首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Immunohistochemistry for two nociceptive transducers, the transient receptor potential cation channel subfamily V members 1 (TRPV1) and 2 (TRPV2), was performed on the pharynx and its adjacent regions. TRPV1-immunoreactivity (IR) was detected in nerve fibers beneath and within the epithelium and/or taste bud-like structure. In the pharynx, these nerve fibers were abundant in the naso-oral part and at the border region of naso-oral and laryngeal parts. They were also numerous on the laryngeal side of the epiglottis and in the soft palate. TRPV2-IR was expressed by dendritic cells in the pharynx and epiglottis, as well as in the root of the tongue and soft palate. These cells were located in the epithelium and lamina propria. TRPV2-immunoreactive (IR) dendritic cells were numerous in the naso-oral part of the pharynx, epiglottis, and tongue. Abundance of TRPV2-IR dendritic processes usually obscured the presence of TRPV2-IR nerve fibers in these portions. However, some TRPV2-IR nerve fibers could be observed in the epithelium of the soft palate. Retrograde tracing method also revealed that sensory neurons which innervate the pharynx or soft palate were abundant in the jugular–petrosal ganglion complex and relatively rare in the nodose ganglion. In the jugular–petrosal ganglion complex, TRPV1- and TRPV2-IR were expressed by one-third of pharyngeal and soft palate neurons. TRPV2-IR was also detected in 11.5 % pharyngeal and 30.9 % soft palate neurons in the complex. Coexpression of TRPV1 and CGRP was frequent among pharyngeal and soft palate neurons. The present study suggests that TRPV1- and TRPV2-IR jugular–petrosal neurons may be associated with the regulation of the swallowing reflex.  相似文献   

2.
Immunohistochemistry for transient receptor potential melastatin-8 (TRPM8), the cold and menthol receptor, was performed on the rat soft palate, epiglottis and pharynx. TRPM8-immunoreactive (IR) nerve fibers were located beneath the mucous epithelium, and occasionally penetrated the epithelium. These nerve fibers were abundant in the posterior portion of the soft palate and at the border region of naso-oral and laryngeal parts of the pharynx. The epiglottis was free from such nerve fibers. The double immunofluorescence method demonstrated that TRPM8-IR nerve fibers in the pharynx and soft palate were mostly devoid of calcitonin gene-related peptide-immunoreactivity (CGRP-IR). The retrograde tracing method also demonstrated that 30.1 and 8.7 % of sensory neurons in the jugular and petrosal ganglia innervating the pharynx contained TRPM8-IR, respectively. Among these neurons, the co-expression of TRPM8 and CGRP-IR was very rare. In the nodose ganglion, however, pharyngeal neurons were devoid of TRPM8-IR. Taste bud-like structures in the soft palate and pharynx contained 4–9 TRPM8-IR cells. In the epiglottis, the mucous epithelium on the laryngeal side had numerous TRPM8-IR cells. The present study suggests that TRPM8 can respond to cold stimulation when food and drinks pass through oral and pharyngeal cavities.  相似文献   

3.
We combined retrograde tracing techniques with single-neuron RT-PCR to compare the expression of neurotrophic factor receptors in nodose vs. jugular vagal sensory neurons. The neurons were further categorized based on location of their terminals (tracheal or lungs) and based on expression of the ionotropic capsaicin receptor TRPV1. Consistent with functional studies, nearly all jugular neurons innervating the trachea and lungs expressed TRPV1. With respect to the neurotrophin receptors, the TRPV1-expressing jugular C-fiber neurons innervating both the trachea and lung compartments preferentially expressed tropomyosin-receptor kinase A (TrkA), with only a minority of neurons expressing TrkB or TrkC. The nodose neurons that express TRPV1 (presumed nodose C-fibers) innervate mainly intrapulmonary structures. These neurons preferentially expressed TrkB, with only a minority expressing TrkA or TrkC. The expression pattern in tracheal TRPV1-negative neurons, nodose tracheal presumed Aδ-fiber neurons as well as the intrapulmonary TRPV1-negative presumed Aβ-fiber neurons, was similar to that observed in the nodose C-fiber neurons. We also evaluated the expression of GFRα receptors and RET (receptors for the GDNF family ligands). Virtually all vagal sensory neurons innervating the respiratory tract expressed RET and GFRα1. The jugular neurons also categorically expressed GFRα3, as well as ~50% of the nodose neurons. GFRα2 was expressed in ~50% of the neurons irrespective of subtype. The results reveal that Trk receptor expression in vagal afferent neurons innervating the adult respiratory tract depends more on the location of the cell bodies (jugular vs. nodose ganglion) than either the location of the terminals or the functional phenotype of the nerve. The data also reveal that in addition to neurotrophins, the GDNF family ligands may be important neuromodulators of vagal afferent nerves innervating the adult respiratory tract.  相似文献   

4.
The presence and distribution of P2Y (nucleotide) receptor subtypes in rat sensory neurons has been investigated. RT-PCR showed that P2Y1, P2Y2, P2Y4 and P2Y6 receptor mRNA is expressed in sensory ganglia [dorsal root ganglion (DRG), nodose ganglion (NG) and trigeminal ganglion (TG)]. The regional and cellular distribution of P2Y1 and P2Y4 receptor proteins in these ganglia was investigated using immunohistochemistry. P2Y1 polyclonal antibodies stained over 80% of the sensory neurons, particularly the small-diameter (neurofilament-negative) neurons. The P2Y4 receptor antibody stained more medium- and large- (neurofilament-positive) diameter neurons than small-diameter neurons. P2Y1 and P2Y4 receptor immunoreactivity (P2Y1-IR and P2Y4-IR) was often coexpressed with P2X3 receptor immunoreactivity (P2X3-IR) in subpopulations of neurons. Double immunohistochemistry showed that 73–84% of P2X3 receptor-positive neurons also stained for the P2Y1 receptor in DRG, TG and NG while only 25–35% also stained for the P2Y4 receptor. Subpopulations of P2Y1-IR neurons were coexpressed with NF200, CGRP and IB4; most P2Y4-IR neurons were coexpressed with NF200, while only a few neurons were coexpressed with CGRP (10–20%) or with IB4 (1–2%). The results suggest that P2Y as well as P2X receptor subtypes contribute to purinergic signalling in sensory ganglia.  相似文献   

5.
用免疫组织化学与原位杂交研究 P2 X3受体在背根神经节、三叉神经节和结状神经节的分布。结果显示 :1.原位杂交 :在三种感觉神经节中 ,95 %左右的神经节细胞为 P2 X3m RNA阳性 ,中、小型神经节细胞的杂交信号一般要比大型的神经节细胞强一些。 2 .免疫组织化学 :免疫组织化学结果与原位杂交结果基本一致。此外 ,在各神经节内 ,均显示出许多P2 X3免疫阳性神经纤维 ,在足掌表皮也显示许多 P2 X3免疫反应阳性纤维。结果提示 :P2 X3不仅参与机体的痛觉的形成 ,还可能参与其它感觉 ,如本体感觉等的形成  相似文献   

6.
7.
The chicken carotid body receives numerous branches from the vagus nerve, especially distal (nodose) ganglion, and the recurrent laryngeal nerve. Dense networks of peptidergic nerve fibers immunoreactive for substance P, calcitonin gene-related peptide (CGRP), galanin, vasoactive intestinal peptide (VIP) and neuropeptide Y are distributed in and around the carotid body. Substance-P- and CGRP-immunoreactive fibers projecting to the chicken carotid body mainly come from the vagal ganglia. In the present study, various types of denervation experiments were performed in order to clarify the origins of VIP-, galanin- and neuropeptide-Y-immunoreactive fibers in the chicken carotid bodies. After nodose ganglionectomy, midcervical vagotomy or excision of the recurrent laryngeal nerve, VIP-, galanin- and neuropeptide-Y-immunoreactive fibers were unchanged in the carotid body region. Furthermore, these peptidergic fibers remained unaffected even by removal of the nodose ganglion in conjunction with severance of the recurrent laryngeal nerve that induced a marked decrease in TuJ1-immunoreactive fibers in the carotid body region. VIP-, galanin- and neuropeptide-Y-immunoreactive fibers are densely distributed around the arteries supplying the carotid body in normal chickens. The peptidergic fibers around the arteries were also unaffected after the denervation experiments. However, after removal of the 14th cervical ganglion of the sympathetic trunk, which lies close to the vertebral artery on the root of the brachial plexus and issues prominent branches to the artery, VIP-, galanin- and neuropeptide-Y-immunoreactive fibers almost disappeared in the carotid body region. The ganglion contained many VIP-, galanin- and neuropeptide-Y-immunoreactive neurons. Thus it is clear that VIP-, galanin- and neuropeptide-Y-immunoreactive fibers in the chicken carotid body region are mainly derived from the 14th cervical sympathetic ganglion via the vertebral artery.  相似文献   

8.
The vanilloid receptor VR1 is a nonselective cation channel activated by capsaicin as well as increases in temperature and acidity, and can be viewed as molecular integrator of chemical and physical stimuli that elicit pain. The distribution of VR1 receptors in peripheral and central processes of rat primary vagal afferent neurons innervating the gastrointestinal tract was investigated by immunohistochemistry. Forty-two percent of neurons in the nodose ganglia retrogradely labeled from the stomach wall expressed low to moderate VR1 immunoreactivity (VR1-IR). VR1-IR was considerably lower in the nodose ganglia as compared to the jugular and dorsal root ganglia. In the vagus nerve, strongly VR1-IR fibers ran in separate fascicles that supplied mainly cervical and thoracic targets, leaving only weakly VR1-IR fibers in the subdiaphragmatic portion. Vagal afferent intraganglionic laminar endings (IGLEs) in the gastric and duodenal myenteric plexus did not express VR1-IR. Similarly, VR1-IR was contained in fibers running in perfect register with vagal afferents, but was not colocalized with horseradish peroxidase in the same varicosities of intramuscular arrays (IMAs) and vagal afferent fibers in the duodenal submucosa anterogradely labeled from the nodose ganglia. Only in the gastric mucosa did we find evidence for colocalization of VR1-IR in vagal afferent terminals. In contrast, many nerve fibers coursing through the myenteric and submucosal plexuses contained detectable VR1-IR, the majority of which colocalized calcitonin gene-related peptide immunoreactivity. In the dorsal medulla there was a dense plexus of VR1-IR varicose fibers in the commissural, dorsomedial and gelatinosus subnuclei of the medial NTS and the lateral aspects of the area postrema, which was substantially reduced, but not eliminated on the ipsilateral side after supranodose vagotomy. It is concluded that about half of the vagal afferents innervating the gastrointestinal tract express low levels of VR1-IR, but that presence in most of the peripheral terminal structures is below the immunohistochemical detection threshold.  相似文献   

9.
P2X receptors are ATP-gated cationic channels composed of seven cloned subunits (P2X1 –7). P2X3 homomultimer and P2X2/3 heteromultimer receptors expressed by primary afferent dorsal root ganglion (DRG) neurons are involved in pain processing. The aim of the study was to investigate the expression of the P2X5 receptor subunit in DRG in different species including mouse, rat, cat and guinea pig. Immunohistochemistry showed that P2X5 receptors exhibited low levels of immunostaining in rat DRG, but high levels in mouse and guinea pig. Only a few neurons were immunoreactive for P2X5 receptors in cat. In mouse DRG, the P2X5 receptor was expressed largely by medium-diameter neurons (42.9 %), less in small (29.3 %) and large (27.8 %) neurons. In contrast, in the guinea pig DRG, P2X5 receptor expression was greatest in small-diameter (42.6 %), less in medium- (36.3 %) and large-diameter (21.1 %) neurons. Colocalization experiments revealed that, in mouse DRG, 65.5, 10.9 and 27.1 % of P2X5 receptors were immunoreactive for NF-200, CGRP and calbindin, while only a few P2X5-immunoreactive (IR) neurons were coexpressed with IB4 or with NOS. In guinea pig DRG, a total of 60.5 and 40.5 % of P2X5-IR neurons were coexpressed with IB4 or with CGRP, while 20.3 and 24.5 % of P2X5 receptors were coexpressed with NF-200 or with NOS. Only a few P2X5-IR neurons were coexpressed with calbindin in guinea pig DRG. It will be of great interest to clarify the relative physiological and pathophysiological roles of P2X5 receptors.  相似文献   

10.
A combination of neuroanatomic techniques was used to examine the origin and neuropeptide content of nerve fibers in the airway epithelium of adult cats. By the use of immunocytochemical methods, the peptides substance P (SP) and calcitonin gene-related peptide (CGRP) were colocalized in airway epithelial nerve fibers. Two days after wheat germ agglutinin (WGA) was injected into the nodose ganglion, fibers containing WGA immunoreactivity (IR) were detected in the airway epithelium. SP-like immunoreactivity (LI) and CGRP-LI were demonstrated separately in the WGA-IR fibers, establishing their origin from nerve cell bodies of nodose ganglion. Vagal transection inferior to the nodose ganglion reduced the number of SP- and CGRP-IR fibers by greater than 90% in ipsilateral airways. In contralateral airways, SP-IR fibers were substantially reduced, whereas the effect on CGRP-IR fibers was not statistically significant. Vagotomy superior to the nodose ganglion did not alter the density of peptide-IR fibers. The results prove that SP- and CGRP-IR nerve fibers of cat airway epithelium originate from nerve cell bodies in the nodose ganglion and that SP- and CGRP-like peptides may be stored together in some nerve fibers of the airway epithelium.  相似文献   

11.
Combined use of the intraaxonal retrograde transport of the fluorescent marker ‘true blue’ with substance P (SP) immunocytochemistry has been used to trace the nodose ganglion projections of SP-containing neurons of the aortic depressor nerve. It has been found that (1) SP immunoreactive (SP-I) cell bodies are clearly demonstrable in clusters in the rostral part of the nodose ganglion without the aid of colchicine pretreatment; (2) ‘true blue’ is retrogradely transported to the nodose ganglion following its application to the central cut end of the aortic nerve; (3) ‘true blue’ fluorescence and SP fluorescent immunoreactivity can be visualized in the same tissue section and certain cell bodies in the nodose ganglia contain both SP-I and retrogradely transported ‘true blue’. These results indicate that the aortic nerve which projects from the aortic arch baro- and/or chemoreceptors to brainstem vasomotor centers contains SP-I afferent fibers which emanate from the nodose ganglion.  相似文献   

12.
We addressed the hypothesis that allergic inflammation in guinea pig airways leads to a phenotypic switch in vagal tracheal cough-causing, low-threshold mechanosensitive Aδ neurons, such that they begin expressing functional transient receptor potential vanilloid (TRPV1) channels. Guinea pigs were actively sensitized to ovalbumin (OVA) and beginning 21 days later exposed via aerosol to OVA daily for 3 days. Tracheal-specific neurons were identified in the nodose ganglion using retrograde tracing techniques. Tracheal specific neurons were isolated, and mRNA expression was evaluated at the single-neuron level using RT-PCR analysis. Electrophysiological studies have revealed that the vast majority of vagal nodose afferent nerves innervating the trachea are capsaicin-insensitive Aδ-fibers. Consistent with this, we found <20% of these neurons express TRPV1 mRNA or respond to capsaicin in a calcium assay. Allergen exposure induced de novo TRPV1 mRNA in a majority of the tracheal-specific nodose neurons (P < 0.05). The allergen-induced TRPV1 induction was mimicked by applying either brain-derived neurotrophic factor (BDNF) or glial-derived neurotrophic factor (GDNF) to the tracheal lumen. The BDNF-induced phenotypic change observed at the level of mRNA expression was mimicked using a calcium assay to assess functional TRPV1 ion channels. Finally, OVA exposure induced BDNF and GDNF production in the tracheal epithelium, the immediate vicinity of the nodose Aδ -fibers terminations. The induction of TRPV1 in nodose tracheal Aδ -fibers would substantively expand the nature of stimuli capable of activating these cough-causing nerves.  相似文献   

13.
Combined use of the intraaxonal retrograde transport of the fluorescent marker ‘true blue’ with substance P (SP) immunocytochemistry has been used to trace the nodose ganglion projections of SP-containing neurons of the aortic depressor nerve. It has been found that (1) SP immunoreactive (SP-I) cell bodies are clearly demonstrable in clusters in the rostral part of the nodose ganglion without the aid of colchicine pretreatment; (2) ‘true blue’ is retrogradely transported to the nodose ganglion following its application to the central cut end of the aortic nerve; (3) ‘true blue’ fluorescence and SP fluorescent immunoreactivity can be visualized in the same tissue section and certain cell bodies in the nodose ganglia contain both SP-I and retrogradely transported ‘true blue’. These results indicate that the aortic nerve which projects from the aortic arch baro- and/or chemoreceptors to brainstem vasomotor centers contains SP-I afferent fibers which emanate from the nodose ganglion.  相似文献   

14.
Under intracellular recording, we studied the effect of ATP on nerve cells of the rat intact nodose ganglion. The resting membrane potential of the examined neurons was, on average, –60.3 ± 1.4 mV (n = 84); among such units, 88% were classified as C cells. Local application of 2 mM ATP to the surface of the ganglion using a modified laminar flow system led to depolarization of neurons by 7.1 ± 0.9 mV, on average (n = 19). A blocker of P2X receptors, PPADS (100 μM), suppressed these depolarization responses, decreasing their amplitude, on average, to 16 ± 3% (n = 3) of the initial value. The obtained data indicate that an overwhelming majority of neurons of the intact nodose ganglion possess functional P2X receptors on their membranes. The absence of the corresponding responses in a considerable part of neurons of intact spinal ganglia [13-15] was, apparently, determined by the fact that P2X receptors in the course of the described experiments had enough time to desensitize before ATP reached the effective concentration.  相似文献   

15.
In mouse ontogeny, neurons immunoreactive for transient receptor potential vanilloid receptor 1 (TRPV1) were observed primarily in the dorsal root ganglia (DRG) at embryonic day 13 (E13). In the embryonic period, the number of TRPV1+ neurons decreased, but then gradually increased postnatally. Some of TRPV1+ neurons were also immunoreactive for calcitonin gene-related peptide (CGRP). At postnatal day 7 (P7), 66% of CGRP+ neurons were TRPV1+, and 55% of TRPV1+ neurons were also CGRP+ in the L4 DRG. In the peripheral organs, TRPV1-immunorective nerve fibers were transiently observed in the skin at E14. They were also observed in the urinary tract at E14, and in the rectum at E15. Many TRPV1+ nerve fibers in these organs were also CGRP+. At P1, TRPV1+ nerve fibers were observed in the respiratory organs, and to a lesser extent in the stomach, colon, skin, and skeletal muscles. The number of TRPV1+ nerve fibers on each organ gradually increased postnatally. At P7, TRPV1+ nerve fibers were also observed in the small intestine and kidneys. The percentage of total TRPV1+ nerve fibers that co-localized with CGRP was greater in most organs at P7 than at P1. The present results indicate that TRPV1 expression on peripheral processes differs among organs. The differential time course of TRPV1 expression in the cell bodies might be related to the organs to which they project. Co-localization of TRPV1 with CGRP on nerve fibers also varies among organs. This suggests that the TRPV1-mediated neuropeptide release that occurs in certain pathophysiologic conditions also varies among organs.  相似文献   

16.
Expression of vanilloid receptors in sympathetic and afferent ganglionic neurons was studied in rats of different ages (newborn, 10-day old, 20-day old, 30-day old, 60-, 180-day old) using immunohistochemical methods. The results obtained indicate that the majority of the afferent neurons in the nodose ganglion of vagus nerve (GNVN) and in the spinal ganglia (SG) were TRPV1-positive from birth onwards. The percentage of neurons containing TRPVT receptors in SG slightly increased with age up to 30 days postnatally. In the GNVN, the percentage of TRPV1-positive neurons was higher in comparison with the SG in all age groups. The vast majority of the sympathetic neurons were TRPV1-positive from birth onwards, and the percentage of TRPV1-immunoreactive neurons substantially decreased during further development. In 20-day old and older animals, we observed only few TRPV1-immunoreactive neurons in sympathetic ganglia. Finally, the percentage of neurons containing these types of neurons, become similar to adult animals to the end of the first month of life.  相似文献   

17.
Caffeine-induced Ca2+ transients (CICTs) in rabbit nodose ganglion neurons (NGNs) are produced by two distinct mechanisms: release from intracellular stores via ryanodine receptors and Ca2+ influx across the plasma membrane, due to activation of an unknown receptor. In isolated rat NGNs, we used single-cell microfluorimetry to measure changes in intracellular Ca2+ and to test whether TRPV1 receptors underlie the Ca2+ influx pathway. Caffeine (10 mM) evoked CICTs in all NGNs tested (n = 47) averaging 365 ± 32 nM. CICTs were partially dependent upon a Ca2+ influx pathway that ranged between 33% and 98% of the total Ca2+ transient. Application of two selective TRPV1 antagonists significantly attenuated CICTs. The peak average amplitudes of CICTs in Ca2+-free Locke solution and Ca2+-free Locke solution with IRTX or with BCTC were not significantly different from one another (n = 5 and 7, respectively). These observations suggest that caffeine can induce Ca2+ influx by activating TRPV1 channels.  相似文献   

18.
The lungs and esophagus are innervated by sensory neurons with somata in the nodose, jugular, and dorsal root ganglion. These sensory ganglia are derived from embryonic placode (nodose) and neural crest tissues (jugular and dorsal root ganglia; DRG). We addressed the hypothesis that the neuron's embryonic origin (e.g., placode vs. neural crest) plays a greater role in determining particular aspects of its phenotype than the environment in which it innervates (e.g., lungs vs. esophagus). This hypothesis was tested using a combination of extracellular and patch-clamp electrophysiology and single-cell RT-PCR from guinea pig neurons. Nodose, but not jugular C-fibers innervating the lungs and esophagus, responded to alpha,beta-methylene ATP with action potential discharge that was sensitive to the P2X3 (P2X2/3) selective receptor antagonist A-317491. The somata of lung- and esophagus-specific sensory fibers were identified using retrograde tracing with a fluorescent dye. Esophageal- and lung-traced neurons from placodal tissue (nodose neurons) responded similarly to alpha,beta-methylene ATP (30 microM) with a large sustained inward current, whereas in neurons derived from neural crest tissue (jugular and DRG neurons), the same dose of alpha,beta-methylene ATP resulted in only a transient rapidly inactivating current or no detectable current. It has been shown previously that only activation of P2X2/3 heteromeric receptors produce sustained currents, whereas homomeric P2X3 receptor activation produces a rapidly inactivating current. Consistent with this, single-cell RT-PCR analysis revealed that the nodose ganglion neurons innervating the lungs and esophagus expressed mRNA for P2X2 and P2X3 subunits, whereas the vast majority of jugular and dorsal root ganglia innervating these tissues expressed only P2X3 mRNA with little to no P2X2 mRNA expression. We conclude that the responsiveness of C-fibers innervating the lungs and esophagus to ATP and other purinergic agonists is determined more by their embryonic origin than by the environment of the tissue they ultimately innervate.  相似文献   

19.
R J?rvi 《Histochemistry》1989,92(3):231-236
The localization of bombesin- (BOMB) and enkephalin- (ENK) immunoreactive (IR) nerves was studied in rat coeliac-superior mesenteric ganglion complex in relation to neuropeptide Y (NPY)- and tyrosine hydroxylase (TH)-immunoreactive neurons with an immunofluorescence double-staining method. Very dense networks of BOMB-IR nerve terminals surrounded the majority of the principal ganglion cells, whether or not they were TH-IR. BOMB-IR nerves were specifically related to the non-NPY-IR neurons. Moderately dense networks of ENK-IR fibers were unevenly distributed among the ganglion cells. Majority of these neurons exhibited TH-IR and some of them also contained NPY-IR. In sections double stained with antibodies to ENK and BOMB some nerve fibers contained both peptides. The findings suggest that BOMB-IR nerves, which have been previously demonstrated to originate from gut, control the function of non-NPY-IR ganglion cells. ENK-IR nerves apparently control the adrenergic neurons which project to gut and also some NPY-IR vasomotoric neurons. The finding that ENK- and BOMB-IR coexist in some nerves suggests that some ENK-IR nerves may originate from gut, although the major part probably represents preganglionic fibers originating from spinal cord.  相似文献   

20.
Muscle metabolic by-products stimulate thin fiber muscle afferent nerves and evoke reflex increases in blood pressure and sympathetic nerve activity. Previous studies reported that chemically sensitive transient receptor potential vanilloid type 1 (TRPV1) channels present on sensory muscle afferent neurons have an important impact on sympathetically mediated cardiovascular responses. The reflex-mediated reduction in blood flow to skeletal muscle leads to limited exercise capacity in patients with peripheral arterial occlusive disease. Thus, in this study, we tested the hypothesis that the expression of enhanced TRPV1 receptor and its responsiveness in primary afferent neurons innervating muscles initiate exaggerated reflex sympathetic responses after vascular insufficiency to the muscle. Muscle vascular insufficiency was induced by the femoral artery ligation in rats for 24 h. Our data show that 1) the ligation surgery leads to the upregulation of TRPV1 expression in the dorsal root ganglion; 2) the magnitude of the dorsal root ganglion neuron TRPV1 response induced by capsaicin is greater in vascular insufficiency (4.0 +/- 0.31 nA, P < 0.05 vs. sham-operated control) than that in sham-operated control (2.9 +/- 0.23 nA); and 3) renal sympathetic nerve activity and mean arterial pressure responses to capsaicin (0.5 microg/kg body wt) are also enhanced by vascular insufficiency (54 +/- 11%, 9 +/- 2 mmHg in sham-operated controls vs. 98 +/- 13%, 33 +/- 5 mmHg after vascular insufficiency, P < 0.05). In conclusion, sympathetic nerve responses to the activation of metabolite-sensitive TRPV1 receptors are augmented in rats with the femoral artery occlusion compared with sham-operated control animals, due to alterations in the expression of TRPV1 receptor and its responsiveness in sensory neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号