首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Polychlorinated biphenyls (PCBs) exposure produces neurodegeneration and induces oxidative stress. Neuroprotective role of quercetin, on PCBs induced apoptosis in hippocampus has not yet been studied. The present study is focused to see whether quercetin supplementation precludes against PCBs induced oxidative stress and hippocampal apoptosis. The results have shown that quercetin at 50 mg/kg bwt/30 days has protected oxidative stress in hippocampus of adult male rats. Quercetin, a free radical scavenger decreased the levels of oxidative stress markers in the hippocampus of simultaneous PCB+quercetin treated rats. The pro-apoptotic and anti-apoptotic molecules such as Bad, Bid, Bax and Bcl2 were altered in the hippocampus of experimental animals. PCBs increased the DNA damage and induced neurodegeneration were assessed by histological studies. PCB induced ROS may be linked to increased hippocampal neuronal apoptosis. Quercetin supplementation decreased the neuronal damage and scavenged the free radicals induced by PCBs and protects PCBs induced apoptosis and oxidative stress.  相似文献   

2.
It has been suggested that oxidative stress plays an important role in the pathophysiology of traumatic brain injury (TBI). N-acetylcysteine (NAC) and selenium (Se) display neuroprotective activities mediated at least in part by their antioxidant and anti-inflammatory properties although there is no report on oxidative stress, antioxidant vitamin, interleukin-1 beta (IL)-1β and IL-4 levels in brain and blood of TBI-induced rats. We investigated effects of NAC and Se administration on physical injury-induced brain toxicity in rats. Thirty-six male Sprague–Dawley rats were equally divided into four groups. First and second groups were used as control and TBI groups, respectively. NAC and Se were administrated to rats constituting third and forth groups at 1, 24, 48 and 72 h after TBI induction, respectively. At the end of 72 h, plasma, erythrocytes and brain cortex samples were taken. TBI resulted in significant increase in brain cortex, erythrocytes and plasma lipid peroxidation, total oxidant status (TOS) in brain cortex, and plasma IL-1β values although brain cortex vitamin A, β-carotene, vitamin C, vitamin E, reduced glutathione (GSH) and total antioxidant status (TAS) values, and plasma vitamin E concentrations, plasma IL-4 level and brain cortex and erythrocyte glutathione peroxidase (GSH-Px) activities decreased by TBI. The lipid peroxidation and IL-1β values were decreased by NAC and Se treatments. Plasma IL-4, brain cortex GSH, TAS, vitamin C and vitamin E values were increased by NAC and Se treatments although the brain cortex vitamin A and erythrocyte GSH-Px values were increased through NAC only. In conclusion, NAC and Se caused protective effects on the TBI-induced oxidative brain injury and interleukin production by inhibiting free radical production, regulation of cytokine-dependent processes and supporting antioxidant redox system.  相似文献   

3.
Progressive compromise of antioxidant defenses and free radical-mediated lipid peroxidation, which is one of the major mechanisms of secondary traumatic brain injury (TBI), has also been reported in pediatric head trauma. In the present study, we aimed to demonstrate the effect of melatonin, which is a potent free radical scavenger, on brain oxidative damage in 7-day-old rat pups subjected to contusion injury. Whereas TBI significantly increased thiobarbituric acid reactive substances (TBARS) levels, there was no compensatory increase in the antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx) 24 hours after TBI in 7-day-old rats. Melatonin administered as a single dose of 5 mg/kg prevented the increase in TBARS levels in both non-traumatized and traumatized brain hemispheres. In conclusion, melatonin protects against oxidative damage induced by TBI in the immature brain.  相似文献   

4.
5.
Perampanel is a novel α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR) antagonist, approved in over 35 countries as an adjunctive therapy for the treatment of seizures. Recently, it was found to exert protective effects against ischemic neuronal injury in vitro. In the present study, we investigated the potential protective effects of perampanel in a traumatic brain injury (TBI) model in rats. Oral administration with perampanel at a dose of 5 mg/kg exerted no major organ-related toxicities. We found that perampanel significantly attenuated TBI-induced brain edema, brain contusion volume, and gross motor dysfunction. The results of Morris water maze test demonstrated that perampanel treatment also improved cognitive function after TBI. These neuroprotective effects were accompanied by reduced neuronal apoptosis, as evidenced by decreased TUNEL-positive cells in brain sections. Moreover, perampanel markedly inhibited lipid peroxidation and obviously preserved the endogenous antioxidant system after TBI. In addition, enzyme-linked immunosorbent assay (ELISA) was performed at 4 and 24 h after TBI to evaluate the expression of inflammatory cytokines. The results showed that perampanel suppressed the expression of pro-inflammatory cytokines TNF-α and IL-1β, whereas increased the levels of anti-inflammatory cytokines IL-10 and TGF-β1. These data show that the orally active AMPAR antagonist perampanel affords protection against TBI-induced neuronal damage and neurological dysfunction through anti-oxidative and anti-inflammatory activity.  相似文献   

6.
Ciprofloxacin is a common, broad spectrum antibacterial agent; however, evidence is accumulating that ciprofloxacin may cause liver damage. Quercetin is a free radical scavenger and antioxidant. We investigated histological changes in hepatic tissue of rats caused by ciprofloxacin and the effects of quercetin on these changes using histochemical and biochemical methods. We divided 28 adult female Wistar albino rats into four equal groups: control, quercetin treated, ciprofloxacin treated, and ciprofloxacin + quercetin treated. At the end of the experiment, liver samples were processed for light microscopic examination and biochemical measurements. Sections were prepared and stained with hematoxylin and eosin, and a histopathologic damage score was calculated. The sections from the control group appeared normal. Hemorrhage, inflammatory cell infiltration and intracellular vacuolization were observed in the ciprofloxacin group. The histopathological findings were reduced in the group treated with quercetin. Significant differences were found between the control and ciprofloxacin groups, and between the ciprofloxacin and ciprofloxacin + quercetin groups. Quercetin administration reduced liver injury caused by ciprofloxacin in rats. We suggest that quercetin may be useful for preventing ciprofloxacin induced liver damage.  相似文献   

7.
In light of evidence that some complications of diabetes mellitus may be caused or exacerbated by oxidative damage, we investigated the effects of subacute treatment with the antioxidant quercetin on tissue antioxidant defense systems in streptozotocin-induced diabetic Sprague-Dawley rats (30 days after streptozotocin induction). Quercetin, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyran-4-one, was administered at a dose of 10mg/kg/day, ip for 14 days, after which liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione content, and activities of the free-radical detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. Treatment of normal rats with quercetin increased serum AST and increased hepatic concentration of oxidized glutathione. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Quercetin treatment of diabetic rats reversed only the diabetic effects on brain oxidized glutathione concentration and on hepatic glutathione peroxidase activity. By contrast, a 20% increase in hepatic lipid peroxidation, a 40% decline in hepatic glutathione concentration, an increase in renal (23%) and cardiac (40%) glutathione peroxidase activities, and a 65% increase in cardiac catalase activity reflect intensified diabetic effects after treatment with quercetin. These results call into question the ability of therapy with the antioxidant quercetin to reverse diabetic oxidative stress in an overall sense.  相似文献   

8.
Naringin is neuroprotective in ischemia and other disease models. However, the effects of naringin are unknown after traumatic brain injury (TBI). The present study explored the role of naringin for neuroprotection in TBI rats. TBI was performed with the weight drop technique, and naringin was given orally at a dose of 100 mg/kg/day. The neurological scores, tissue edema, and oxidative stress/inflammation parameters [malondialdehyde (MDA), superoxide dismutase, nitric oxide, inducible nitric oxide synthase (iNOS), as well as interleukin-1β (IL-1β)] were measured. Compared to sham controls, TBI rats displayed obvious sensorimotor dysfunction, significant brain edema, and elevated oxidative and inflammatory molecules. Although a 7-day pre-treatment of naringin was unable to reverse these pathological changes, a 14-day continual treatment (7 days before and 7 days after the TBI) attenuated the increases in MDA and nitric oxide; enhanced the activation of superoxide dismutase; depressed the over-activation of iNOS; down-regulated the over-expression of IL-1β; and reduced the cortex edema. Additionally, the TBI-induced behavioral dysfunction was reduced. These results suggest that naringin treatment can attenuate cellular and histopathological alterations and improve the sensorimotor dysfunction of TBI rats, which may be partly due to the attenuation of oxidative and inflammatory damages.  相似文献   

9.
Besides secondary injury at the lesional site, Traumatic brain injury (TBI) can cause a systemic inflammatory response, which may cause damage to initially unaffected organs and potentially further exacerbate the original injury. Here we investigated plasma levels of important inflammatory mediators, oxidative activity of circulating leukocytes, particularly focusing on neutrophils, from TBI subjects and control subjects with general trauma from 6 hours to 2 weeks following injury, comparing with values from uninjured subjects. We observed increased plasma level of inflammatory cytokines/molecules TNF-α, IL-6 and CRP, dramatically increased circulating leukocyte counts and elevated expression of TNF-α and iNOS in circulating leukocytes from TBI patients, which suggests a systemic inflammatory response following TBI. Our data further showed increased free radical production in leukocyte homogenates and elevated expression of key oxidative enzymes iNOS, COX-2 and NADPH oxidase (gp91phox) in circulating leukocytes, indicating an intense induction of oxidative burst following TBI, which is significantly greater than that in control subjects with general trauma. Furthermore, flow cytometry assay proved neutrophils as the largest population in circulation after TBI and showed significantly up-regulated oxidative activity and suppressed phagocytosis rate for circulating neutrophils following brain trauma. It suggests that the highly activated neutrophils might play an important role in the secondary damage, even outside the injured brain. Taken together, the potent systemic inflammatory response induced by TBI, especially the intensively increase oxidative activity of circulating leukocytes, mainly neutrophils, may lead to a systemic damage, dysfunction/damage of bystander tissues/organs and even further exacerbate secondary local damage. Controlling these pathophysiological processes may be a promising therapeutic strategy and will protect unaffected organs and the injured brain from the secondary damage.  相似文献   

10.
Oxidative stress is one of the major secondary injury mechanisms after traumatic brain injury (TBI). 2-[[(1,1-Dimethylethyl)oxidoimino]-methyl]-3,5,6-trimethylpyrazine (TBN), a derivative of the clinically used anti-stroke drug tetramethylpyrazine armed with a powerful free radical-scavenging nitrone moiety, has been demonstrated promising therapeutic efficacy in ischemic stroke and Parkinson’s models. The present study aims to investigate the effects of TBN on behavioral function and neuroprotection in rats subjected to TBI. TBN (90 mg/kg) was administered twice daily for 7 days by intravenous injection following TBI. TBN improved neuronal behavior functions after brain injury, including rotarod test and adhesive paper removal test. Compared with the TBI model group, TBN treatment significantly protected NeuN-positive neurons, while decreased glial fibrillary acidic protein (GFAP)-positive cells. The number of 4-hydroxynonenal (4-HNE)-positive and 8-hydroxy-2′-deoxyguanosine (8-OHdG)-positive cells around the damaged area after TBI were significantly decreased in the TBN treatment group. In addition, TBN effectively reversed the altered expression of Bcl-2, Bax and caspase 3, and the down-regulation of nuclear factor erythroid-derived 2-like 2 (Nrf-2) and hemeoxygenase-1 (HO-1) proteins expression stimulated by TBI. In conclusion, TBN improves neurobehavioral functions and protects neurons against TBI. This protective effect may be achieved by anti-neuronal apoptosis, alleviating oxidative stress damage and up-regulating Nrf-2 and HO-1 expression.  相似文献   

11.
12.
Quercetin, a flavonoid found in various foodstuffs, has antioxidant properties and increases glutathione (GSH) levels and antioxidant enzyme function. Considerable attention has been focused on increasing the intracellular GSH levels in many diseases, including Alzheimer's disease (AD). Amyloid beta-peptide [Abeta(1-42)], elevated in AD brain, is associated with oxidative stress and neurotoxicity. We aimed to investigate the protective effects of quercetin on Abeta(1-42)-induced oxidative cell toxicity in cultured neurons in the present study. Decreased cell survival in neuronal cultures treated with Abeta(1-42) correlated with increased free radical production measured by dichlorofluorescein fluorescence and an increase in protein oxidation (protein carbonyl, 3-nitrotyrosine) and lipid peroxidation (protein-bound 4-hydroxy-2-nonenal). Pretreatment of primary hippocampal cultures with quercetin significantly attenuated Abeta(1-42)-induced cytotoxicity, protein oxidation, lipid peroxidation and apoptosis. A dose-response study suggested that quercetin showed protective effects against Abeta(1-42) toxicity by modulating oxidative stress at lower doses, but higher doses were not only non-neuroprotective but also toxic. These findings provide motivation to test the hypothesis that quercetin may provide a promising approach for the treatment of AD and other oxidative-stress-related neurodegenerative diseases.  相似文献   

13.
Oxidative stress is a critical contributing factor to age-related neurodegenerative disorders. Therefore, the inhibition of oxidative damage, responsible for chronic detrimental neurodegeneration, is an important strategy for neuroprotective therapy. Withania somnifera (WS) extract has been reported to have potent antioxidant and free radical quenching properties in various disease conditions. The present study evaluated the hypothesis that WS extract would reduce oxidative stress-associated neurodegeneration after intracerebroventricular injection of streptozotocin (ICV-STZ) in rats. To test this hypothesis, male Wistar rats were pretreated with WS extract at doses of 100, 200, and 300 mg/kg body weight once daily for 3 weeks. On day 22nd, the rats were infused bilaterally with ICV-STZ injection (3 mg/kg body weight) in normal saline while sham group received only saline. Two weeks after the lesioning, STZ-infused rats showed cognitive impairment in the Morris water maze test. The rats were sacrificed after 3 weeks of the lesioning for the estimation of the contents of lipid peroxidation, reduced glutathione, and activities of glutathione reductase, glutathione peroxidase, and catalase. Pretreatment with WS extract attenuated behavioral, biochemical, and histological alterations significantly in dose-dependent manner in the hippocampus and cerebral cortex of ICV-STZ-infused rats. These results suggest that WS affords a beneficial effect on cognitive deficit by ameliorating oxidative damage induced by streptozotocin in a model of cognitive impairment.  相似文献   

14.
Abstract

Traumatic brain injury (TBI) is a leading cause of morbidity and mortality during childhood. TBI enhances formation of reactive oxygen species that cause neuron damage and apoptosis. α-Lipoic acid (LA) is a free radical scavenger and biological antioxidant. We investigated the effects of LA treatment on the parietal and prefrontal cortex, and on the hippocampal regions of the brain in 7-day-old rat pups that had been subjected to contusion injury. Forty-two male rats were divided randomly into a control group, a TBI group and a TBI + LA treated group. LA was administered 30 min after TBI through an intragastric tube once daily for 2 days. Forty-eight hours after TBI, the animals were sacrificed and tissues were examined for apoptosis and density of neurons. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) and active caspase-3 immunostaining were used to detect apoptosis. Glutathione peroxidase (GPx), superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels also were measured. Histological evaluation showed that LA treatment significantly reduced TBI-induced neuronal death in the hippocampus, prefrontal and parietal cortex; TUNEL- and caspase-3-positive cells also were decreased in the same regions. In addition, LA administration increased GPx and SOD activity in the prefrontal cortex. It appears that LA may be beneficial for TBI in rats.  相似文献   

15.
16.
Shen L  Wang J  Liu K  Wang C  Wang C  Wu H  Sun Q  Sun X  Jing H 《Neurochemical research》2011,36(8):1501-1511
Deep hypothermic circulatory arrest (DHCA) has been widely used in the operations involving the aortic arch and brain aneurysm since 1950s; but prolonged DHCA contributes significantly to neurological deficit which remains a major cause of postoperative morbidity and mortality. It has been reported that hydrogen exerts a therapeutic antioxidant activity by selectively reducing hydroxyl radical. In this study, DHCA treated rats developed a significant oxidative stress, inflammatory reaction and apoptosis. The administration of HRS resulted in a significant decrease in the brain injury, together with lower production of IL-1β, TNF-α, 8-OHdG and MDA as well as decreased activity of NOS while increased activity of SOD. The apoptotic index as well as the expressions of caspase-3 in brain tissue was significantly decreased after treatment. HRS administration significantly attenuated the severity of DHCA induced brain injury by mechanisms involving amelioration of oxidative stress, down-regulation of inflammatory factors and reduction of apoptosis.  相似文献   

17.
The aim of this study was to investigate the neuroprotective effects of quercetin in mouse models of traumatic brain injury (TBI) and the potential role of the PGC‐1α pathway in putative neuroprotection. Wild‐type mice were randomly assigned to four groups: the sham group, the TBI group, the TBI+vehicle group and the TBI+quercetin group. Quercetin, a dietary flavonoid used as a food supplement, significantly reduced TBI‐induced neuronal apoptosis and ameliorated mitochondrial lesions. It significantly accelerated the translocation of PGC‐1α protein from the cytoplasm to the nucleus. In addition, quercetin restored the level of cytochrome c, malondialdehyde and superoxide dismutase in mitochondria. Therefore, quercetin administration can potentially attenuate brain injury in a TBI model by increasing the activities of mitochondrial biogenesis via the mediation of the PGC‐1α pathway.  相似文献   

18.
In this study, we investigated the effects and mechanism of quercetin preconditioning on anti-myocardial ischemia reperfusion (IR) injuries in vivo. Meanwhile, their potential anti-oxidative stress and anti-inflammation effect were assessed. SD rats were orally given quercetin 250 mg/kg. Myocardium apoptosis was determined with TUNEL staining. The biomarkers related to myocardial ischemia injury were determined. Simultaneously, hemodynamic parameters were monitored as left ventricular systolic pressure (LVSP), LV end-diastolic pressure (LVEDP) and maximal rate of increase and decrease of left ventricular pressure (dP/dtmax). The oxidative stress indicators and inflammatory factors were also evaluated. Western blot method was used for analysis of PI3K, Akt, p-Akt, Bax and Bcl-2 protein expressions. The results showed that quercetin significantly reduced apoptosis rate, improved cardiac function, decreased levels of creatine kinase (CK), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH). Quercetin also restrained the oxidative stress related to myocardial ischemia injury as evidenced by decreased malondialdehyde (MDA), and elevated GSH, superoxide dismutase (SOD), catalase (CAT), glutathione-peroxidase (GSH-Px), glutathione reductase (GR) activity. Meanwhile, the inflammatory cascade was inhibited as evidenced by decreased cytokines such as tumor necrosis factor-α (TNF-α), C-reactive protein (CRP) and interleukin-1β (IL-1β). Our results still showed that quercetin pretreatment significantly inhibited the apoptosis by decreasing the number of apoptotic cells, decreasing the level of cleaved Bax, and increasing the level of Bcl-2 in rats subjected to I/R injury. Simultaneously, quercetin pretreatment markedly increased the phosphorylation of Akt. Blockade of PI3K activity by LY294002, dramatically abolished its anti-apoptotic effect and lowered Akt phosphorylation level. It can be concluded that quercetin pretreatment was protected against myocardium IR injury by decreasing oxidative stress, repressing inflammatory cascade, inhibiting apoptosis in vivo and PI3K/Akt pathway involved in the anti-apoptotic effect.  相似文献   

19.
The present study has been performed to evaluate the antimutagenic activity of quercetin, ascorbic acid and their combination against an oxidative mutagen. An effort was also made to correlate this activity to the in vitro antioxidant activity of these agents. Antimutagenicity testing was done in Ames Salmonella Assay system using Salmonella typhimurium TA102 against t-butylhydroperoxide as an oxidative mutagen. In vitro antioxidant scavenging activity was tested for DPPH free radical, superoxide anion, hydrogen peroxide and hydroxyl radical in their specific test systems. Quercetin (0.5-8 nmole/plate) and ascorbic acid (0.1-100 micromole/plate) showed significant effect. Quercetin (4 and 8 nmole/plate) when combined with ascorbic acid (500 nmole/plate) showed an increase in the antimutagenic activity. In vitro antioxidant activity of quercetin was better than ascorbic acid in all the test systems used. The study indicated that the antimutagenic activity of quercetin was not solely accountable by its antioxidant nature. However, in vitro free radical scavenging activity of quercetin correlated well with the antimutagenic activity.  相似文献   

20.
Hypothermia treatment is one of the neuroprotective strategies that improve neurological outcomes effectively after brain damage. Minimally invasive surgery (MIS) has been an important treatment of intracerebral hemorrhage (ICH). Herein, we evaluated the neuroprotective effect and mechanism of MIS joint local cooling lavage (LCL) treatment on ICH via detecting the inflammatory responses, oxidative injury, and neuronal apoptosis around the hematoma cavity in rats. ICH model was established by type IV collagenase caudatum infusion. The rats were treated with MIS 6 h after injection, and then were lavaged by normothermic (37 °C) and hypothermic (33 °C) normal saline in brain separately. The results indicated that MIS joint LCL treatment showed enhanced therapeutic effects against ICH-induced inflammation injury and apoptosis in rats, as convinced by the decline of TUNEL-positive cells, followed by the decrease of IL-1β and LDH and increase of IL-10 and SOD. This study demonstrated that the strategy of using MIS joint LCL may achieve enhanced neuroprotection against ICH-induced inflammation injury and apoptosis in rats with potential clinic application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号