteins were separated by two-dimensional gel electrophoresis. One membrane protein and two soluble proteins were labelled.  相似文献   

2.
The outer membrane of Pseudomonas aeruginosa PA01 is permeable to saccharides of molecular weights lower than about 6000. Triton X-100/EDTA-soluble outer membrane proteins were fractionated by ion-exchange chromatography in the presence of Triton X-100 and EDTA, and the protein contents of the various fractions analysed by sodium dodecyl sulphate polyacrylamide gel electrophoresis. Each of the major protein bands present in the Triton X-100/EDTA soluble outer membrane was separated from one another. Adjacent fractions were pooled, concentrated and extensively dialyzed to reduce the Triton X-100 concentration. Vesicles were reconstituted from lipopolysaccharide, phospholipids and each of these dialyzed fractions, and examined for their ability to retain [14C]sucrose. Control experiments indicated that the residual levels of Triton X-100 remaining in the dialyzed fractions had no effect on the formation or permeability to saccharides of the reconstituted vesicles. It was concluded that a major outer membrane polypeptide with an apparent weight of 35,000 is a porin, responsible for the size-dependent permeability of the outer membrane.  相似文献   

3.
The outer membrane of Pseudomonas aeruginosa PA01 is permeable to saccharides of molecular weights lower than about 6000. Triton X-100/EDTA-soluble outer membrane proteins were fractionated by ion-exchange chromatography in the presence of Triton X-100 and EDTA, and the protein contents of the various fractions analysed by sodium dodecyl sulphate polyacrylamide gel electrophoresis. Each of the major protein bands present in the Triton X-100/EDTA soluble outer membrane was separated from one another. Adjacent fractions were pooled, concentrated and extensively dialyzed to reduce the Triton X-100 concentration. Vesicles were reconstituted from lipopolysaccharide, phospholipids and each of these dialyzed fractions, and examined for their ability to retain [14C]sucrose. Control experiments indicated that the residual levels of Triton X-100 remaining in the dialyzed fractions had no effect on the formation or permeability to saccharides of the reconstituted vesicles. It was concluded that a major outer membrane polypeptide with an apparent weight of 35 000 is a porin, responsible for the size-dependent permeability of the outer membrane.  相似文献   

4.
Boar sperm membranes are rather resistent to the solubilizing effect of some detergents. Deoxycholate, an ionic detergent, was efficient in solubilizing sperm proteins but some nonionic detergents like Triton X-100 displayed relatively poor capacity in rendering membrane proteins soluble. This may be due to sperm proteins being attached to submembraneous structures through bonds involving divalent cations, since mixtures of Triton X-100 and ethylenediamine tetraacetic acid (EDTA) were almost as efficient as deoxycholate in solubilizing membrane proteins. Since intact spermatozoa were directly treated with detergents the solubilized proteins comprised a mixture of intracellular and membrane components. To enrich for membrane proteins, affinity chromatography on columns containing different lectins was carried out. SDS polyacryiamide gel electrophoresis of sperm glycoproteins desorbed from the various lectin columns demonstrated that each lectin bound a unique set of components although most glycoproteins were recovered from two or more columns. Columns containing Lens culinaris hemagglutinin yielded more sperm glycoproteins than any of the other lectin columns examined. The predominant amount of the sperm proteins recovered from the Lens culinaris lectin column was membrane derived, as the majority of the proteins were integrated into liposomes. It is concluded that sperm membrane proteins are efficiently solubilized by detergent in the presence of a chelator and that most of the membrane glycoproteins can easily be enriched by affinity chromatography on a lectin column. Proteins obtained in this way should serve as excellent starting material for the isolation of individual sperm membrane proteins.  相似文献   

5.
The localization of the chlorophyll-protein complexes inside the thylakoid membrane of Acetabularia mediterranea was determined by fractionating the chloroplast membrane with EDTA and Triton X-100, by using pronase treatment, and by labeling the surface-exposed proteins with 125I. The effects of the various treatments were established by electrophoresis of the solubilized membrane fractions and electron microscopy. After EDTA and pronase treatment, the membrane structure was still intact. Only the two chlorophyll-protein complexes of 67,000 and 152,000 daltons and an additional polypeptides were found in the membrane before the EDTA and pronase treatment. The 125,000 dalton complex seems to be buried inside the lipid layer. The 23,000 dalton subunit of the 67,000 dalton complex is largely exposed to the surface of the EDTA-insoluble membrane and only the chlorophyll-binding subunit of 21,500 daltons is buried inside the lipid layer.  相似文献   

6.
The membrane nature of squalene oxide cyclase from Saccharomyces cerevisiae was investigated by comparing properties of the enzyme recovered from both microsomes and the soluble fraction of the yeast homogenate. The "apparent soluble" form and microsomal form of the enzyme were both stimulated by the presence of mammalian soluble cytoplasm and corresponded to one another in response to detergents Triton X-100 and Triton X-114. The observed strong dependence of the enzyme activity on the presence of detergents and the behavior of the enzyme after Triton X-114 phase separation were peculiar to a lipophilic membrane-bound enzyme. A study of the conditions required to extract the enzyme from microsomes confirmed the lipophilic character of the enzyme. Microsomes, exposed to ipotonic conditions to remove peripheral membrane proteins, retained most of the enzyme activity within the integral protein fraction. Quantitative dissociation of the enzyme from membranes occurred only if microsomes were treated with detergents (Triton X-100 or octylglucoside) at concentrations which alter membrane integrity. The squalene oxide cyclase was purified 140 times from yeast microsomes by (a) removal of peripheral proteins, (b) extraction of the enzyme from the integral protein fraction with octylglucoside, and (c) separation of the solubilized proteins by DEAE Bio-Gel A chromatography. Removal of the peripheral proteins seemed to be a key step necessary for obtaining high yields.  相似文献   

7.
Nitrobenzylthioinosine, a potent nucleoside-transport inhibitor, binds to high-affinity sites on the human erythrocyte membrane. This binding is a specific interaction with functional nucleoside-transport sites. The protein(s) responsible for high-affinity nitrobenzylthioinosine binding was purified 13-fold by treatment of haemoglobin-free 'ghosts' with EDTA (pH 11.2) to remove extrinsic proteins, extraction of the protein-depleted membranes with Triton X-100 and passage of the soluble extract through a DEAE-cellulose column equilibrated with Triton X-100. Void-volume fractions were collected and treated with Bio-Beads SM-2 to remove detergent. These fractions contained 31% of the starting nitrobenzylthioinosine-binding activity. They also contained D-glucose-sensitive cytochalasin B-binding activity. Nitrobenzylthioinosine binding to the partially purified preparation was saturable (apparent Kd 1.6 nM) and inhibited by nitrobenzylthioguanosine, dipyridamole and uridine. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of pooled void-volume fractions revealed the presence of only two detectable protein bands, the broad zone 4.5 (containing glucose-transport protein) and a small amount of band 7.  相似文献   

8.
Extraction of a partially purified preparation of cell walls from Escherichia coli with the nonionic detergent Triton X-100 removed all cytoplasmic membrane contamination but did not affect the normal morphology of the cell wall. This Triton-treated preparation, termed the “Triton-insoluble cell wall,” contained all of the protein of the cell wall but only about half of the lipopolysaccharide and one-third of the phospholipid of the cell wall. This Triton-insoluble cell wall preparation was used as a starting material in an investigation of several further treatments. Reextraction of the Triton-insoluble cell wall with either Triton X-100 or ethylenediaminetetraacetic acid (EDTA) caused no further solubilization of protein. However, when the Triton-insoluble cell wall was extracted with a combination of Triton X-100 and EDTA, about half of the protein and all of the remaining lipopolysaccharide and phospholipid were solubilized. The material which remained insoluble after this combined Triton and EDTA extraction still retained some of the morphological features of the intact cell wall. Treatment of the Triton-insoluble cell wall with lysozyme resulted in a destruction of the peptidoglycan layer as seen in the electron microscope and in a release of diaminopimelic acid from the cell wall but did not solubilize any cell wall protein. Extraction of this lysozyme-treated preparation with a combination of Triton X-100 and EDTA again solubilized about half of the cell wall protein but resulted in a drastic change in the morphology of the Triton-EDTA-insoluble material. After this treatment, the insoluble material formed lamellar structures. These results are interpreted in terms of the types of noncovalent bonds involved in maintaining the organized structure of the cell wall and suggest that the main forces involved are hydrophobic protein-protein interactions between the cell wall proteins and to a lesser degree a stabilization of protein-protein and protein-lipopolysaccharide interactions by divalent cations. A model for the structure of the E. coli cell wall is presented.  相似文献   

9.
Treatment of a partially purified preparation of cell walls of Escherichia coli with Triton X-100 at 23 C resulted in a solubilization of 15 to 25% of the protein. Examination of the Triton-insoluble material by electron microscopy indicated that the characteristic morphology of the cell wall was not affected by the Triton extraction. Contaminating fragments of the cytoplasmic membrane were removed by Triton X-100, including the fragments of the cytoplasmic membrane which were normally observed attached to the cell wall. Treatment of a partially purified cytoplasmic membrane fraction with Triton X-100 resulted in the solubilization of 60 to 80% of the protein of this fraction. Comparison of the Triton-soluble and Triton-insoluble proteins from the cell wall and cytoplasmic membrane fractions by polyacrylamide gel electrophoresis after removal of the Triton by gel filtration in acidified dimethyl formamide indicated that the detergent specifically solubilized proteins of the cytoplasmic membrane. The proteins solubilized from the cell wall fraction were qualitatively identical to those solubilized from the cytoplasmic membrane fraction, but were present in different proportions, suggesting that the fragments of cytoplasmic membrane which are attached to the cell wall are different in composition from the remainder of the cytoplasmic membrane of the cell. Treatment of unfractionated envelope preparations with Triton X-100 resulted in the solubilization of 40% of the protein, and only proteins of the cytoplasmic membrane were solubilized. Extraction with Triton thus provides a rapid and specific means of separating the proteins of the cell wall and cytoplasmic membrane of E. coli.  相似文献   

10.
The mechanisms of interaction between non-ionic or cationic surfactants with Escherichia coli K-12 cell membranes were studied using an approach based on the registration of changes in the membrane permeability to ethidium bromide, a fluorescent dye for nucleic acids. Triton X-100, a non-ionic detergent, was shown to exert no effect on the permeability of intact cell membranes. Triton X-100 interacted with the bacteria only after treatment with EDTA, a complexing agent for bivalent cations. Cetyltrimethyl ammonium bromide increased the permeability to ethidium bromide and the action of this cationic detergent did not require the pretreatment with the complexing agent. SDS, an anionic detergent, damaged E. coli K-12 and this could be registered by the lowering of intensity of light scattering by the bacterial suspension. The surface charge of E. coli K-12 cells was shown to influence the interaction of ionic detergents with bacterial cell membranes. Its variation by changing the pH of the incubation medium did not make E. coli K-12 sensitive to Triton X-100.  相似文献   

11.
In vivo and in vitro tyrosine sulfation of a membrane glycoprotein   总被引:2,自引:0,他引:2  
A431 cells incorporate 35SO4 into a protein of Mr 61,000 (P61). We examined sulfation of P61 by cells (in vivo) and by a cell-free system (in vitro) which requires only addition of A431 cell membranes and a 3'-phosphoadenosine 5'-phospho[35S]sulfate-generating system prepared from Krebs ascites cells. Sulfate is found exclusively in the form of tyrosine SO4 by two-dimensional high voltage electrophoresis following Pronase digestion. Endoglycosidase F digestion reduces the Mr by 2,000 but does not release the sulfate, indicating that P61 is a glycoprotein but that sulfate is not incorporated into the carbohydrate. Sulfated P61 is not found in the medium from cultured cells and remains associated with the membrane fraction following cell lysis. Treatment of membranes with 0.4 M NaCl, 0.3 M KCl, 15 mM EDTA, or pH 11.0 does not release sulfated P61. P61 is solubilized by Triton X-114 treatment of membranes and partitions into the detergent phase upon warming. Based on these characteristics, we conclude that P61 is an integral membrane protein. Trypsin digestion experiments with intact cells suggest that sulfated P61 is predominantly located in the plasma membrane. This is the first example of an integral membrane protein which is sulfated on tyrosine. The properties of the sulfation reaction are distinct from those reported for secreted proteins and are consistent with the possibility that this modification occurs at the plasma membrane rather than in the Golgi.  相似文献   

12.
Cilia isolation methods were modified to retain respiratory tract ciliary membranes and to identify accessible surface components. Prior to isolation of cilia, halves of cow tracheae were treated with the extended spacer arm analog of N-hydroxysuccinimido-biotin (NHS-LC-biotin) to label accessible membrane constituents. Mechanical disruption of the epithelium and substitution of CHAPS for Triton X-100 provided a good yield of cilia with membranes and with minimal contamination. Subsequent extraction of these cilia with Triton X-100 solubilized the membranes and released soluble matrix proteins. Proteins of membrane + matrix and axoneme fractions were analyzed after electrophoresis in sodium dodecyl sulfate polyacrylamide gels. The major biotin-labeled components in the membrane + matrix fraction were 105, 98, and 92 kd, were glycosylated, and remained with reconstituted, pelleted membrane vesicles along with the major non-biotinylated protein at 51 kd. Other membrane + matrix proteins at 126 and 76 kd bound streptavidin even from nonlabeled trachea, but remained soluble. Several biotin-labeled proteins distinct from those in the membrane fraction remained with Triton X-100-extracted axonemes. Streptavidin-colloidal-gold (SAG) particles appeared to bind randomly along the length of cilia. The peripheral join between A and B microtubules was a predominant nonspecific location of SAG on axonemes. Axonemes with biotin label also bound significant numbers of SAG to outer dynein arms, confirming the streptavidin reaction with separated proteins on transfers. These results suggest close association of the membrane with the axoneme in respiratory tract cilia and a membrane composition somewhat different from protozoan cilia.  相似文献   

13.
14.
Rat liver inner mitochondrial membranes have been subjected to the solubilizing action of the non-ionic detergent Triton X-100 under a variety of ionic strength and temperature conditions. Increasing ionic strength has little influence on the amount of solubilized membrane protein and lipid phosphorus. Calcium chloride actually increases the proportion of solubilized protein. This effect is preserved by 1 mM EDTA. Increasing temperatures tend to decrease the proportion of protein solubilized by the detergent. SDS-polyacrylamide gel electrophoresis fails to reveal any difference in polypeptide composition of the membrane fraction solubilized under the various conditions. However, differences are observed in the solubilization of individual cytochromes. The data are interpreted in terms of changes in membrane architecture induced by the various conditions of the incubation medium.  相似文献   

15.
The peripheral membrane protein fraction released by washing Acholeplasma laidlawii membranes with low-ionic strength buffers contained about 50% of the total membrane-bound ribonuclease and deoxyribonuclease activities. The ATPase, NADH oxidase and p-nitrophenylphosphatase activities remained bound to the membrane even when EDTA was added to the wash fluids, and thus appear to belong to the integral membrane protein group. Serving as a marker for peripheral membrane proteins, the membrane-bound ribonuclease activity was solubilized by bile salts much more effectively than the integral membrane-bound enzymes. On the other hand, the solubilized ribonuclease showed a much lower capacity to reaggregate with other solubilized membrane components to membranous structures. Yet, most of the ribonuclease molecules which were bound to the reaggregated membranes could not be released by low-ionic strength buffer. The reaggregated membranes differed from the native membranes in the absence of particles on their fracture faces obtained by freeze cleaving, and by their much higher labeling by the [125-I]lactoperoxidase iodination system. These results suggest that most of the proteins are exposed on the reaggregated membrane surfaces, with very little, if any, protein embedded in its lipid bilayer core. Enzyme disposition in the A. laidlawii membrane was studied by comparing the activity of isolated membranes with that of membranes of intact cells after treatment with pronase or with an antiserum to membranes. The data indicate the asymmetrical disposition of these activities, the ATPase and NADH oxidase being localized on the inner membrane surface, while the nucleases are exposed on the external membrane surface.  相似文献   

16.
Treatment of both transverse tubules and terminal cisternae with a combination of Triton X-100 and hypertonic K cacodylate causes dissolution of nonjunctional proteins and selective retention of membrane fragments which are capable of junction formation. Treatment of vesicles with Triton X-100 and either KCl or K gluconate causes complete dissolution of all components. Therefore K cacodylate exerts a specific preservative action on the junctional material. The membrane fragment from treatment of transverse tubules with Triton X-100 + cacodylate contains a protein of Mr = 80,000 in SDS gel electrophoresis as the predominant protein while lipid composition is enriched in cholesterol. The membrane fragment retains in electron microscopy the trilaminar appearance of the intact vesicles. Freeze fracture of transverse tubule fragments reveals a high density of low-profile, intercalated particles, which frequently form strings or occasional small arrays. The fragments from Triton X-100 plus cacodylate treatment of terminal cisternae include the protein of Mr = 80,000 as well as the spanning protein of the triad, calsequestrin, and some minor proteins. The fragments are almost devoid of lipid and display an amorphous morphology suggesting membrane disruption. The ability of the transverse tubular fragment, which contains predominantly the Mr = 80,000 protein, to form junctions with terminal cisternae fragments suggests that it plays a role in anchoring the membrane to the junctional processes of the triad. The junctional proteins may be solubilized in a combination of nonionic detergent and hypertonic NaCl. Subsequent molecular sieve chromatography gives an enriched preparation of the spanning protein. This protein has subunits of Mr = 300,000, 270,000 and 140,000 and migrates in the gel as a protein of Mr = 1.2 X 10(6) indicating a polymeric structure.  相似文献   

17.
A major step in purifying membrane bound proteins involves the solubilization of the protein of interest from the cell membranes. Glycosylphosphatidyl inositol (GPI)-anchored proteins pose a singular problem in this solubilization step since they are found in detergent-resistant membrane complexes and accordingly are insoluble in cold Triton X-100. In this study we have developed a modified cell ELISA that determines the solubility of these cell surface proteins under various solubilization conditions. Using this non-radioactive method we show that the combination of saponin/Triton X-100 at 4 degrees C solubilized GPI-anchored proteins more efficiently than Triton X-100 at 4 degrees C. The combination of saponin/Triton X-100 at 4 degrees C avoids the potential of activating proteases that occurs when using Triton X-100 at 37 degrees C. Furthermore, our method also shows the saponin/Triton X-100 solubilized GPI-anchored proteins equivalent to the more expensive octyl beta-glucoside. This is a particularly important consideration in large-scale protein purification. This method obviates the need to use radioactivity, gel electrophoresis and immunoblotting procedures. The solubilization conditions determined by this modified ELISA are readily translated to the practical application of large-scale protein purification as demonstrated in the purification of two different recombinant GPI-anchored proteins, GPI-hB7-1 (CD80) and GPI-mICAM-1 (CD54).  相似文献   

18.
Human peripheral blood lymphocytes were surface-iodinated, treated with neuraminidase from Vibrio cholerae and lysed with non-ionic detergent. In addition, surface membrane fractions were isolated from surface-iodinated cells in the absence of detergents and treated with neuraminidase after membrane isolation. The effect of neuraminidase treatment on the membrane proteins was studied by two-dimensional gel electrophoresis. One surface-labelled protein of 45 000 molecular weight which is characterized by its association with the detergent-resistant matrix of the cells and by its specific enrichment in an isolated membrane fraction, was found to be particularly sensitive to neuraminidase treatment both of intact cells and isolated membranes. A prominent labelled protein of apparent molecular weight of 60 000 is observed in the soluble fraction after neuraminidase treatment of intact cells. The analogous protein is detected when isolated membrane fractions are treated with neuraminidase.  相似文献   

19.
Schwann cells cocultured with sensory neurons in a serum-free medium accumulate a single species of radiolabeled heparan sulfate proteoglycan (HS-PG) during incubation in medium containing 35SO4. This HS-PG was poorly extracted from cultures by solutions containing 1% Triton X-100 in low salt buffer or by solutions containing 1 M KCl, 4 M urea plus dithiothreitol, 1 mM Tris-HCl, 5 mM EDTA, or 100 micrograms/ml of heparin. The HS-PG was efficiently extracted, however, by 1% Triton X-100 in the presence of 1 M KCl or by 1% deoxycholate. These treatments solubilize both cell membranes and the Schwann cell cytoskeleton. In intact cells the HS-PG was digested by trypsin, indicating it was at least partially exposed on the cell surface. When solubilized HS-PG was applied to a column of octyl-sepharose CL-4B, more than 90% was retained by the column, but was quantitatively eluted by a solution containing 1% Triton X-100. In addition, the solubilized HS-PG could be incorporated into artificial phospholipid vesicles. These results indicate the HS-PG is an integral plasma membrane protein. The inability of low ionic strength solutions containing Triton X-100 to solubilize the HS-PG suggested it was bound to an additional structure. To determine whether the HS-PG was associated with the cytoskeleton we isolated cytoskeletons by detergent lysis of cells and centrifugation. The major protein components of isolated cytoskeletons were spectrin (Mr 225,000), vimentin (Mr 58,000), and actin (Mr 45,000). When 35SO4-labeled cells were used to prepare cytoskeletons approximately 80% of the total HS-PG was recovered in the cytoskeleton fraction. These results suggest the HS-PG is an externally exposed integral plasma membrane protein that is anchored to the Schwann cell cytoskeleton.  相似文献   

20.
To identify integral and peripheral membrane proteins, highly purified coated vesicles from bovine brain were exposed to solutions of various pH, ionic strength, and concentrations of the nonionic detergent Triton X-100. At pH 10.0 or above most major proteins were liberated, but four minor polypeptides sedimented with the vesicles. From quantitative analysis of phospholipids in the pellet and extract, we determined that at a pH of up to 12 all phospholipids could be recovered in the pellet. Electron microscopic examination of coated vesicles at pH 12.0 showed all vesicles devoid of coat structures. Treatment with high ionic strength solutions (0-1.0 M KCl) at pH 6.5-8.5 also liberated all major proteins, except tubulin, which remained sedimentable. The addition of Triton X-100 to coated vesicles or to stripped vesicles from which 90% of the clathrin had been removed resulted in the release of four distinct polypeptides of approximate Mr 38,000, 29,000, 24,000 and 10,000. The 38,000-D polypeptide (pK approximately 5.0), which represents approximately 50% of the protein liberated by Triton X-100, appears to be a glycoprotein on the basis of its reaction with periodic acid-Schiff reagent. Extraction of 90% of the clathrin followed by extraction of 90% of the phospholipids with Triton X-100 produced a protein residue that remained sedimentable and consisted of structures that appeared to be shrunken stripped vesicles. Together our data indicate that most of the major polypeptides of brain coated vesicles behave as peripheral membrane proteins and at least four polypeptides behave as integral membrane proteins. By use of a monoclonal antibody, we have identified one of these polypeptides (38,000 mol wt) as a marker for a subpopulation of calf brain coated vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号