首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genes homologous to those located on human chromosome 4 (HSA4) were mapped in the bovine to determine regions of syntenic conservation among humans, mice, and cattle. Previous studies have shown that two homologs of genes on HSA4, PGM2 and PEPS, are located in bovine syntenic group U15 (chromosome 6). The homologous mouse genes, Pgm-1 and Pep-7, are on MMU5. Using a panel of bovine x hamster hybrid somatic cells, we have assigned homologs of 11 additional HSA4 loci to their respective bovine syntenic groups. D4S43, D4S10, QDPR, IGJ, ADH2, KIT, and IF were assigned to syntenic group U15. This syntenic arrangement is not conserved in the mouse, where D4s43, D4s10, Qdpr, and Igj are on MMU5 while Adh-2 is on MMU3. IL-2, FGB, FGG, and F11, which also reside on MMU3, were assigned to bovine syntenic group U23. These data suggest that breaks and/or fusions of ancestral chromosomes carrying these genes occurred at different places during the evolution of humans, cattle, and mice.  相似文献   

2.
D S Threadgill  J E Womack 《Genomics》1991,11(4):1143-1148
Homologs to genes residing on human chromosome 3 (HSA 3) map to four mouse chromosomes (MMU) 3, 6, 9, and 16. In the bovine, two syntenic groups that contain HSA 3 homologs, unassigned syntenic groups 10 (U10) and 12 (U12), have been defined. U10 also contains HSA 21 genes, which is similar to the situation seen on MMU 16, whereas U12 apparently contains only HSA 3 homologs. The syntenic arrangement of other HSA 3 homologs in the bovine was investigated by physically mapping five genes through segregation analysis of a bovine-hamster hybrid somatic cell panel. The genes mapped include Friend-murine leukemia virus integration site 3 homolog (FIM3; HSA 3/MMU 3), sucrase-isomaltase (SI) and glutathione peroxidase 1 (GPX1) (HSA 3/MMU ?), murine leukemia viral (v-raf-1) oncogene homolog 1 (RAF1; HSA 3/MMU 6), and ceruloplasmin (CP; HSA 3/MMU 9). FIM3, SI, and CP mapped to bovine syntenic group U10, while RAF1 and GPX1 mapped to U12.  相似文献   

3.
Syntenic conservation between humans and cattle. I. Human chromosome 9   总被引:1,自引:0,他引:1  
Bovine X hamster hybrid somatic cells have been used to investigate the syntenic relationship of nine loci in the bovine that have homologous loci on human chromosome 9. Six loci, ALDH1, ALDOB, C5, GGTB2, GSN, and ITIL, were assigned to the previously identified bovine syntenic group U18 represented by ACO1, whereas the other three loci, ABL, ASS, and GRP78, mapped to a new, previously unidentified autosomal syntenic group. Additionally, a secondary locus, ABLL, which cross-hybridized with the ABL probe, was mapped to bovine syntenic group U1 with the HSA 1 loci PGD and ENO1. The results predict that ACO1 will map proximal to ALDH1; GRP78 distal to ITIL and C5; GSN proximal to AK1, ABL, and ASS on HSA 9; GRP78 to MMU 2; and ITIL and GSN to MMU 4.  相似文献   

4.
Bovine X hamster and bovine X mouse hybrid somatic cells have been used to investigate the syntenic relationship of nine loci in the bovine that have homologous loci on human chromosome 12. Eight loci, including A2M, GLI, HOX3, IFNG, INT1, KRAS2, NKNB, and PAH, were assigned to the previously identified bovine syntenic group U3 represented by GAPD. However, a single locus from the q-terminus of HSA 12, ALDH2, mapped to a new, previously unidentified autosomal syntenic group. These results indicate the existence of a very large ancestral syntenic group spanning from the p-terminus to q24 of HSA 12 and containing over 4% of the mammalian genome. Additionally, the results predict that ALDH2 is distal to PAH and IFNG on HSA 12, the type II keratin gene complex will reside between q11 and q21 of HSA 12, A2M will map to MMU 6, and LALBA and GLI will map to MMU 15.  相似文献   

5.
To establish syntenic relationships of phototransduction genes, we have mapped the genes encoding the alpha-, beta-, and gamma-subunits of rod cGMP phosphodiesterase (PDE) (PDEA, PDEB, PDEG), the alpha'-subunit of cone PDE (PDEA2), and the rod cGMP-gated channel (CNCG) to bovine syntenic groups. The rod cGMP PDE alpha-, beta-, and gamma-subunit genes map to bovine syntenic groups U22, U15 (chromosome 6), and U21 (chromosome 19), respectively. The rod cGMP-gated channel gene also maps to syntenic group U15, and the bovine cone alpha'-subunit gene maps to U26 (chromosome 26). With the exception of the cone PDE alpha'-subunit gene, which has not been mapped in other mammals, all of these genes have been assigned to conserved chromosomal regions shared among bovine, human, and mouse. A compilation of currently known syntenic assignments and predictions regarding future assignments of phototransduction genes in human, mouse, and cattle is presented.  相似文献   

6.
Loci homologous to those on human chromosome 10 (HSA10) map to five mouse chromosomes, MMU2, MMU7, MMU10, MMU14, and MMU19. In cattle, one unassigned syntenic group (U26) was previously defined by the HSA10/MMU19 isoenzyme marker glutamic-oxaloacetic transaminase 1 (GOT1). To evaluate the syntenic arrangement of other HSA10 loci in cattle, seven genes were physically mapped by segregation analysis in a bovine x hamster hybrid somatic cell panel. The genes mapped include: vimentin (VIM) on HSA10 and MMU2; interleukin 2 receptor (IL2R) on HSA10 and MMU?; ornithine aminotransferase (OAT) on HSA10 and MMU7; hexokinase 1 (HK1) on HSA10 and MMU10; retinol-binding protein 3 (RBP3) on HSA10 and MMU14; plasminogen activator, urokinase type (PLAU) on HSA10 and MMU14; and alpha-2-adrenergic receptor (ADRA2) on HSA10 and MMU19. VIM and IL2R mapped to U11; ADRA2 and OAT mapped to U26; and RBP3, PLAU, and HK1 mapped to U28.  相似文献   

7.
Recently, homology has been reported for pS2, a protein expressed in many human breast cancers, and a hormonogastric protein known as pancreatic spasmolytic polypeptide (SPP; formerly designated as PSP). The breast cancer estrogen inducible locus (BCEI), which encodes pS2, maps to human chromosome 21 (HSA 21). The SPP locus has not been mapped in humans. Several loci from HSA 21 have been mapped in cattle to syntenic group U10, but a BCEI bovine homolog was not detected. If a bovine BCEI locus does exist, map comparisons predict BCEI will reside on syntenic group U10. The assignment of bovine SPP to syntenic group U10 supports the postulated evolutionary relationship between BCEI and SPP.  相似文献   

8.
The genes encoding bovine prolactin and rhodopsin were assigned to syntenic groups on the basis of hybridization of DNA from a panel of bovine-hamster hybrid somatic cell lines with cloned prolactin and rhodopsin gene probes. Prolactin was found to be syntenic with previously mapped glyoxalase, BoLA and 21-hydroxylase genes, establishing a syntenic conservation with human chromosome 6. The presence of bovine rhodopsin sequences among the various hybrid cell lines was not concordant with any gene previously assigned to one of the 23 defined autosomal syntenic groups. Thus, rhodopsin marks a new bovine syntenic group, U24, leaving only five cattle autosomes unmarked by at least one biochemical or molecular marker.  相似文献   

9.
Four genes having homologous loci on the short arm of human chromosome 8 have been mapped to two different bovine syntenic groups. The gene coding for the tissue-type plasminogen activator mapped with GSR, a human chromosome 8 marker, of syntenic group U14 while lipoprotein lipase and the medium and light neurofilament polypeptide genes were shown to be syntenic with the human chromosome 9 marker GGTB2 of syntenic group U18.  相似文献   

10.
11.
Bovine genes encoding T-cell receptor, CD3, and CD8 molecules have been mapped to syntetic groups using bovine × rodent hybrid somatic cells. T-cell receptor and chains were assigned to bovine syntenic group U5, and the and genes were syntenic with each other and with markers on U13. CD3E and CD3D genes were syntenic with each other and located to bovine syntenic group U19. CD8 was most concordant with markers of syntenic group U16, although the concordancy was only 85% and the assignment must be regarded as tentative. The comparative gene maps of human chromosome 7, bovine syntenic group U13, and mouse chromosomes 6 and 13 suggest extensive evolutionary conservation.  相似文献   

12.
Quantitative trait loci (QTL) associated with fat deposition have been identified on bovine Chromosome 27 (BTA27) in two different cattle populations. To generate more informative markers for verification and refinement of these QTL-containing intervals, we initiated construction of a BTA27 comparative map. Fourteen genes were selected for mapping based on previously identified regions of conservation between the cattle and human genomes. Markers were developed from the bovine orthologs of genes found on human Chromosomes 1 (HSA1), 4, 8, and 14. Twelve genes were mapped on the bovine linkage map by using markers associated with single nucleotide polymorphisms or microsatellites. Seven of these genes were also anchored to the physical map by assignment of fluorescence in situ hybridization probes. The remaining two genes not associated with an identifiable polymorphism were assigned only to the physical map. In all, seven genes were mapped to BTA27. Map information generated from the other seven genes not syntenic with BTA27 refined the breakpoint locations of conserved segments between species and revealed three areas of disagreement with the previous comparative map. Consequently, portions of HSA1 and 14 are not conserved on BTA27, and a previously undefined conserved segment corresponding to HSA8p22 was identified near the pericentromeric region of BTA8. These results show that BTA27 contains two conserved segments corresponding to HSA8p, which are separated by a segment corresponding to HSA4q. Comparative map alignment strongly suggests the conserved segment orthologous to HSA8p21-q11 contains QTL for fat deposition in cattle. Received: 25 February 2000 / Accepted: 30 March 2000  相似文献   

13.
A panel of bovine somatic cell hybrids was used to map ovine microsatellites. Five of seven microsatellites were assigned to five bovine syntenic groups. These microsatellites were designated D5S10 (MAF23), D1S4 (MAF46), D13S1 (MAF18), D4S3 (MAF50), and DXS2 (MAF45), mapped to syntenic groups U3 (chromosome 5), U10 (chromosome 1), U11, U13, and the X chromosome, respectively. Two remaining sheep microsatellites amplified rodent DNA in the hybrid somatic cell panel, and were not assigned to bovine syntenic groups. Assignment of ovine-derived microsatellites to bovine syntenic groups provides additional evidence of the usefulness of microsatellites for mapping closely related species. The use of ovine and bovine microsatellites will aid in development of comparative genomic maps for these two species.  相似文献   

14.
Three mouse chromosomes (MMU 1, 3, and 4) carry homologs of human chromosome 1 (HSA 1) genes. A similar situation is found in the bovine, where five bovine chromosomes (BTA 2, 3, 5, 16, and unassigued syntenic group U25) contain homologs of HSA 1 loci. To evaluate further the syntenic relationship of HSA 1 homologs in cattle, 10 loci have been physically mapped through segregation analysis in bovine-rodent hybrid somatic cells. These loci, chosen for their location on HSA 1, are antithrombin 3 (AT3), renin (REN), complement component receptor 2 (CR2), phosphofructokinase muscle type (PFKM), Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog (FGR), α fucosidase (FUCA1), G-protein β1 subunit (GNB1), α 1A amylase, (AMY1), the neuroblastoma RAS viral (v-ras) oncogene homolog (NRAS), and α skeletal actin (ACTA1). AT3, REN, CR2, and GNB1 mapped to BTA 16, PFKM to BTA 5, AMY1A and NRAS to BTA 3, FGR and FUCA1 to BTA 2, and ACTA1 to BTA 28.  相似文献   

15.
Two bovine DNA probes (LCa and LCb) complementary to the clathrin light chain genes were hybridized to DNAs from bovine hamster hybrid somatic cell lines retaining different combinations of bovine chromosomes. Concordancy of retention of the clathrin genes was compared to existing syntenic data for the domestic cow. LCb identified a single locus. CLTB, concordant with the genes encoding bovine anti-Müllerian hormone (AMH) and bovine osteonectin from bovine syntenic group U22. LCa recognized two loci. CLTAL1 from a previously unidentified bovine syntenic group. U25, and CLTAL2 which is concordant with GGTB2, a gene marker for bovine syntenic group U18.  相似文献   

16.
Identification of predictive markers in QTL regions that impact production traits in commercial populations of swine is dependent on construction of dense comparative maps with human and mouse genomes. Chromosomal painting in swine suggests that large genomic blocks are conserved between pig and human, while mapping of individual genes reveals that gene order can be quite divergent. High-resolution comparative maps in regions affecting traits of interest are necessary for selection of positional candidate genes to evaluate nucleotide variation causing phenotypic differences. The objective of this study was to construct an ordered comparative map of human chromosome 10 and pig chromosomes 10 and 14. As a large portion of both pig chromosomes are represented by HSA10, genes at regularly spaced intervals along this chromosome were targeted for placement in the porcine genome. A total of 29 genes from human chromosome 10 were mapped to porcine chromosomes 10 (SSC10) and 14 (SSC14) averaging about 5 Mb distance of human DNA per marker. Eighteen genes were assigned by linkage in the MARC mapping population, five genes were physically assigned with the IMpRH mapping panel and seven genes were assigned on both maps. Seventeen genes from human 10p mapped to SSC10, and 12 genes from human 10q mapped to SSC14. Comparative maps of mammalian species indicate that chromosomal segments are conserved across several species and represent syntenic blocks with distinct breakpoints. Development of comparative maps containing several species should reveal conserved syntenic blocks that will allow us to better define QTL regions in livestock.  相似文献   

17.
Comparative mapping ofIGHG,IGHM, FES,andFOS in domestic cattle   总被引:3,自引:0,他引:3  
The immunoglobulin genes have not been genetically characterized as thoroughly in cattle as in other mammals, particularly humans and mice. Comparative gene mapping in mammals suggests that the bovine immunoglobulin heavy chain genes,IGHG4 andIGHM might be syntenic with theFOS oncogene. Interestingly, however, when these genes were assigned to bovine syntenic groups utilizing a panel of bovine: hamster hybrid somatic cells,IGH genes were shown to be syntenic with theFES oncogene rather thanFOS. In this studyIGH andFES were assigned toBos taurus chromosome 21 whileFOS was assigned to chromosome 10. In addition, bovine-specific immunoglobulin-like sequences were observed in the hybrid somatic cells, and one, IGHML1, was mapped to bovine syntenic group U16. The probes used for somatic-cell mapping were also used to screen a small number of cattle of several different breeds for restriction fragment length polymorphisms.IGHG4 andIGHM were shown to be highly polymorphisms. whileFOS andFES were not. Address correspondence and offprint requests to: J. E. Womack.  相似文献   

18.
Using a panel of bovine x Chinese hamster hybrid somatic cells, sequences homologous to genes spanning human chromosome arm 8q have been syntenically assigned in cattle. Thyroglobulin (TG), carbonic anhydrase II (CA2), and the protooncogenes MYC and MOS were assigned to a newly identified bovine syntenic group, U23. Additionally, in situ hybridization of the thyroglobulin probe to bovine metaphase chromosomes revealed this syntenic group to be on bovine chromosome 14 and the bovine thyroglobulin gene to reside at 14q12----q15.  相似文献   

19.
Amplification of an ancestral lysozyme gene in artiodactyls is associated with the evolution of foregut fermetation in the ruminant lineage and has resulted in about ten lysozyme genes in true ruminants. Hybridization of a cow stomach lysozyme 2 cDNA clone to restricted DNAs of a panel of cowxhamster hybrid cell lines revealed that all but one of the multiple bovine-specific bands segregate concordantly with the marker for bovine syntenic group U3 [Chromosome (Chr) 5]. The anomalous band was subsequently mapped to bovine syntenic group U22 (Chr 7) with a second panel of hybrids representing all 31 bovine syntenic groups. By two-dimensional pulsed-field gel electrophoresis the lysozyme genes on cattle Chr 5 were shown to be clustered on a 2- to 3-Mb DNA fragment, while the lactalbumin gene and pseudogenes that are paralogous and syntenic with the lysozymes were outside the lysozyme gene cluster. Chromosomal fluorescence in situ hybridization of a cocktail of lysozyme genomic clones localized the lysozyme gene cluster to cattle Chr 5 band 23, corroborating the somatic cell assignment.  相似文献   

20.
We have initiated a mapping strategy using cosmid clones to chromosomally anchor a high-resolution bovine genetic linkage map. Ten cosmids containing microsatellites were assigned to bovine chromosomes by fluorescence in situ suppression hybridization (FISH). Four cosmid clones, three of which contain an informative microsatellite, were assigned to autosomes 5, 13, 24, and 28. The assignment to autosome 13 anchors bovine syntenic group U11. Two additional cosmid clones, each containing informative microsatellites, are assigned to autosomes 9 and 29, auchoring bovine linkage groups U2 and U8, respectively. Four cosmid clones, three of which contain informative microsatellites, also provide the first assignment to autosome 25, anchoring bovine syntenic group U7 and orienting the corresponding linkage group relative to the centromere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号