首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Collura A  Kemp PA  Boiteux S 《DNA Repair》2012,11(3):294-303
In Saccharomyces cerevisiae, inactivation of base excision repair (BER) AP endonucleases (Apn1p and Apn2p) results in constitutive phosphorylation of Rad53p and delay in cell cycle progression at the G2/M transition. These data led us to investigate genetic interactions between Apn1p, Apn2p and DNA damage checkpoint proteins. The results show that mec1 sml1, rad53 sml1 and rad9 is synthetic lethal with apn1 apn2. In contrast, apn1 apn2 rad17, apn1 apn2 ddc1 and apn1 apn2 rad24 triple mutants are viable, although they exhibit a strong Can(R) spontaneous mutator phenotype. In these strains, high Can(R) mutation rate is dependent upon functional uracil DNA N-glycosylase (Ung1p) and mutation spectra are dominated by AT to CG events. The results point to a role for Rad17-Mec3-Ddc1 (9-1-1) checkpoint clamp in the prevention of mutations caused by abasic (AP) sites linked to incorporation of dUTP into DNA followed by the excision of uracil by Ung1p. The antimutator role of the (9-1-1) clamp can either rely on its essential function in the induction of the DNA damage checkpoint or to another function that specifically impacts DNA repair and/or mutagenesis at AP sites. Here, we show that the abrogation of the DNA damage checkpoint is not sufficient to enhance spontaneous mutagenesis in the apn1 apn2 rad9 sml1 quadruple mutant. Spontaneous mutagenesis was also explored in strains deficient in the two major DNA N-glycosylases/AP-lyases (Ntg1p and Ntg2p). Indeed, apn1 apn2 ntg1 ntg2 exhibits a strong Ung1p-dependent Can(R) mutator phenotype with a spectrum enriched in AT to CG, like apn1 apn2 rad17. However, genetic analysis reveals that ntg1 ntg2 and rad17 are not epistatic for spontaneous mutagenesis in apn1 apn2. We conclude that under normal growth conditions, dUTP incorporation into DNA is a major source of AP sites that cause high genetic instability in the absence of BER factors (Apn1p, Apn2p, Ntg1p and Ntg2p) and Rad17-Mec3-Ddc1 (9-1-1) checkpoint clamp in yeast.  相似文献   

2.
Phadnis N  Mehta R  Meednu N  Sia EA 《DNA Repair》2006,5(7):829-839
Mitochondrial DNA is predicted to be highly prone to oxidative damage due to its proximity to free radicals generated by oxidative phosphorylation. Base excision repair (BER) is the primary repair pathway responsible for repairing oxidative damage in nuclear and mitochondrial genomes. In yeast mitochondria, three N-glycosylases have been identified so far, Ntg1p, Ogg1p and Ung1p. Ntg1p, a broad specificity N-glycosylase, takes part in catalyzing the first step of BER that involves the removal of the damaged base. In this study, we examined the role of Ntg1p in maintaining yeast mitochondrial genome integrity. Using genetic reporters and assays to assess mitochondrial mutations, we found that loss of Ntg1p suppresses mitochondrial point mutation rates, frameshifts and recombination rates. We also observed a suppression of respiration loss in the ntg1-Delta cells in response to ultraviolet light exposure implying an overlap between BER and UV-induced damage in the yeast mitochondrial compartment. Over-expression of the BER AP endonuclease, Apn1p, did not significantly affect the mitochondrial mutation rate in the presence of Ntg1p, whereas Apn1p over-expression in an ntg1-Delta background increased the frequency of mitochondrial mutations. In addition, loss of Apn1p also suppressed mitochondrial point mutations. Our work suggests that both Ntg1p and Apn1p generate mutagenic intermediates in the yeast mitochondrial genome.  相似文献   

3.
In Schizosaccharomyces pombe the repair of apurinic/apyrimidinic (AP) sites is mainly initiated by AP lyase activity of DNA glycosylase Nth1p. In contrast, the major AP endonuclease Apn2p functions by removing 3'-alpha,beta-unsaturated aldehyde ends induced by Nth1p, rather than by incising the AP sites. S. pombe possesses other minor AP endonuclease activities derived from Apn1p and Uve1p. In this study, we investigated the function of these two enzymes in base excision repair (BER) for methyl methanesulfonate (MMS) damage using the nth1 and apn2 mutants. Deletion of apn1 or uve1 from nth1Delta cells did not affect sensitivity to MMS. Exogenous expression of Apn1p failed to suppress the MMS sensitivity of nth1Delta cells. Although Apn1p and Uve1p incised the oligonucleotide containing an AP site analogue, these enzymes could not initiate repair of the AP sites in vivo. Despite this, expression of Apn1p partially restored the MMS sensitivity of apn2Delta cells, indicating that the enzyme functions as a 3'-phosphodiesterase to remove 3'-blocked ends. Localization of Apn1p in the nucleus and cytoplasm hints at an additional function of the enzyme other than nuclear DNA repair. Heterologous expression of Saccharomyces cerevisiae homologue of Apn1p completely restored the MMS resistance of the nth1Delta and apn2Delta cells. This result confirms a difference in the major pathway for processing the AP site between S. pombe and S. cerevisiae cells.  相似文献   

4.
In Saccharomyces cerevisiae, inactivation of the two DNA N-glycosylases Ntg1p and Ntg2p does not result in a spontaneous mutator phenotype, whereas simultaneous inactivation of Ntglp, Ntg2p and Radlp or Rad14p, both of which are involved in nucleotide excision repair (NER), does. The triple mutants rad1 ntg1 ntg2 and rad14 ntg1 ntg2 show 15- and 22-fold increases, respectively, in spontaneous forward mutation to canavanine resistance (CanR) relative to the wild-type strain (WT). In contrast, neither of these triple mutants shows an increase in the incidence of Lys+ revertants of the lys1-1 ochre allele. Furthermore, the rad1 ntg1 ntg2 mutant is hypersensitive to the lethal effect of H2O2 relative to WT, rad1 and ntg1 ntg2 mutant strains. Moreover, the rad1 ntg1 ntg2 strain is hypermutable (CanR and Lys+) upon exposure to H2O2, relative to WT, rad1 and ntg1 ntg2 strains. Mutagen sensitivity and enhanced mutagenesis in the rad1 ntg1 ntg2 triple mutant, relative to the other strains tested, were also observed upon exposure to oxidizing agents such as tertbutylhydroperoxide and menadione. In contrast, the sensitivity of the rad1 ntg1 ntg2 triple mutant to gamma-irradiation does not differ from that of the WT. However, the triple mutant shows an increase in the frequency of Lys+ revertants recovered after gamma-irradiation. The results reported in this study demonstrate that base excision repair (BER) mediated by Ntglp and Ntg2p acts synergistically with NER to repair endogenous or induced lethal and mutagenic oxidative DNA damage in yeast. The substrate specificity of Ntg1 p and Ntg2p, and the spectrum of lesions induced by the DNA-damaging agents used, strongly suggest that oxidized DNA bases, presumably oxidized pyrimidines, represent the major targets of this repair pathway.  相似文献   

5.
The chronological life span of yeast, the survival of stationary (G0) cells over time, provides a model for investigating certain of the factors that may influence the aging of non-dividing cells and tissues in higher organisms. This study measured the effects of defined defects in the base excision repair (BER) system for DNA repair on this life span. Stationary yeast survives longer when it is pre-grown on respiratory, as compared to fermentative (glucose), media. It is also less susceptible to viability loss as the result of defects in DNA glycosylase/AP lyases (Ogg1p, Ntg1p, Ntg2p), apurinic/apyrimidinic (AP) endonucleases (Apn1p, Apn2p) and monofunctional DNA glycosylase (Mag1p). Whereas single BER glycosylase/AP lyase defects exerted little influence over such optimized G0 survival, this survival was severely shortened with the loss of two or more such enzymes. Equally, the apn1delta and apn2delta single gene deletes survived as well as the wild type, whereas a apn1delta apn2delta double mutant totally lacking in any AP endonuclease activity survived poorly. Both this shortened G0 survival and the enhanced mutagenicity of apn1delta apn2delta cells were however rescued by the over-expression of either Apn1p or Apn2p. The results highlight the vital importance of BER in the prevention of mutation accumulation and the attainment of the full yeast chronological life span. They also reveal an appreciable overlap in the G0 maintenance functions of the different BER DNA glycosylases and AP endonucleases.  相似文献   

6.
Guillet M  Boiteux S 《The EMBO journal》2002,21(11):2833-2841
In Saccharomyces cerevisiae, mutations in APN1, APN2 and either RAD1 or RAD10 genes are synthetic lethal. In fact, apn1 apn2 rad1 triple mutants can form microcolonies of approximately 300 cells. Expression of Nfo, the bacterial homologue of Apn1, suppresses the lethality. Turning off the expression of Nfo induces G(2)/M cell cycle arrest in an apn1 apn2 rad1 triple mutant. The activation of this checkpoint is RAD9 dependent and allows residual DNA repair. The Mus81/Mms4 complex was identified as one of these back-up repair activities. Furthermore, inactivation of Ntg1, Ntg2 and Ogg1 DNA N-glycosylase/AP lyases in the apn1 apn2 rad1 background delayed lethality, allowing the formation of minicolonies of approximately 10(5) cells. These results demonstrate that, under physiological conditions, endogenous DNA damage causes death in cells deficient in Apn1, Apn2 and Rad1/Rad10 proteins. We propose a model in which endogenous DNA abasic sites are converted into 3'-blocked single-strand breaks (SSBs) by DNA N-glycosylases/AP lyases. Therefore, we suggest that the essential and overlapping function of Apn1, Apn2, Rad1/Rad10 and Mus81/Mms4 is to repair 3'-blocked SSBs using their 3'-phosphodiesterase activity or their 3'-flap endonuclease activity, respectively.  相似文献   

7.
DNA base excision repair (BER) is initiated by DNA glycosylases that recognize and remove damaged bases. The phosphate backbone adjacent to the resulting apurinic/apyrimidinic (AP) site is then cleaved by an AP endonuclease or glycosylase-associated AP lyase to invoke subsequent BER steps. We have used a genetic approach in Saccharomyces cerevisiae to determine whether or not AP sites are blocks to DNA replication and the biological consequences if AP sites persist in the genome. We previously reported that yeast cells deficient in the two AP endonucleases (apn1 apn2 double mutant) are extremely sensitive to killing by a model DNA alkylating agent methyl methanesulfonate (MMS) and that this sensitivity can be reduced by deleting the MAG1 3-methyladenine DNA glycosylase gene. Here we report that in the absence of the AP endonucleases, deletion of two Escherichia coli endonuclease III homologs, NTG1 and NTG2, partially suppresses MMS-induced killing, which indicates that the AP lyase products are deleterious unless they are further processed by an AP endonuclease. The severe MMS sensitivity seen in AP endonuclease deficient strains can also be rescued by treatment of cells with the AP lyase inhibitor methoxyamine, which suggests that the product of AP lyase action on an AP site is indeed an extremely toxic lesion. In addition to the AP endonuclease interactions, deletion of NTG1 and NTG2 enhances the mag1 mutant sensitivity to MMS, whereas overexpression of MAG1 in either the ntg1 or ntg2 mutant severely affects cell growth. These results help to delineate alkylation base lesion flow within the BER pathway.  相似文献   

8.
One of the most frequent lesions formed in cellular DNA are abasic (apurinic/apyrimidinic, AP) sites that are both cytotoxic and mutagenic, and must be removed efficiently to maintain genetic stability. It is generally believed that the repair of AP sites is initiated by the AP endonucleases; however, an alternative pathway seems to prevail in Schizosaccharomyces pombe. A mutant lacking the DNA glycosylase/AP lyase Nth1 is very sensitive to the alkylating agent methyl methanesulfonate (MMS), suggesting a role for Nth1 in base excision repair (BER) of alkylation damage. Here, we have further evaluated the role of Nth1 and the second putative S.pombe AP endonuclease Apn2, in abasic site repair. The deletion of the apn2 open reading frame dramatically increased the sensitivity of the yeast cells to MMS, also demonstrating that the Apn2 has an important function in the BER pathway. The deletion of nth1 in the apn2 mutant strain partially relieves the MMS sensitivity of the apn2 single mutant, indicating that the Apn2 and Nth1 act in the same pathway for the repair of abasic sites. Analysis of the AP site cleavage in whole cell extracts of wild-type and mutant strains showed that the AP lyase activity of Nth1 represents the major AP site incision activity in vitro. Assays with DNA substrates containing base lesions removed by monofunctional DNA glycosylases Udg and MutY showed that Nth1 will also cleave the abasic sites formed by these enzymes and thus act downstream of these enzymes in the BER pathway. We suggest that the main function of Apn2 in BER is to remove the resulting 3′-blocking termini following AP lyase cleavage by Nth1.  相似文献   

9.
Escherichia coli exonuclease III and endonuclease III are two distinct DNA-repair enzymes that can cleave apurinic/apyrimidinic (AP) sites by different mechanisms. While the AP endonuclease activity of exonuclease III generates a 3'-hydroxyl group at AP sites, the AP lyase activity of endonuclease III produces a 3'-α,β unsaturated aldehyde that prevents DNA-repair synthesis. Saccharomyces cerevisiae Apn1 is the major AP endonuclease/3'-diesterase that also produces a 3'-hydroxyl group at the AP site, but it is unrelated to either exonuclease III or endonuclease III. apn1 deletion mutants are unable to repair AP sites generated by the alkylating agent methyl methane sulphonate and display a spontaneous mutator phenotype. This work shows that either exonuclease III or endonuclease III can functionally replace yeast Apn1 in the repair of AP sites. Two conclusions can be derived from these findings. The first of these conclusions is that yeast cells can complete the repair of AP sites even though they are cleaved by AP lyase. This implies that AP lyase can contribute significantly to the repair of AP sites and that yeast cells have the ability to process the α,β unsaturated aldehyde produced by endonuclease III. The second of these conclusions is that unrepaired AP sites are strictly the cause of the high spontaneous mutation rate in the apn1 deletion mutant.  相似文献   

10.
Saccharomyces cerevisiae possesses two Escherichia coli endonuclease III homologs, NTG1 and NTG2, whose gene products function in the base excision repair pathway and initiate removal of a variety of oxidized pyrimidines from DNA. Although the glycosylase activity of these proteins has been well studied, the in vivo importance of the AP lyase activity has not been determined. Previous genetic studies have suggested that the AP lyase activities of Ntg1p and Ntg2p may be major contributors in the initial processing of abasic sites. We conducted a biochemical characterization of the AP lyase activities of Ntg1p and Ntg2p via a series of kinetic experiments. Such studies were designed to determine if Ntg1p and Ntg2p prefer specific bases located opposite abasic sites and whether these lesions are processed with a catalytic efficiency similar to Apn1p, the major hydrolytic AP endonuclease of yeast. Our results indicate that Ntg1p and Ntg2p are equally effective in processing four types of abasic site-containing substrates. Certain abasic site substrates were processed with greater catalytic efficiency than others, a situation similar to Apn1p processing of such substrates. These biochemical studies strongly support an important biological role for Ntg1p and Ntg2p in the initial processing of abasic sites and maintenance of genomic stability.  相似文献   

11.
In eukaryotes, DNA damage induced by ultraviolet light and other agents which distort the helix is removed by nucleotide excision repair (NER) in a fragment approximately 25 to 30 nucleotides long. In humans, a deficiency in NER causes xeroderma pigmentosum (XP), characterized by extreme sensitivity to sunlight and a high incidence of skin cancers. Abasic (AP) sites are formed in DNA as a result of spontaneous base loss and from the action of DNA glycosylases involved in base excision repair. In Saccharomyces cerevisiae, AP sites are removed via the action of two class II AP endonucleases, Apn1 and Apn2. Here, we provide evidence for the involvement of NER in the removal of AP sites and show that NER competes with Apn1 and Apn2 in this repair process. Inactivation of NER in the apn1Delta or apn1Delta apn2Delta strain enhances sensitivity to the monofunctional alkylating agent methyl methanesulfonate and leads to further impairment in the cellular ability to remove AP sites. A deficiency in the repair of AP sites may contribute to the internal cancers and progressive neurodegeneration that occur in XP patients.  相似文献   

12.
In Saccharomyces cerevisiae, the apurinic/apyrimidinic (AP) endonucleases Apn1 and Apn2 act as alternative pathways for the removal of various 3'-terminal blocking lesions from DNA strand breaks and in the repair of abasic sites, which both result from oxidative DNA damage. Here we demonstrate that Tpp1, a homologue of the 3' phosphatase domain of polynucleotide kinase, is a third member of this group of redundant 3' processing enzymes. Unlike Apn1 and Apn2, Tpp1 is specific for the removal of 3' phosphates at strand breaks and does not possess more general 3' phosphodiesterase, exonuclease, or AP endonuclease activities. Deletion of TPP1 in an apn1 apn2 mutant background dramatically increased the sensitivity of the double mutant to DNA damage caused by H2O2 and bleomycin but not to damage caused by methyl methanesulfonate. The triple mutant was also deficient in the repair of 3' phosphate lesions left by Tdp1-mediated cleavage of camptothecin-stabilized Top1-DNA covalent complexes. Finally, the tpp1 apn1 apn2 triple mutation displayed synthetic lethality in combination with rad52, possibly implicating postreplication repair in the removal of unrepaired 3'-terminal lesions resulting from endogenous damage. Taken together, these results demonstrate a clear role for the lesion-specific enzyme, Tpp1, in the repair of a subset of DNA strand breaks.  相似文献   

13.
Schizosaccharomyces pombe Nthpl, an ortholog of the endonuclease III family, is the sole bifunctional DNA glycosylase encoded in its genome. The enzyme removes oxidative pyrimidine and incises 3' to the apurinic/apyrimidinic (AP) site, leaving 3'-alpha,beta-unsaturated aldehyde. Analysis of nth1 cDNA revealed an intronless structure including 5'- and 3'-untranslated regions. An Nth1p-green fluorescent fusion protein was predominantly localized in the nuclei of yeast cells, indicating a nuclear function. Deletion of nth1 confirmed that Nth1p is responsible for the majority of activity for thymine glycol and AP site incision in the absence of metal ions, while nth1 mutants exhibit hypersensitivity to methylmethanesulfonate (MMS). Complementation of sensitivity by heterologous expression of various DNA glycosylases showed that the methyl-formamidopyrimidine (me-fapy) and/or AP sites are plausible substrates for Nth1p in repairing MMS damage. Apn2p, the major AP endonuclease in S. pombe, also greatly contributes to the repair of MMS damage. Deletion of nth1 from an apn2 mutant resulted in tolerance to MMS damage, indicating that Nth1p-induced 3'-blocks are responsible for MMS sensitivity in apn2 mutants. Overexpression of Apn2p in nth1 mutants failed to suppress MMS sensitivity. These results indicate that Nth1p, not Apn2p, primarily incises AP sites and that the resultant 3'-blocks are removed by the 3'-phosphodiesterase activity of Apn2p. Nth1p is dispensable for cell survival against low levels of oxidative stress, but wild-type yeast became more sensitive than the nth1 mutant at high levels. Overexpression of Nth1p in heavily damaged cells probably induced cell death via the formation of 3'-blocked single-strand breaks.  相似文献   

14.
15.
Demple B  Sung JS 《DNA Repair》2005,4(12):1442-1449
Many oxidative DNA lesions are handled well by base excision repair (BER), but some types may be problematic. Recent work indicates that 2-deoxyribonolactone (dL) is such a lesion by forming stable, covalent cross-links between the abasic residue and DNA repair proteins with lyase activity. In the case of DNA polymerase beta, the reaction is potentiated by incision of dL by Ape1, the major mammalian AP endonuclease. When repair is prevented, polymerase beta is the most reactive cross-linking protein in whole-cell extracts. Cross-linking with dL is largely avoided by processing the damage through the "long-patch" (multinucleotide) BER pathway. However, if excess damage leads to the accumulation of unrepaired oxidative lesions in DNA, there may be a danger of polymerase beta-mediated cross-link formation. Understanding how cells respond to such complex damage is an important issue. In addition to its role in defending against DNA damage caused by exogenous agents, Ape1 protein is essential for coping with the endogenous DNA damage in human cells grown in culture. Suppression of Ape1 using RNA-interference technology causes arrest of cell proliferation and activation of apoptosis in various cell types, correlated with the accumulation of unrepaired abasic DNA damage. Notably, all these effects are reversed by expression of the unrelated protein Apn1 of S. cerevisiae, which shares only the enzymatic repair function with Ape1 (AP endonuclease).  相似文献   

16.
Kashkina E  Qi T  Weinfeld M  Young D 《DNA Repair》2012,11(8):676-683
We previously reported that Schizosaccharomyces pombe pnk1 cells are more sensitive than wild-type cells to γ-radiation and camptothecin, indicating that Pnk1 is required for DNA repair. Here, we report that pnk1pku70 and pnk1rhp51 double mutants are more sensitive to γ-radiation than single mutants, from which we infer that Pnk1's primary role is independent of either homologous recombination or non-homologous end joining mechanisms. We also report that pnk1 cells are more sensitive than wild-type cells to oxidizing and alkylating agents, suggesting that Pnk1 is involved in base excision repair. Mutational analysis of Pnk1 revealed that the DNA 3'-phosphatase activity is necessary for repair of DNA damage, whereas the 5'-kinase activity is dispensable. A role for Pnk1 in base excision repair is supported by genetic analyses which revealed that pnk1apn2 is synthetically lethal, suggesting that Pnk1 and Apn2 may function in parallel pathways essential for the repair of endogenous DNA damage. Furthermore, the nth1pnk1apn2 and tdp1pnk1apn2 triple mutants are viable, implying that single-strand breaks with 3'-blocked termini produced by Nth1 and Tdp1 contribute to synthetic lethality. We also examined the sensitivity to methyl methanesulfonate of all single and double mutant combinations of nth1, apn2, tdp1 and pnk1. Together, our results support a model where Tdp1 and Pnk1 act in concert in an Apn2-independent base excision repair pathway to repair 3'-blocked termini produced by Nth1; and they also provide evidence that Pnk1 has additional roles in base excision repair.  相似文献   

17.
DNA damaging agents are a constant threat to genomes in both the nucleus and the mitochondria. To combat this threat, a suite of DNA repair pathways cooperate to repair numerous types of DNA damage. If left unrepaired, these damages can result in the accumulation of mutations which can lead to deleterious consequences including cancer and neurodegenerative disorders. The base excision repair (BER) pathway is highly conserved from bacteria to humans and is primarily responsible for the removal and subsequent repair of toxic and mutagenic oxidative DNA lesions. Although the biochemical steps that occur in the BER pathway have been well defined, little is known about how the BER machinery is regulated. The budding yeast, Saccharomyces cerevisiae is a powerful model system to biochemically and genetically dissect BER. BER is initiated by DNA N-glycosylases, such as S. cerevisiae Ntg1. Previous work demonstrates that Ntg1 is post-translationally modified by SUMO in response to oxidative DNA damage suggesting that this modification could modulate the function of Ntg1. In this study, we mapped the specific sites of SUMO modification within Ntg1 and identified the enzymes responsible for sumoylating/desumoylating Ntg1. Using a non-sumoylatable version of Ntg1, ntg1ΔSUMO, we performed an initial assessment of the functional impact of Ntg1 SUMO modification in the cellular response to DNA damage. Finally, we demonstrate that, similar to Ntg1, the human homologue of Ntg1, NTHL1, can also be SUMO-modified in response to oxidative stress. Our results suggest that SUMO modification of BER proteins could be a conserved mechanism to coordinate cellular responses to DNA damage.  相似文献   

18.
Mutagenic and cytotoxic apurinic/apyrimidinic (AP) sites are among the most frequent lesions in DNA. Repair of AP sites is initiated by AP endonucleases and most organisms possess two or more of these enzymes. Saccharomyces cerevisiae has AP endonuclease 1 (Apn1) as the major enzymatic activity with AP endonuclease 2 (Apn2) being an important backup. Schizosaccharomyces pombe also encodes two potential AP endonucleases, and Apn2 has been found to be the main repair activity, while Apn1 has no, or only a limited role in AP site repair. Here we have identified a new 5' exon (exon 1) in the apn1 gene and show that the inactivity of S. pombe Apn1 is due to a nonsense mutation in the fifth codon of this new exon. Reversion of this mutation restored the AP endonuclease activity of S. pombe Apn1. Interestingly, the apn1 nonsense mutation was only found in laboratory strains derived from L972 h(-) and not in unrelated isolates of S. pombe. Since all S. pombe laboratory strains originate from L972 h(-), it appears that all experiments involving S. pombe have been conducted in an apn1(-) mutant strain with a corresponding DNA repair deficiency. These observations have implications both for future research in S. pombe and for the interpretation of previously conducted epistatis analysis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号