首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
U.v. irradiation of human NB-E cells results in enhanced mutagenesis and enhanced reactivation of u.v.-irradiated H-1 virus grown in those cells ( Cornelis et al., 1982). This paper reports a similar study using herpes simplex virus (HSV) in NB-E cells. The mutation frequency of HSV (resistance of virus plaque formation to 40 micrograms/ml iododeoxycytidine ) increased approximately linearly with exposure of the virus to u.v. radiation. HSV grown in unirradiated cells gave a slope of 1.8 X 10(-5)m2/J, with 3.2 X 10(-5)m2/J for HSV grown in cells irradiated (3 J/m2) 24 h before infection. There was no evidence for mutagenesis of unirradiated virus by irradiated cells, as seen with H-1 virus. Enhanced reactivation of irradiated HSV in parallel cultures increased virus survival, manifested as a change in slope of the final component of the two-component survival curve from a D0 of 27 J/m2 in unirradiated cells to 45 J/m2 in irradiated cells. Thus, enhanced mutagenesis and enhanced reactivation occurred for irradiated HSV in NB-E cells. The difference in the enhanced mutagenesis of HSV (dependent on damaged DNA sites) and of H-1 virus (primarily independent of damaged DNA sites) is discussed in terms of differences in DNA polymerases.  相似文献   

2.
Simian virus 40 (SV40) irradiated with U.V. or van de Graaff electrons was assayed on CV-1 monkey cells irradiated with U.V. before virus infection. U.V.-irradiated cells enhanced the survival of U.V.-irradiated virus, while little or no enhancement was observed for electron-irradiated virus assayed on U.V.-irradiated cells. It is suggested that the U.V.-irradiated cells are able to increase the repair of U.V.-damaged viral DNA, but not of electron-damaged DNA.  相似文献   

3.
An enhanced reactivation (UVER) of U.V.-irradiated as well as of gamma-irradiated human adenovirus type 2 (Ad 2) was detected following infection of normal human fibroblasts which had been pre-irradiated with U.V. light. U.V.-irradiated or non-irradiated fibroblasts were infected with either non-irradiated or irradiated Ad 2, and at 48 hours after infection cells were examined for the presence of viral structural antigens (Vag) using immunofluorescent staining. Results obtained using 5 different normal fibroblast strains showed that irradiation of host monolayers with 10J/m2 immediately prior to infection gave a U.V. enhanced reactivation (UVER) factor +/- standard error equal to 3 . 1 +/- 1 . 2 for virus U.V.-irradiated with 1 . 2 x 10(3) J/m2, and 2 . 1 +/- 0 . 5 for virus gamma-irradiated with 2 x 10(4) Gy. For a fixed survival of about 5 . 9 x 10(-2) for irradiated virus, the efficiency of UVER for gamma-irradiated virus was about 0 . 18, slightly less than the value of about 0 . 24 obtained for U.V.-irradiated virus. The results of time course experiments indicated that while U.V.-irradiation of normal host monolayers prior to infection gave rise to an increased rate of Vag formation for infection by unirradiated Ad 2, U.V.-irradiation of the cells increased the proportion of cells able to repair U.V.-damaged virus as well as allowing an earlier onset and/or increased rate of synthesis of Vag from a U.V.-damaged template. Similar experiments involving gamma-ray enhanced reactivation (gamma-RER) of irradiated Ad 2 indicated that gamma-RER and UVER may operate, in part at least, by different mechanisms in normal human cells.  相似文献   

4.
Human and rat cells transfected with UV-irradiated linear double-stranded DNA from calf thymus displayed a mutator activity. This phenotype was identified by growing a lytic thermosensitive single-stranded DNA virus (parvovirus H-1) in those cells and determining viral reversion frequencies. Likewise, exogenous UV-irradiated closed circular DNAs, either double-stranded (simian virus 40) or single-stranded (phi X174), enhanced the ability of recipient cells to mutate parvovirus H-1. The magnitude of mutator activity expression increased along with the number of UV lesions present in the inoculated DNA up to a saturation level. Unirradiated DNA displayed little inducing capacity, irrespective of whether it was single or double stranded. Deprivation of a functional replication origin did not impede UV-irradiated simian virus 40 DNA from providing rat and human cells with a mutator function. Our data suggest that in mammalian cells a trans-acting mutagenic signal might be generated from UV-irradiated DNA without the necessity for damaged DNA to replicate.  相似文献   

5.
The survival of u.v.-irradiated human cytomegalovirus (HCMV) on u.v.-irradiated human IAFP-1 cells was increased over that on unirradiated cells. Irradiated virus had a higher forward mutation frequency towards temperature sensitivity in irradiated than in unirradiated cells. Enhanced reactivation of u.v.-irradiated HCMV is thus mutagenic in normal human cells. This observation supports the possible induction of an error-prone mode of DNA repair in u.v.-irradiated mammalian cells.  相似文献   

6.
Indirect prophage induction is produced by transfer to recipients of u.v.-damaged F plasmid (95 kb). We tested whether the SOS signal can be produced by miniF, a 9.3 kb restriction fragment, coding for the replication and segregation functions of plasmid F. We used λminiF, a hybrid phage-plasmid. u.v.-irradiated λminiF induced prophages φ80 or λ and sfiA, a chromosomal SOS gene, in more than 50% of the infected cells. The maximal inducing dose produced about 0.5 pyrimidine dimers per kb and left 1% of λminiF survivors. Thus, the SOS signal produced by u.v.-damaged λminiF was almost as potent as that resulting from direct u.v.-irradiation of the lysogens. The u.v.-damaged vector λ, devoid of miniF, failed to promote SOS induction. In contrast, efficient induction was observed when u.v.-damaged λminiF infected a λ immune host, in which replication and expression of the phage genome were repressed. When replication and expression of the miniF genome was repressed by Hfr incompatibility, SOS induction was largely prevented. All these facts indicate that, in the hybrid λ-miniF, it is the u.v.-damaged miniF that generates an SOS signal.To locate on the miniF genome the loci that are involved in the production of the SOS signal, we isolated deletions spanning all the miniF restriction fragments. We characterized six mutant phenotypes (Par+, Rep?, Fid?, Par-2, Par-1 and SOS?) related to four functions; partition, copy number, replication and SOS induction. A locus, we call lynA, 800bp long, located by deletion mapping between the two origins of replication oriP and oriS is required for the production of an inducing signal.We postulate that indirect SOS induction by u.v.-damaged miniF results from the disturbance of the lynA function that may be involved in the co-segregation of F plasmid with the host chromosome.  相似文献   

7.
Bacteriophage C5 of Pseudomonas aeruginosa is able to reactivate ultraviolet (u.v.)-irradiated phage E79 in coinfection experiments and decrease the u.v.-sensitivity of a host-cell reactivation deficient mutant. These properties suggest that phage C5 has a gene(s) which is involved in the repair of u.v.-damaged DNA. The isolation of two u.v.-sensitive mutants of C5 supports this hypothesis.  相似文献   

8.
The RecA protein of Escherichia coli is required for SOS-induced mutagenesis in addition to its recombinational and regulatory roles. We have suggested that RecA might participate directly in targeted mutagenesis by binding preferentially to the site of the DNA damage (e.g. pyrimidine dimer) because of its partially unwound nature; DNA polymerase III will then encounter RecA-coated DNA at the lesion and might replicate across the damaged site more often but with reduced fidelity. In support of this proposal, we have found that the phenotype of wild-type and mutant RecA for mutagenesis correlates with capacity to bind to double-stranded DNA. Wild-type RecA binds more efficiently to ultraviolet (u.v.)-irradiated, duplex DNA than to non-irradiated DNA. The RecA441 (Tif) protein that is constitutive for mutagenesis binds extremely well to double-stranded DNA with no lesions, whereas the RecA430 protein that is defective in mutagenesis binds poorly even to u.v.-irradiated DNA. The RecA phenotype also correlates with capacity to use duplex DNA as a cofactor for cleavage of the LexA repressor protein for SOS-controlled operons. Wild-type RecA provides efficient cleavage of LexA only with u.v.-irradiated duplex DNA; RecA441 cleaves well with non-irradiated DNA; RecA430 gives very poor cleavage even with u.v.-irradiated DNA. We conclude that the interaction of RecA with damaged double-stranded DNA is likely to be a critical component of SOS mutagenesis and to define a pathway for the LexA cleavage reaction as well.  相似文献   

9.
Parvovirus H-1 has been shown to suppress spontaneous and chemically or virally induced tumorigenesis in hamsters. In human cell culture systems propagation of H-1 is restricted to transformed cells, which are killed by H-1 infection, in contrast to normal diploid cells, which are nonpermissive for H-1. By analyzing the permissiveness of a variety of human cells for H-1, it was determined that the majority of tested transformed or immortalized cells which were permissive for H-1 contained the DNA of oncogenic viruses (human papillomavirus, simian virus 40, adenovirus, hepatitis B virus, Epstein-Barr virus, and human T-cell lymphotropic virus type I). Of six transformed cell lines negative for persisting tumor virus DNA, only two were permissive for H-1, while two were semipermissive and two were nonpermissive. Thus, persistence and expression of tumor virus functions appears to promote full permissiveness for H-1 in human cells. However, neither expression of genes of specific viral genomes nor the transformed state of apparently virus-free cells alone was sufficient to render human cells permissive for H-1. Therefore, the effect of tumor virus functions on H-1 in transformed cells seems to be indirect, probably mediated by cellular factors which are induced or switched off during the transformation process. It appears that similar factors are induced or switched off by 5-azacytidine or calcium phosphate, both known inducers of cellular gene expression.  相似文献   

10.
Sequence analysis of ultraviolet-induced mutations in M13lacZ hybrid phage DNA   总被引:28,自引:0,他引:28  
We have studied the specificity of ultraviolet (u.v.) mutagenesis in single-stranded DNA phage by analyzing u.v.-induced forward mutations in the lac insert of M13mp2 hybrid phage. Sequence analysis of 114 lac mutants derived from u.v.-irradiated phage grown in u.v.-irradiated cells showed that ultraviolet induces mainly single-nucleotide substitutions and deletions in progeny phage DNA. A total of 74% of the single-base substitution mutations occurred at sites of adjacent pyrimidines in the single-stranded DNA, with both T----C and C----T transitions predominating in the u.v. spectrum. Single-nucleotide deletion mutations occurred preferentially in tracts of repeated pyrimidine nucleotides. Tandem, double-base substitutions did not represent a major class of u.v.-induced mutations, but nearly 10% of mutant clones contained multiple, non-tandem nucleotide changes.  相似文献   

11.
An enhanced reactivation of γ-irradiated human adenovirus type 2 (Ad 2) was detected following the infection of normal human fibroblasts which had been pre-irradiated with γ-rays. γ-irradiated or non-irradiated fibroblasts were infected with either non-irradiated or γ-irradiated Ad 2, and at 48 hours after infection cells were examined for the presence of viral structural antigens (Vag) using immunofluorescent staining. Pre-irradiation of the cells with 1 Krad immediately prior to infection resulted in a 5 to 15 fold increase in the survival of this viral function following different γ doses to the virus up to 3 Mrad. For a fixed γ dose of 2 Mrad to the virus this enhancement increased with pre-irradiation dose to the cells up to a maximum factor of 5 to 30 for a dose of 2 Krad. When infection was delayed until 48 hours after irradiation of the cells, this enhancement was reduced to about half the level found for immediate infection.  相似文献   

12.
Morphologically altered and established human fibroblasts, obtained either by 60Co gamma irradiation, treatment with the carcinogen 4-nitroquinoline 1-oxide, or simian virus 40 (SV40) infection, were compared with their normal finite-life parental strains for susceptibility to the autonomous parvoviruses H-1 virus and the prototype strain of minute virus of mice (MVMp). All transformed cells suffered greater virus-induced killing than their untransformed progenitors. The cytotoxic effect of H-1 virus was more severe than that of MVMp. Moreover, the level of viral DNA replication was much (10- to 85-fold) enhanced in the transformants compared with their untransformed parent cells. Thus, in this system, cell transformation appears to correlate with an increase in both DNA amplification and cytotoxicity of the parvoviruses. However, the accumulation of parvovirus DNA in the transformants was not always accompanied by the production of infectious virus. Like in vitro-transformed fibroblasts, a fibrosarcoma-derived cell line was sensitive to the killing effect of both H-1 virus and MVMp and amplified viral DNA to high extents. The results indicate that oncogenic transformation can be included among cellular states which modulate permissiveness to parvoviruses under defined growth conditions.  相似文献   

13.
The rat parvovirus H-1PV is a promising anticancer agent given its oncosuppressive properties and the absence of known side effects in humans. H-1PV replicates preferentially in transformed cells, but the virus can enter both normal and cancer cells. Uptake by normal cells sequesters a significant portion of the administered viral dose away from the tumor target. Hence, targeting H-1PV entry specifically to tumor cells is important to increase the efficacy of parvovirus-based treatments. In this study, we first found that sialic acid plays a key role in H-1PV entry. We then genetically engineered the H-1PV capsid to improve its affinity for human tumor cells. By analogy with the resolved crystal structure of the closely related parvovirus minute virus of mice, we developed an in silico three-dimensional (3D) model of the H-1PV wild-type capsid. Based on this model, we identified putative amino acids involved in cell membrane recognition and virus entry at the level of the 2-fold axis of symmetry of the capsid, within the so-called dimple region. In situ mutagenesis of these residues significantly reduced the binding and entry of H-1PV into permissive cells. We then engineered an entry-deficient viral capsid and inserted a cyclic RGD-4C peptide at the level of its 3-fold axis spike. This peptide binds α(v)β(3) and α(v)β(5) integrins, which are overexpressed in cancer cells and growing blood vessels. The insertion of the peptide rescued viral infectivity toward cells overexpressing α(v)β(5) integrins, resulting in the efficient killing of these cells by the reengineered virus. This work demonstrates that H-1PV can be genetically retargeted through the modification of its capsid, showing great promise for a more efficient use of this virus in cancer therapy.  相似文献   

14.
Experiments were performed to examine the role of cyclobutyl pyrimidine dimers in the process of mutagenesis by ultraviolet (u.v.) light. Lambda phage DNA was irradiated with u.v. and then incubated with an Escherichia coli photoreactivating enzyme, which monomerizes cyclobutyl pyrimidine dimers upon exposure to visible light. The photoreactivated DNA was packaged into lambda phage particles, which were used to infect E. coli uvr- host cells that had been induced for SOS functions by ultraviolet irradiation. Photoreactivation removed most toxic lesions from irradiated phage, but did not change the frequency of induction of mutations to the clear-plaque phenotype. This implies that cyclobutyl pyrimidine dimers can be lethal, but usually do not serve as sites of mutations in the phage. The DNA sequences of mutants derived from photoreactivated DNA showed that almost two-thirds (16/28) were transitions, the same fraction found for u.v. mutagenesis without photoreactivation. These results show that in this system, the lesion inducing transitions (the major type of u.v.-induced mutation) is not the cyclobutyl pyrimidine dimer; a strong candidate for a mutagenic lesion is the Pyr(6-4)Pyo photoproduct. On the other hand, photoreactivation of SOS-induced host cells before infection with u.v.-irradiated phage reduced mutagenesis substantially. In this case, photoreversal of cyclobutyl dimers serves to reduce expression of the SOS functions that are required in the process of targeted u.v. mutagenesis.  相似文献   

15.
We have used bacteriophage lambda to characterize the mutator effect of the SOS response induced by u.v. irradiation of Escherichia coli. Mutagenesis of unirradiated phages grown in irradiated or unirradiated bacteria was detected by measuring forward mutagenesis in the immunity genes or reversion mutagenesis of an amber codon in the R gene. Relative to the wild-type, the SOS mutator effect was higher in E. coli mismatch correction-deficient mutants (mutH, mutL and mutS) and lower in an adenine methylation-deficient mutant ( dam3 ). We conclude that a large proportion of SOS-induced 'untargeted' mutations are removed by the methyl-directed mismatch correction system, which acts on newly synthesized DNA strands. The lower SOS mutator effect observed in E. coli dam mutants may be due to a selective killing of mismatch-bearing chromosomes resulting from undirected mismatch repair. The SOS mutator effect on undamaged lambda DNA, induced by u.v. irradiation of the host, appears to result from decreased fidelity of DNA synthesis.  相似文献   

16.
UV irradiation of simian virus 40 (SV40)-transformed human and hamster cells induced them both to express a mutator phenotype and to produce SV40. The mutator could also be activated indirectly by transfecting unirradiated cells with UV-damaged calf thymus DNA. In contrast, UV-damaged exogenous DNA failed to rescue SV40 from unirradiated transformed cells. These results suggest that the expression of transforming viruses and of cellular mutator functions is regulated by at least partially independent mechanisms. Unlike the activation of a cellular mutator phenotype, the rescue of SV40 from virus-transformed mammalian cells by UV light might require that the integrated viral DNA and/or specific cellular sequences are directly damaged.  相似文献   

17.
Membrane-specific drugs such as procaine and chlorpromazine have been shown to inhibit excision repair of DNA in u.v.-irradiated E. coli. One possible mechanism is that, if association of DNA with the cell membrane is essential for excision repair, this process may be susceptible to drugs affecting the structure of cell membranes. We examined the effect of phenethyl alcohol, which is a membrane-specific drug and known to dissociate the DNA-membrane complex, on excision repair of DNA in u.v.-irradiated E. coli cells. The cells were irradiated with u.v. light and then held at 30 degrees C in buffer (liquid-holding) in the presence or absence of phenethyl alcohol. It was found that phenethyl alcohol inhibits the liquid-holding recovery in both wild-type and recA strains, corresponding to its dissociating action on the DNA-membrane complex. Thus, the association of DNA with cell membrane is an important factor for excision repair in E. coli. Procaine did not show the dissociating effect, suggesting that at least two different mechanisms are responsible for the involvement of cell membrane in excision repair of DNA in E. coli.  相似文献   

18.
An enhanced reactivation of UV-irradiated adenovirus type 2 (Ad 2) was detected following irradiation of the host cells with γ-rays prior to infection. Non-irradiated and γ-irradiated normal human fibroblasts were infected immediately after irradiation with either non-irradiated or UV-irradiated Ad 2. At 48h after infection, cultures were examined by indirect immunofluorescence to determine the number cells in which the viral function of viral structural antigen (Vag) was expressed. Pre-irradiation of cells with 1 krad resulted in a 2–3-fold increase in the survival of this viral function following different UV doses to the virus up to 1.75 × 103 J/m2. For a fixed UV dose of 1.0 × 103 J/m2 to the virus this enhancement increased with preirradiation dose to the cells up to a maximum factor of 2–3 for a dose of 1 krad. An examination of Vag expression at various times after infection indicates that pre-irradiation of the cells with γ-rays prior to infection with UV-irradiated virus leads to an earlier onset and/or increased rate of Vag synthesis. This enhancement of Vag production from a UV-damaged template may result from an inducible DNA-repair mechanism in human fibroblasts which may or may not be error-prone.  相似文献   

19.
We have identified a nuclear structure that is induced after infection with the autonomous parvovirus H-1. Using fluorescence microscopy, we observed that the major nonstructural protein (NS1) of H-1 virus which is essential for viral DNA amplification colocalized with virus-specific DNA sequences and sites of ongoing viral DNA replication in distinct nuclear bodies which we designated H-1 parvovirus-associated replication bodies (H-1 PAR-bodies). In addition, two cellular proteins were shown to accumulate in H1 PAR-bodies: (i) the proliferating cell nuclear antigen (PCNA) which is essential for chromosomal and parvoviral replication and (ii) the NS1-interacting small glutamine-rich TPR-containing protein (SGT), suggesting a role for the latter in parvoviral replication and/or gene expression. Since many DNA viruses target preexisting nuclear structures, known as PML-bodies, for viral replication and gene expression, we have determined the localization of H-1 PAR- and PML-bodies by double-fluorescence labeling and confocal microscopy and found them to be spatially unrelated. Furthermore, H-1 PAR-bodies did not colocalize with other prominent nuclear structures such as nucleoli, coiled bodies, and speckled domains. Electron microscopy analysis revealed that NS1, as detected by indirect immunogold labeling, was localized in ring-shaped electron-dense nuclear structures corresponding in size and frequency to H-1 PAR-bodies. These structures were also clearly visible without immunogold labeling and could be detected only in infected cells. Our results suggest that H-1 virus does not target known nuclear bodies for DNA replication but rather induces the formation of a novel structure in the nucleus of infected cells.  相似文献   

20.
An in-frame, 114-nucleotide-long deletion that affects the NS-coding sequence was created in the infectious molecular clone of the standard parvovirus H-1PV, thereby generating Del H-1PV. The plasmid was transfected and further propagated in permissive human cell lines in order to analyze the effects of the deletion on virus fitness. Our results show key benefits of this deletion, as Del H-1PV proved to exhibit (i) higher infectivity (lower particle-to-infectivity ratio) in vitro and (ii) enhanced tumor growth suppression in vivo compared to wild-type H-1PV. This increased infectivity correlated with an accelerated egress of Del H-1PV progeny virions in producer cells and with an overall stimulation of the viral life cycle in subsequently infected cells. Indeed, virus adsorption and internalization were significantly improved with Del H-1PV, which may account for the earlier appearance of viral DNA replicative forms that was observed with Del H-1PV than wild-type H-1PV. We hypothesize that the internal deletion within the NS2 and/or NS1 protein expressed by Del H-1PV results in the stimulation of some step(s) of the viral life cycle, in particular, a maturation step(s), leading to more efficient nuclear export of infectious viral particles and increased fitness of the virus produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号