首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microvascular endothelial cells from human neonatal foreskin were grown in vitro until a three-dimensional network of capillary-like structures was formed. All stages of the angiogenic cascade could be observed in this in vitro model, including the formation of an internal lumen. The microscopy focused on morphology, formation of an internal lumen, role of the extracellular matrix, polarity of the cells, and the time-course of the angiogenic cascade. Bright-field microscopy revealed cells arranged circularly side by side and the internal lumen of capillary-like structures was verified by electron microscopy. Immunolabeling revealed a peritubular localization of collagen IV. Reporter gene expression after the formation of capillary-like structures was marginally higher than control expression, but clearly lower than the expression of cells at the stage of proliferation. Highest transfection efficiencies were obtained using vectors with the CMV promoter and the long fragment of the Ets-1 promoter. This is a first study of transfection efficiencies mapped for stages of in vitro angiogenesis. We describe here the morphological features of a long-term in vitro model of angiogenesis of human microvascular endothelial cells that could be used for transfection studies, without the provision of an extracellular matrix substrate. The cells self-create their own extracellular matrix to proliferate and form a three-dimensional network of capillary-like structures with an internal lumen.  相似文献   

2.
Endothelial cells can function differently in vitro and in vivo; however, the degree of microenvironmental modulation in vivo remains unknown at the molecular level largely because of analytical limitations. We use multidimensional protein identification technology (MudPIT) to identify 450 proteins (with three or more spectra) in luminal endothelial cell plasma membranes isolated from rat lungs and from cultured rat lung microvascular endothelial cells. Forty-one percent of proteins expressed in vivo are not detected in vitro. Statistical analysis measuring reproducibility reveals that seven to ten MudPIT measurements are necessary to achieve > or =95% confidence of analytical completeness with current ion trap equipment. Large-scale mapping of the proteome of vascular endothelial cell surface in vivo, as demonstrated here, is advisable because distinct protein expression is apparently regulated by the tissue microenvironment that cannot yet be duplicated in standard cell culture.  相似文献   

3.
The exact nature of shock wave (SW) action is not, as yet, fully understood, although a possible hypothesis may be that shock waves induce neoangiogenesis. To test this hypothesis, a three-dimensional (3D) culture model on Matrigel was developed employing a human microvascular endothelial cell line (HMEC-1) which was stimulated with low energy soft- focused SW generated by an SW lithotripter. After 12 hours we observed a statistically significant increase in capillary connections subsequent to shock-wave treatment in respect to the control group and a marked 3-hour down-regulation in genes involved in the apoptotic processes (BAX, BCL2LI, GADD45A, PRKCA), in cell cycle (CDKN2C, CEBPB, HK2, IRF1, PRKCA), oncogenes (JUN, WNT1), cell adhesion (ICAM-1), and proteolytic systems (CTSD, KLK2, MMP10). Our preliminary results indicate that microvascular endothelial cells in vitro quickly respond to SW, proliferating and forming vessel-like structures, depending on the energy level employed and the number of shocks released. The early decreased expression in the analysed genes could be interpreted as the first reactive response of the endothelial cells to the external stimuli and the prelude to the events characterizing the neo-angiogenic sequence.  相似文献   

4.
Guinea-pig uterine glandular epithelial cells were grown in primary culture. During the 4-day initial culture period, a 6.7 fold increase in DNA synthesis and a doubling time of approximately 30 hours were observed. Then the cells were submitted to serum depletion (60 hours) and the quiescent cells were stimulated with 15% fetal calf serum (FCS). The control cells were submitted to 1% heated and dextran-coated charcoal stripped FCS. In stimulated cells, the DNA synthesis increased and peaked between the 12th and 24th hour. In these cells, c-fos mRNAs increased rapidly, within 30 min., peaked at 75 min. (ratio to the control = 2.5), and returned to basal level within 90 min. These results prove that uterine epithelial cells in primary culture are able to respond to unspecific mitogen by both rapid expression of c-fos gene and DNA synthesis, suggesting that this cell culture system will be useful in studying the growth regulation in endometrium.  相似文献   

5.
Human microvascular endothelial cell-1 (HMEC-1) generated by transfection with SV40 large T antigen has been the prevailing model for in vitro studies on endothelium. However, the transduction of SV40 may lead to unwanted cell behaviors which are absent in primary cells. Thus, establishing a new microvascular endothelial cell line, which is capable of maintaining inherent features of primary endothelial cells, appears to be extremely important. Here, we immortalized primary human microvascular endothelial cells (pHMECs) by engineering the human telomerase catalytic protein (hTERT) into the cells. Endothelial cell-specific markers were examined and the angiogenic responses were characterized in these cells (termed as HMVECs, for human microvascular endothelial cells). We found that VEGF receptor 2 (Flk-1/KDR), tie1, and tie2 expression is preserved in HMVEC, whereas Flk-1/KDR is absent in HMEC-1. In addition, HMVEC showed similar angiogenic responses to VEGF as HMEC-1. Furthermore, the HMVEC line was found to generate a prominent angiogenic response to periostin, a potent angiogenic factor identified recently. The data indicate that HMVEC may serve as a suitable in vitro endothelium model.  相似文献   

6.

Background

Highly pathogenic avian influenza (HPAI) H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease.

Aim

To study influenza A (H5N1) virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease.

Methods

We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces.

Results

We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our data suggests that viremia, secondary to, for example, gastro-intestinal infection, can potentially lead to infection of the lung. HPAI H5N1 virus was a more potent inducer of cytokines (e.g. IP-10, RANTES, IL-6) in comparison to H1N1 virus in alveolar epithelial cells, and these virus-induced chemokines were secreted onto both the apical and basolateral aspects of the polarized alveolar epithelium.

Conclusion

The predilection of viruses for different routes of entry and egress from the infected cell is important in understanding the pathogenesis of influenza H5N1 infection and may help unravel the pathogenesis of human H5N1 disease.  相似文献   

7.
Acute lung exposure to low oxygen results in pulmonary vasoconstriction and redistribution of blood flow. We used human microvascular endothelial cells from lung (HMVEC-L) to study the acute response to oxygen stress. We observed that hypoxia and erythropoietin (EPO) increased erythropoietin receptor (EPOR) gene expression and protein level in HMVEC-L. In addition, EPO dose- and time-dependently stimulated nitric oxide (NO) production. This NO stimulation was evident despite hypoxia induced reduction of endothelial NO synthase (eNOS) gene expression. Western blot of phospho-eNOS (serine1177) and eNOS and was significantly induced by hypoxia but not after EPO treatment. However, iNOS increased at hypoxia and with EPO stimulation compared to normal oxygen tension. In accordance with our previous results of NO induction by EPO at low oxygen tension in human umbilical vein endothelial cells and bone marrow endothelial cells, these results provide further evidence in HMVEC-L for EPO regulation of NO production to modify the effects of hypoxia and cause compensatory vasoconstriction.  相似文献   

8.
9.
Biomechanics and Modeling in Mechanobiology - Calcium is a ubiquitous molecule and second messenger that regulates many cellular functions ranging from exocytosis to cell proliferation at different...  相似文献   

10.
The signaling mechanisms in vasculogenesis and/or angiogenesis remain poorly understood, limiting the ability to regulate growth of new blood vessels in vitro and in vivo. Cultured human lung microvascular endothelial cells align into tubular networks in the three-dimensional matrix, Matrigel. Overexpression of MAPK phosphatase-1 (MKP-1), an enzyme that inactivates the ERK, JNK, and p38 pathways, inhibited network formation of these cells. Adenoviral-mediated overexpression of recombinant MKP-3 (a dual specificity phosphatase that specifically inactivates the ERK pathway) and dominant negative or constitutively active MEK did not attenuate network formation in Matrigel compared with negative controls. This result suggested that the ERK pathway may not be essential for tube assembly, a conclusion which was supported by the action of specific MEK inhibitor PD 184352, which also did not alter network formation. Inhibition of the JNK pathway using SP-600125 or l-stereoisomer (l-JNKI-1) blocked network formation, whereas the p38 MAPK blocker SB-203580 slightly enhanced it. Inhibition of JNK also attenuated the number of small vessel branches in the developing chick chorioallantoic membrane. Our results demonstrate a specific role for the JNK pathway in network formation of human lung endothelial cells in vitro while confirming that it is essential for the formation of new vessels in vivo.  相似文献   

11.
The present studyexamined the intestinal uptake of thiamine (vitaminB1) using the human-derivedintestinal epithelial cells Caco-2 as an in vitro model system.Thiamine uptake was found to be 1)temperature and energy dependent and occurred with minimal metabolicalteration; 2) pH sensitive;3)Na+ independent;4) saturable as a function ofconcentration with an apparent Michaelis-Menten constant of 3.18 ± 0.56 µM and maximal velocity of 13.37 ± 0.94 pmol · mgprotein1 · 3 min1;5) inhibited by the thiaminestructural analogs amprolium and oxythiamine, but not by unrelatedorganic cations tetraethylammonium, N-methylnicotinamide, and choline; and6) inhibited in a competitive mannerby amiloride with an inhibition constant of 0.2 mM. The role ofspecific protein kinase-mediated pathways in the regulation of thiamineuptake by Caco-2 cells was also examined using specific modulators ofthese pathways. The results showed possible involvement of aCa2+/calmodulin (CaM)-mediatedpathway in the regulation of thiamine uptake. No role for proteinkinase C- and protein tyrosine kinase-mediated pathways in theregulation of thiamine uptake was evident. These results demonstratethe involvement of a carrier-mediated system for thiamine uptake byCaco-2 intestinal epithelial cells. This system isNa+ independent and is differentfrom the transport systems of organic cations. Furthermore, aCaM-mediated pathway appears to play a role in regulating thiamineuptake in these cells.

  相似文献   

12.
Cyclopentenylcytosine (CPEC) is cytotoxic to HT-29 cells in vitro and in vivo. Treatment with CPEC resulted in sensitizing HT-29 cells to cisplatin (CDDP), as evidenced by synergistic cytotoxicity. CPEC exhibits potent cytotoxicity to HT-29 cells in vitro, 2 and 24 h exposure providing an LC50 of 2.4 and 0.46 microM, respectively. Exposure of HT-29 cells to CDDP for 2 h resulted in an LC50 of 26 microM. Treatment of HT-29 cells with 1.0 or 1.25 microM CPEC and then incubating with CDDP showed synergistic cytotoxicity. Lesser synergy at very high concentrations of CPEC was demonstrated when HT-29 cells were first exposed to CDDP and then incubated with CPEC. Combination index calculations showed synergistic cytotoxicity in HT-29 cells when CPEC was combined with CDDP. Synergistic antitumor activity was demonstrable in vivo in mice transplanted with HT-29 tumor when treated with a combination of CPEC and CDDP without undue toxicity, since no excessive loss in mouse body weight or overt pathology was observed. CPEC had no influence on the total DNA adduct formation and CDDP did not affect the intracellular levels of CPEC or its metabolites, suggesting that enhanced CDDP cytotoxicity resulted from a step subsequent to excision of platinum-cross-linked DNA. These studies support a new approach for augmenting cytotoxic effect of CPEC with CDDP in treating human colon carcinoma.  相似文献   

13.
Little is known about homocysteine metabolism in intestine. To address this question, we investigated homocysteine metabolism under conditions of folate adequacy and folate deprivation in the Caco-2 cell line, a model of human intestinal mucosal cells. Caco-2 cells were cultured in media enriched with [3-(13)C]serine and [U-(13)C(5)]methionine tracers, and enrichments of intracellular free amino acid pools of these amino acids as well as homocysteine, cystathionine, and cysteine were measured by using gas chromatography/mass spectrometry. Homocysteine transsulfuration plus folate-dependent and total remethylation were quantified from these amino acid enrichments. Homocysteine remethylation accounted for 19% of the intracellular free methionine pool in cells cultured with supplemental folate, and nearly all one-carbon units used for remethylation originated from the three carbon of serine via folate-dependent remethylation. Labeling of cystathionine and cysteine indicated the presence of a complete transsulfuration pathway in Caco-2 cells, and this pathway produced 13% of the intracellular free cysteine pool. Appearance of labeled homocysteine and cystathionine in culture medium suggests export of these metabolites from intestinal cells. Remethylation was reduced by one-third in folate-restricted cell cultures (P < 0.001), and only approximately 50% of the one-carbon units used for remethylation originated from the three carbon of serine under these conditions. In conclusion, the three carbon of serine is the primary source of one-carbon units used for homocysteine remethylation in folate-supplemented Caco-2 cell cultures. Remethylation is reduced as a result of folate restriction in this mucosal cell model, and one-carbon sources other than the three carbon of serine contribute to remethylation under this condition.  相似文献   

14.
Li C  Rodriguez M  Adamson JW  Banerjee D 《Genomics》2000,65(3):243-252
Vascular endothelial cells (VEC) transduce mitogenic and chemoattractant signals in response to erythropoietin (Epo). An analysis of changes in gene expression in VEC would be helpful to understanding the molecular nature of mitogenic signals. An effective method for analysis of gene expression is through differential display. Using this approach, we obtained from Epo-treated human microvascular endothelial cells (HMVEC) a cDNA fragment with characteristics of the 3'end of mRNA. Using the cDNA fragment, we then isolated a full-length clone from a HMVEC cDNA library. The cDNA of interest encodes a protein consisting of 404 amino acids with a carboxy-terminal end sequence identical to glialblastoma cell differentiation factor-related protein (GBDR1). Northern blot analysis showed that GBDR1 mRNA was ubiquitously expressed in human tissues. In Southern blot analysis, GBDR1 cDNA identified a single gene on chromosome 9. Since analysis of the amino acid sequence revealed several putative phosphorylation sites for different protein kinases, the GBDR1 protein was expressed and purified from bacterial extracts and, as predicted, casein kinase II phosphorylated GBDR1 in vitro. Immunofluorescence and biochemical data revealed that the GBDR1 protein is not entirely localized in the cytosolic fraction, suggesting that it may interact with another protein(s). These findings demonstrate that GBDR1 is an intracellular signaling molecule that may play a role in the regulation of endothelial cell growth.  相似文献   

15.
16.
17.
Li B  Zhao WD  Tan ZM  Fang WG  Zhu L  Chen YH 《FEBS letters》2006,580(17):4252-4260
Small cell lung cancer (SCLC) cells migration across human brain microvascular endothelial cells (HBMECs) is an essential step of brain metastases. Here we investigated signalling pathways in HBMECs contributing to the process. Inhibition of endothelial Rho kinase (ROCK) with Y27632 and overexpression of ROCK dominant-negative mutant prevented SCLC cells, NCI-H209, transendothelial migration and the concomitant changes of tight junction. Conversely, inhibition of phosphatidylinositol 3-kinase (PI3K) and protein kinase C (PKC) had no effects. Furthermore, endothelial RhoA protein was activated during NCI-H209 cells transendothelial migration. Rho/ROCK participated in NCI-H209 cells transendothelial migration through regulating actin cytoskeleton reorganization. These results suggested that Rho/ROCK was required for SCLC cells transendothelial migration.  相似文献   

18.
In the normal human prostate, undifferentiated proliferative cells reside in the basal layer and give rise to luminal secretory cells. There are, however, few epithelial cell lines that have a basal cell phenotype and are able to differentiate. We set out to develop a cell line with these characteristics that would be suitable for the study of the early stages of prostate epithelial cell differentiation. We produced a matched pair of conditionally immortalized prostate epithelial and stromal cell lines derived from the same patient. The growth of these cells is temperature dependent and differentiation can be induced following a rise in culture temperature. Three-dimensional co-cultures of these cell lines elicited gland-like structures reminiscent of prostatic acini. cDNA microarray analysis of the epithelial line demonstrated changes in gene expression consistent with epithelial differentiation. These genes may prove useful as markers for different prostate cell types. The cell lines provide a model system with which to study the process of prostatic epithelial differentiation and stromal-epithelial interactions. This may prove to be useful in the development of differentiation-targeted prostate cancer therapies.  相似文献   

19.
20.
Acquisition of motility is an important step in malignant progression of tumor cells and involves dynamic changes in actin filament architecture orchestrated by many actin binding proteins. A role for the actin-binding protein gelsolin has been demonstrated in fibroblast motility. In this report, we investigated the role of gelsolin in bronchial epithelial cell motility. The non-tumorigenic bronchial epithelial cell line, NL20 migrated towards EGF in a modified Boyden chamber cell motility assay. However, the tumorigenic NL20-TA cell line derived from the NL20 cells and lacking gelsolin, did not migrate towards EGF. Ectopic expression of gelsolin in NL20-TA cells restored the EGF response, while motility of NL20-TA derived cells towards serum, PDGF, and fibronectin was independent of gelsolin expression. PI3-kinase inhibition failed to block EGF-stimulated motility in gelsolin transfected NL20-TA cells. Furthermore, EGF stimulated a motility response in cells lacking gelsolin in the presence of fibronectin or fibrinogen that was blocked with PI3-kinase inhibition. Thus, EGF-stimulated motility in NL20 cells and its derivatives are gelsolin dependent and PI3-kinase independent, while fibronectin and fibrinogen enhances EGF-stimulated motility through a pathway independent of gelsolin and dependent upon PI3-kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号