首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the role of soluble factors in natural killer (NK) cell-mediated lysis of herpes simplex virus (HSV)-infected cells. Supernatants generated by incubating human peripheral blood mononuclear cells with HSV-infected human fibroblasts contained tumor necrosis factor (TNF) and lysed uninfected U937 cells, but not HSV-infected fibroblasts. U937 cells, but not HSV-infected fibroblasts, were lysed when exposed to recombinant TNF (rTNF) for 18 hr. NK cell-mediated lysis of HSV-infected fibroblasts was not inhibited by addition of anti-TNF or anti-lymphotoxin (LT) antibodies to cytotoxicity assays. Thus, a role for soluble factors, and in particular TNF and LT, in NK cell-mediated lysis of HSV-infected cells could not be demonstrated.  相似文献   

2.
3.
4.
Human peripheral blood mononuclear cells (PBMC) were induced by recombinant interleukin 2 and mitogens to secrete two distinct cytotoxic polypeptides, tumor necrosis factor-alpha (TNF-alpha) and tumor necrosis factor-beta (TNF-beta), previously called lymphotoxin. Treatment of PBMC with recombinant human interleukin 2 (rIL 2) or mitogens in combination with recombinant human interferon-gamma (rIFN-gamma) resulted in augmented production of both TNF-alpha and TNF-beta. rIFN-gamma alone had no effect on production of either cytotoxic polypeptide. TNF-alpha was produced within 2 to 3 hr after induction and was the major cytotoxin produced by PBMC during the first 48 hr of culture, after which time TNF-beta became the predominant species. TNF-beta was first secreted into the media after 8 hr of induction. Enhanced levels of both TNF-alpha and TNF-beta were seen when the PBMC were separated into adherent and nonadherent cells. Both TNF-alpha and TNF-beta were induced in different tumor cell lines of hematopoietic origin. The results demonstrate that the production of TNF-alpha and TNF-beta can be enhanced by two lymphokines, IL 2 and IFN-gamma.  相似文献   

5.
Whole leukocytes, mononuclear cells, polymorphonuclear cells (PMN), MONOCYTES, PURIFIED LYMPHOCYTES, AND T (rosette-forming cells, RFC) and non-T (nonrosette-forming cells, nonRFC) lymphocytes isolated from the human peripheral blood were stimulated by Sendai virus, respectively, and examined for interferon production in their culture fluids. High levels of interferon were produced by mononuclear cells, but not by PMN. Removal of monocytes from the mononuclear cell population did not affect at all the levels of interferon produced, although it strongly suppressed interferon induction by polyinosinic-polycytidylic acid (poly IC) and mitogenic response to phytohemagglutinin (PHA) of the lymphocytes. Purified monocytes and T lymphocytes were unresponsive to the virus. In contrast, a population of purified non-T lymphocytes produced high levels of interferon. Addition of monocytes to the interferon-producing non-T lymphocytes did not affect the levels of interferon produced. No detectable levels of interferon were produced in the mixture of T lymphocytes and monocytes. It is concluded that non-T lymphocytes may be a major target for interferon induction of human leukocytes by Sendai virus.  相似文献   

6.
7.
8.
Lysates of Plasmodium falciparum parasitized human erythrocytes stimulate U937 cells to secrete neopterin during a 48 hr co-culture period. Neopterin secretion by U937 cells was enhanced by the addition of human interferon gamma (IFN-γ). Several P. falciparum antigens, ‘FC27’ (a synthetic ‘S’ antigen), Ag16 (a recombinant ‘S’ antigen) and Ag44/RHOP3 (a recombinant merozoite rhoptry protein), also activated U937 cells to neopterin secretion and produced a similar effect on peripheral blood mononuclear cells (PBMC) from 2 of 3 normal healthy donors cultured with the antigens for 7 days. Plasma from six Nigerian malaria patients contained high neopterin concentrations ranging from 5.06 to 14.17 ng/ml. This preliminary pilot study lends support for further investigation incorporating a larger number of malaria patients and further culture experiments with U937 cells and PBMC with the aim of defining the cause and source of the large quantities of plasma neopterin produced in this infection.  相似文献   

9.
Measles virus-induced suppression of lymphocyte proliferation   总被引:6,自引:0,他引:6  
The mechanism by which measles virus induces immunosuppression was investigated using an in vitro system employing phytohemagglutinin (PHA)-induced human peripheral mononuclear cell (PBMC) proliferation. At a multiplicity of infection of 1.0 or greater measles virus significantly inhibited (45%) the proliferation of PBMC. This inhibition was not due to an alteration in the kinetics of proliferation. PHA-stimulated PBMC were then infected with measles virus for 72 hr and irradiated (3200 rad) to prevent further proliferation. These infected, irradiated PBMC when added to fresh autologous PBMC caused significant inhibition of lymphoproliferation over a wide range of infected:fresh cell ratios (maximum inhibition seen at a 1:1 ratio, 85% inhibition). Virus recovered from the irradiated, infected cells was 100-fold lower than the virus titer needed to cause inhibition by direct addition of measles virus. However, antibody to measles virus reversed the inhibition. Virus-free supernatant fluids from the infected irradiated cells caused immunosuppression of the PHA response. This immunosuppressive material induced by the measles virus was maximally produced after 72 hr and did not appear to require viral replication. This factor was not prostaglandin E or interferon-alpha or -gamma. The production of such suppressive factors during viral infection may explain some of the profound immunosuppression seen in situations in which little or no infectious virus can be detected.  相似文献   

10.
Abstract Lipopolysaccharide of Helicobacter pylori was tested for its mitogenicity and for its ability to stimulate cytokine release in human peripheral blood mononuclear cells (PBMC) of healthy and H. pylori -infected blood donors. Mitogenicity in PBMC induced by H. pylori LPS was similar to that induced by Campylobacter jejuni lipopolysaccharide, but lower than that induced by Escherichia coli lipopolysaccharide in the H. pylori negative blood donor group. Furthermore, H. pylori LPS was able to induce tumour necrosis factor (TNF) interleukin 1 (IL-1) and interleukin 6 (IL-6) secretion of PBMC. Compared with the ability of C. jejuni and E. coli lipopolysaccharides to stimulate cytokine release, H. pylori lipopolysaccharide induced a significantly lower TNF and IL-1 secretion of PBMC than the other tested bacterial lipopolysaccharides. Similar amounts of IL-6 release were obtained by stimulation of PBMC with H. pylori and C. jejuni lipopolysaccharides, whereas a higher IL-6 release was measured by stimulation with E. coli lipopolysaccharide. The results of this study suggest that H. pylori lipopolysaccharide has a lower immunological activity than lipopolysaccharides of other intestinal bacteria. This is probably due to its unusual acylation and phosphorylation pattern of lipid A.  相似文献   

11.
AA-induced cell death mechanisms acting on human monocytes and monocyte-derived macrophages (MDM), U937 promonocytes and PMA-differentiated U937 cells were studied. Arachidonic acid induced apoptosis and necrosis in monocytes and U937 cells but only apoptosis in MDM and U937D cells. AA increased both types of death in Mycobacterium tuberculosis-infected cells and increased the percentage of TNFα+ cells and reduced IL-10+ cells. Experiments blocking these cytokines indicated that AA-mediated death was TNFα- and IL-10-independent. The differences in AA-mediated cell death could be explained by high ROS, calpain and sPLA-2 production and activity in monocytes. Blocking sPLA-2 in monocytes and treatment with antioxidants favored M. tuberculosis control whereas AA enhanced M. tuberculosis growth in MDM. Such evidence suggested that AA-modulated effector mechanisms depend on mononuclear phagocytes’ differentiation stage.  相似文献   

12.
In this work, the production of tumor necrosis factor alpha (TNF alpha) during interaction of human phagocytes with the intracellular parasite Leishmania major was further investigated. The human monocytic cell line U937, differentiated with a combination of 1 alpha, 25 dihydroxyvitamin D3 (VD) and retinoic acid (RA), or with granulocyte macrophage colony stimulating factor (GM-CSF) was used. Differentiated U937 cells were infected with Leishmania major promastigotes, and TNF alpha was assayed in cell culture supernatants. It was found that the cytokine was produced only by U937 cells differentiated with VD/RA and further incubated with GM-CSF and LPS or interferon gamma (IFN gamma). L. major induced TNF alpha production only in the presence of GM-CSF. No direct relationship was found, however, between production of TNF alpha and resistance of differentiated U937 cells to infection with L. major.  相似文献   

13.
Sendai virus induces human peripheral blood leukocytes to produce high levels of tumor necrosis factor (TNF) mRNA. TNF mRNA can represent as much as 0.6% of the total mRNA. Kinetic studies indicate that the level of TNF mRNA peaks about 2 hours before that of IFN-alpha mRNA produced in the same system. Although the peak levels of TNF and IFN-alpha mRNA were similar, TNF in the culture supernatants was at a 200 fold lower level than IFN-alpha. Cloning and sequence analysis of TNF cDNA isolated from peripheral blood leukocytes RNA showed that normal human cells in response to Sendai virus produce TNF identical to that previously isolated and cloned from tumor-derived cell lines. A bacterial expression system was used to produce the cloned TNF at a maximum level of 2 X 10(6) units per ml of culture.  相似文献   

14.
Unstimulated peripheral blood mononuclear cells from patients with angiocentric T cell immunoproliferative disorders and concanavalin A-stimulated normal peripheral blood mononuclear cells secrete a phagocytosis-inducing factor (PIF) that induces a fivefold to 50-fold enhancement of phagocytosis of IgG-coated ox red blood cells by U937 cells. We investigated the identity, production, and mechanism of the action of PIF. PIF activity was demonstrated in supernatants from nine of 44 phytohemagglutinin-stimulated interleukin 2 (IL 2)-dependent T cell lines and clones derived from purified T4+ cells, but was not found in supernatants from 26 lines and clones derived from phytohemagglutinin-stimulated T8+ cells. In addition, PIF was produced by four of four antigen-specific T cell lines and clones after stimulation with the appropriate antigen and antigen-presenting cells, and by HUT-102, a human T cell lymphotropic virus type I-transformed T cell line. PIF from all of these sources caused significant inhibition of U937 proliferation. This proliferation-inhibiting activity co-purified with phagocytosis-enhancing activity in sizing procedures and isoelectric focusing, which yielded an estimated m.w. of 35,000 to 55,000 and an estimated isoelectric point of 5.0 to 6.0 for PIF. In contrast, IL 2, recombinant interferon-alpha, and recombinant interferon-gamma had no effect on phagocytosis by U937 cells, and antibodies to interferon-alpha and interferon-gamma did not block the phagocytosis-inducing activity of PIF-containing supernatants. PIF appears to be a distinct lymphokine produced by a subset of T4+ lymphocytes, possibly those that proliferate in response to antigen. PIF may be important in the induction of erythrophagocytosis, which is associated with certain T cell immunoproliferative disorders.  相似文献   

15.
16.
The effect of peripheral blood mononuclear cells (PBMC) on expression of varicella-zoster virus (VZV) glycoproteins (Gps) was analyzed by flow cytometry. PBMC from VZV seropositive and seronegative donors and supernatant of PBMC co-cultured with VZV-infected human embryonic fibroblasts reduced VZV Gp expression. Neutralization of supernatant fluid with mixture of anti-interferons (IFN)-α, -β, -γ, and tumor necrosis factor (TNF)-α partially reduced inhibitory activity of supernatant on VZV Gp expression. Deletion of natural killer (NK) cells and adherent cells from PBMC reduced inhibitory activity of PBMC on VZV Gp expression. These results suggest that IFN-α, -β, -γ, TNF-α and other soluble factors released from NK cells and monocytes by co-cultivation with VZV-infected fibroblasts inhibit VZV Gp expression.  相似文献   

17.
Getti GT  Cheke RA  Humber DP 《Parasitology》2008,135(12):1391-1399
Leishmania parasites invade host macrophages, causing infections that are either limited to skin or spread to internal organs. In this study, 3 species causing cutaneous leishmaniasis, L. major, L. aethiopica and L. tropica, were tested for their ability to interfere with apoptosis in host macrophages in 2 different lines of human monocyte-derived macrophages (cell lines THP-1 and U937) and the results confirmed in peripheral blood mononuclear cells (PBMC). All 3 species induced early apoptosis 48 h after infection (expression of phosphatidyl serine on the outer membrane). There were significant increases in the percentage of apoptotic cells both for U937 and PBMC following infection with each of the 3 species. Early apoptotic events were confirmed by mitochondrial membrane permeabilization detection and caspase activation 48 and 72 h after infection. Moreover, the percentage of infected THP-1 and U937 macrophages increased significantly (up to 100%) following treatment with an apoptosis inducer. Since phosphatidyl serine externalization on apoptosing cells acts as a signal for engulfment by macrophages, induction of apoptosis in the parasitized cells could actively participate in spreading the infection. In summary, parasite-containing apoptotic bodies with intact membranes could be released and phagocytosed by uninfected macrophages.  相似文献   

18.
Production of interleukin 1 beta (IL-1 beta), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-alpha), interleukin 2 (IL-2), interferon gamma (IFN-gamma) and granulocyte-macrophage colony-stimulating factor (GM-CSF) after stimulation by lipopolysaccharide (LPS) and phytohemagglutinin (PHA) was studied in 1/10 diluted whole blood (WB) culture and in peripheral blood mononuclear cell (PBMC) culture. Cytokines IL-1 beta, TNF-alpha and IL-6 are preferentially stimulated by LPS whereas IL-2, IFN-gamma and GM-CSF are stimulated by PHA. Combination of 5 micrograms/ml PHA and 25 micrograms/ml LPS gave the most reliable production of the six cytokines studied. IL-1 beta, TNF-alpha and IL-6 represent a homogeneous group of early-produced cytokines positively correlated among themselves and with the number of monocytes in the culture (LeuM3). Furthermore, IL-1 beta was negatively correlated with the number of T8 lymphocytes. IL-2, IFN-gamma and GM-CSF represent a group of late-produced cytokines. Kinetics and production levels of IL-6 and GM-CSF are similar in WB and PBMC cultures. In contrast, production levels of TNF-alpha and IFN-gamma are higher in WB than in PBMC whereas production levels of IL-6 and IL-2 are lower in WB than in PBMC. Individual variation in responses to PHA + LPS was always higher in PBMC cultures than in WB cultures. The capacity of cytokine production in relation to the number of mononuclear cells is higher in WB, or in PBMC having the same mononuclear cell concentration as WB, than in conventional cultures of concentrated PBMC (10(6)/ml). Because it mimics the natural environment, diluted WB culture may be the most appropriate milieu in which to study cytokine production in vitro.  相似文献   

19.
The lentiviruses of sheep, goats, and horses cause chronic multiorgan disease in which macrophages are highly permissive for viral replication. Monocytes, which mature into macrophages, are thought to be latently infected with lentivirus, but the extent to which other leukocytes are infected is unknown. Dendritic cells have not been studied separately from monocytes and T-cell subsets have not been examined in previous attempts to identify infected cells in peripheral blood mononuclear cells (PBMC). We found no evidence of T-cell tropism using an animal-passaged, pathogenic ovine lentivirus. Phytohemagglutinin-stimulated infectious PBMC produced 20-fold less virus than differentiated macrophages, and cocultivation of infectious PBMC with fresh, uninfected phytohemagglutinin blasts did not facilitate virus replication. Furthermore, central lymph cells, the best in vivo source of purified lymphocytes, lacked virus and did not yield virus upon in vitro cultivation. In contrast, cultivated blood-derived macrophages were highly permissive for viral replication. To identify the latently infected PBMC, PBMC from infected sheep were selectively depleted of monocytes and B cells by passage over nylon wool and then of nonadherent cells bearing CD4, CD8, T19, gamma delta T-cell receptor, CD45RA, or major histocompatibility complex class II antigens by panning. Removal of adherent monocytes and B cells or of adherent cells and the three major T-cell subsets (CD4+, CD8+, T19+) did not decrease the infectivity of PBMC. The richest sources of infected cells in fresh PBMC were CD45RA+ and major histocompatibility complex class II+ nonadherent cells, which are three characteristics of dendritic cells. Thus, the dendritic cell, and not the monocyte or the CD4+ cell, is probably the predominant infected cell type in blood.  相似文献   

20.
It has been hypothesized that reactive oxygen intermediates (ROI) can activate human immunodeficiency virus (HIV) replication and that HIV can trigger programmed cell death (PCD). In this work, we studied PCD in U937 cultured cells chronically infected with HIV and exposed to tumor necrosis factor alpha (TNFα). This cytokine has been shown to induce apoptosis in some cell types and to produce intracellular free radical species including ROI. In addition, it was also demonstrated that HIV-induced PCD observable in U937 infected cells can be favored by TNF exposure. In one of our recent works, evidence was presented that the thiol supplier N-acetylcysteine (NAC) can ‘protect’, at least partially, HIV-infected cells from PCD and determine a significant decrease in viral progeny. In the present work, we demonstrate (a) that apoptosis can be easily induced by TNF only in infected U937 cells and not in control wild-type cells, (b) that daily treatment of TNF-exposed cells with low concentrations of NAC is able to impair viral progeny formation as early as 24 h, (c) that the mitochondrial damage induced by TNF is counteracted by preexposure to NAC, and (d) that NAC alone exerts changes in mitochondria which may be responsible for the protective effects exerted by this compound. Because of the radical producing capacity of TNF, these results seem to indicate that the protective effects of NAC may be due to the specific antioxidant nature of this substance which appears to be capable of impairing both the apoptotic machinery and viral replication by an intracellular mechanism involving mitochondrial integrity and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号