共查询到20条相似文献,搜索用时 62 毫秒
1.
Hongyu Tian Karthikeyan Mythreye Christelle Golzio Nicholas Katsanis Gerard C Blobe 《The EMBO journal》2012,31(19):3885-3900
Both the transforming growth factor β (TGF-β) and integrin signalling pathways have well-established roles in angiogenesis. However, how these pathways integrate to regulate angiogenesis is unknown. Here, we show that the extracellular matrix component, fibronectin, and its cellular receptor, α5β1 integrin, specifically increase TGF-β1- and BMP-9-induced Smad1/5/8 phosphorylation via the TGF-β superfamily receptors endoglin and activin-like kinase-1 (ALK1). Fibronectin and α5β1 integrin increase Smad1/5/8 signalling by promoting endoglin/ALK1 cell surface complex formation. In a reciprocal manner, TGF-β1 activates α5β1 integrin and downstream signalling to focal adhesion kinase (FAK) in an endoglin-dependent manner. α5β1 integrin and endoglin form a complex on the cell surface and co-internalize, with their internalization regulating α5β1 integrin activation and signalling. Functionally, endoglin-mediated fibronectin/α5β1 integrin and TGF-β pathway crosstalk alter the responses of endothelial cells to TGF-β1, switching TGF-β1 from a promoter to a suppressor of migration, inhibiting TGF-β1-mediated apoptosis to promote capillary stability, and partially mediating developmental angiogenesis in vivo. These studies provide a novel mechanism for the regulation of TGF-β superfamily signalling and endothelial function through crosstalk with integrin signalling pathways. 相似文献
2.
Human SLFN5 inhibits invasions of IFNα-sensitive renal clear-cell carcinoma and melanoma cells. However, whether this inhibition is confined to these IFNα-sensitive cancers is unclear. Here we show that SLFN5 expressions on both mRNA and protein levels are significantly higher in non/low-invasive cancer cell lines (breast cancer cell line MCF7, colorectal cancer cell line HCT116 and lung cancer cell line A549) than in highly-invasive cancer cell lines (fibrosarcoma cell line HT1080 and renal clear cell cancer cell line 786-0). SLFN5 knockdown in non/low-invasive cancer cell lines enhanced MT1-MMP expression and increased migration and invasion in vitro, and in vivo. Furthermore, SLFN5 overexpression in HT1080 and 786-0 inhibited MT1-MMP expression and repressed migration and invasion. MT1-MMP is instrumental in SLFN5-controlled inhibition of cancer cell migration and invasion, as shown by MT1-MMP-knockdown and -overexpression analyses. SLFN5 knockdown activated AKT/GSK-3β/β-catenin pathway by promotion AKT phosphorylation and subsequent GSK-3β phosphorylation, further β-catenin translocation into nucleus as un-phosphorylated protein at Ser33, 37 and 45 and Thr41 sites. This is the first study to report that SLFN5 inhibits cancer migration and invasiveness in several common cancer cell lines by repressing MT1-MMP expression via the AKT/GSK-3β/β-catenin signalling pathway, suggesting that SLFN5 plays wide inhibitory roles in various cancers. 相似文献
3.
4.
Jing Sun Su-zhi Liu Yan Lin Xiao-pan Cao Jia-ming Liu 《Biochemical and biophysical research communications》2014
While there were certain studies focusing on the mechanism of TGF-β promoting the growth of glioma cells, the present work revealed another novel mechanism that TGF-β may promote glioma cell growth via enhancing Nodal expression. Our results showed that Nodal expression was significantly upregulated in glioma cells when TGF-β was added, whereas the TGF-β-induced Nodal expression was evidently inhibited by transfection Smad2 or Smad3 siRNAs, and the suppression was especially significant when the Smad3 was downregulated. Another, the attenuation of TGF-β-induced Nodal expression was observed with blockade of the ERK1/2 pathway also. Further detection of the proliferation, apoptosis, and invasion of glioma cells indicated that Nodal overexpression promoted the proliferation and invasion of tumor cells and inhibited their apoptosis, resembling the effect of TGF-β addition. Downregulation of Nodal expression via transfection Nodal-specific siRNA in the presence of TGF-β weakened the promoting effect of the latter on glioma cells growth, and transfecting Nodal siRNA alone in the absence of exogenous TGF-β more profoundly inhibited the growth of glioma cells. These results demonstrated that while both TGF-β and Nodal promoted glioma cells growth, the former might exert such effect by enhancing Nodal expression, which may form a new target for glioma therapy. 相似文献
5.
Haibo Zhang Xiaoyan Han Bo Wei Jiafeng Fang Xuerui Hou Tianyun Lan Hongbo Wei 《Journal of cellular biochemistry》2019,120(4):5813-5824
R-spondins comprise a group of secreted WNT agonists. R-spondin2 (RSPO2) plays a crucial role in the activation of the WNT/β-catenin pathway and oncogenesis, though its specific role in human gastric cancer (GC) remains unclear. In the current study, RSPO2 expression levels were upregulated in cancer specimens and cell lines (AGS and BGC-823). Inhibition of RSPO2 expression levels had distinct effects on cell invasion, migration, and epithelial-mesenchymal transition (EMT) in AGS and BGC-823 cells in vitro. Furthermore, RSPO2 positively correlated with leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), the receptor of RSPO2. Silencing RSPO2 reduced the expression of LGR5 and WNT/β-catenin effector molecule β-catenin together with downstream targets TCF-4 and Cyclin-D1. These observations demonstrate that upregulation of RSPO2 in GC specimens and cell lines is closely related to tumor invasion and migration and that RSPO2 promotes EMT in gastric cancer cells by activating WNT/β-catenin signaling. 相似文献
6.
Shaoxia Liu Ningning Yang Li Wang Bing Wei Jiayao Chen Yonghua Gao 《Journal of cellular physiology》2020,235(10):7541-7553
Lung cancer ranks topmost among the most frequently diagnosed cancers. Despite increasing research, there are still unresolved mysteries in the molecular mechanism of lung cancer. Long noncoding RNA small nucleolar RNA host gene 11 (SNHG11) was found to be upregulated in lung cancer and facilitated lung cancer cell proliferation, migration, invasion, and epithelial–mesenchymal transition progression while suppressed cell apoptosis. Moreover, the high expression of SNHG11 was correlated with poor prognosis of lung cancer patients, TNM stage, and tumor size. Further assays demonstrated that SNHG11 functioned in lung cancer cells via Wnt/β-catenin signaling pathway. Subsequently, Wnt/β-catenin pathway was found to be activated through SNHG11/miR-4436a/CTNNB1 ceRNA axis. As inhibiting miR-4436 could only partly rescue the suppression of cell function induced by silencing SNHG11, it was suspected that β-catenin might enter cell nucleus through other pathways. Mechanism investigation proved that SNHG11 would directly bind with β-catenin to activate classic Wnt pathway. Subsequently, in vivo tumorigenesis was also demonstrated to be enhanced by SNHG11. Hence, SNHG11 was found to promote lung cancer progression by activating Wnt/β-catenin pathway in two different patterns, implying that SNHG11 might contribute to lung cancer treatment by acting as a therapeutic target. 相似文献
7.
Zhaoxiong Hu Linhong Li Peng Cheng Qin Liu Xuan Zheng Feng Peng Qinghong Zhang 《Journal of cellular biochemistry》2020,121(10):4085-4093
Kidney renal clear cell carcinoma (KIRC) is the most general subtype of renal cell carcinoma, which composes about 1/20 of adult malignancies. The anomaly of long noncoding RNAs (lncRNAs) expression is proved to mediate cancer progression of various types. The function and mediation mechanism of MSC-AS1 has rarely been detected in KIRC before. This study started with the mediation of MSC-AS1 on cell function. In this study, MSC-AS1 was dramatically upregulated in KIRC and correlated with dismal prognosis of KIRC patients. Knockdown of MSC-AS1 would suppress the proliferative and migratory properties of KIRC cells. MSC-AS1 was found to directly downregulate miR-3924 expression while miR-3924 directly downregulated WNT5A expression. Meanwhile, MSC-AS1 could promote the expression of WNT5A, indicating the existence of MSC-AS1/miR-3924/WNT5A. Further assays indicated that MSC-AS1 could enhance Wnt/β-catenin pathway. By means of rescue assays, the mediation of MSC-AS1/miR-3924/WNT5A/β-catenin axis on KIRC cell proliferation, migration and migration was verified. This study revealed that MSC-AS1 regulates KIRC cell proliferation and migration via miR-3924/WNT5A/β-catenin axis. MSC-AS1 might contribute to new strategies for KIRC treatment. 相似文献
8.
Journal of Physiology and Biochemistry - Development of liver fibrosis is associated with activation of quiescent hepatic stellate cells (HSCs) into myofibroblasts (activated HSCs), which produce... 相似文献
9.
Sai Lv Ting Luo Yongyong Yang Yuqing Li Jie Yang Jiang Xu Jun Zheng Yan Zeng 《Journal of cellular and molecular medicine》2021,25(14):6760-6772
Epithelial-mesenchymal transition (EMT) has been contributed to increase migration and invasion of cancer cells. However, the correlate of Naa10p and IKKα with EMT in oral squamous cell carcinoma (OSCC) is not yet fully understood. In our present study, we found N-α-acetyltransferase 10 protein (Naa10p) and IκB kinase α (IKKα) were abnormally abundant in oral squamous cell carcinoma (OSCC). Bioinformatic results indicate that the expression of Naa10p and IKKα is correlated with TGF-β1/Smad and EMT-related molecules. The Transwell migration, invasion, qRT-PCR and Western blot assay indicated that Naa10p repressed OSCC cell migration, invasion and EMT, whereas IKKα promoted TGF-β1–mediated OSCC cell migration, invasion and EMT. Mechanistically, Naa10p inhibited IKKα activation of Smad3 through the interaction with IKKα directly in OSCC cells after TGF-β1 stimulation. Notably, knockdown of Naa10p reversed the IKKα-induced change in the migration, invasion and EMT-related molecules in OSCC cells after TGF-β1 stimulation. These findings suggest that Naa10p interacted with IKKα mediates EMT in OSCC cells through TGF-β1/Smad, a novel pathway for preventing OSCC. 相似文献
10.
Jimin Guo Hui Chen Joanne Ho Johanna Mancini Thomas Sontag Stéphane A. Laporte Darren E. Richard Jean-Jacques Lebrun 《Cellular signalling》2009,21(6):899-905
Through diametric actions, the transforming growth factor β (TGFβ) and Angiotensin II (AngII) play important roles in regulating various biological responses such as cell proliferation and migration. Signaling initiated by TGFβ and AngII occurs through two structurally and functionally distinct receptor super families, the serine/threonine kinase and G protein-coupled receptors (GPCRs). Previously, we identified the G protein-coupled receptor kinase-2 (GRK2), a key regulatory factor in the desensitization of GPCRs, as a direct downstream target of the TGFβ signaling cascade. GRK2 acts through a negative feed-back loop mechanism to terminate TGFβ-induced smad signaling. To investigate the impact of TGFβ-induced GRK2 expression on GPCR signaling, we examined its effect on AngII signaling in vascular smooth muscle cells (VSMCs). In this study, we show that activation of the TGFβ signaling cascade in VSMCs results in increased GRK2 expression levels, which consequently inhibits AngII-induced ERK phosphorylation and antagonizes AngII-induced VSMC proliferation and migration. Moreover, the inhibitory effect of TGFβ on AngII signaling occurs at the Mek-Erk interface and is abrogated when an anti-sense oligonucleotide directed against GRK2 is used. Thus, we conclude that TGFβ signaling antagonizes AngII-induced VSMC proliferation and migration through the inhibition of ERK phosphorylation and that GRK2 is a key factor mediating the cross-talk between these two receptor super families. 相似文献
11.
microRNAs (miRNAs) have been revealed to participate in the pathological process of atherosclerosis (AS). However, the exact role of miR-338-3p, a target miRNA of BMP and activin membrane-bound inhibitor (BAMBI), and its possible molecular mechanism in AS remain unidentified. In this study, we found that BAMBI was significantly decreased, whereas miR-338-3p increased in patients with AS and oxidized low-density lipoprotein (ox-LDL)-induced HUVEC cells. Furthermore, overexpression of miR-338-3p significantly decreased cell viability and elevated cell apoptosis, whereas its inhibition significantly promoted cell viability and inhibited cell apoptosis in ox-LDL-induced HUVEC cells. Moreover, miR-338-3p overexpression increased TGF-β/Smad pathway activation in ox-LDL-induced HUVEC cells. A dual-luciferase reporter assay confirmed the direct interaction between miR-338-3p and the 3′-untranslated region of BAMBI messenger RNA. Furthermore, the suppression of BAMBI ameliorated the effect of miR-338-3p inhibition against ox-LDL-induced HUVEC cell injury. In conclusion, our study thus suggests that miR-338-3p promoted ox-LDL-induced HUVEC cell injury by targeting BAMBI and activating the TGF-β/Smad pathway, which may provide a novel and promising therapeutic target for AS. 相似文献
12.
Gudrun Valdimarsdottir Marie-José Goumans Fumiko Itoh Susumu Itoh Carl-Henrik Heldin Peter ten Dijke 《BMC cell biology》2006,7(1):16-11
Background
In endothelial cells (EC), transforming growth factor-β (TGF-β) can bind to and transduce signals through ALK1 and ALK5. The TGF-β/ALK5 and TGF-β/ALK1 pathways have opposite effects on EC behaviour. Besides differential receptor binding, the duration of TGF-β signaling is an important specificity determinant for signaling responses. TGF-β/ALK1-induced Smad1/5 phosphorylation in ECs occurs transiently. 相似文献13.
14.
《Cellular signalling》2014,26(5):951-958
BackgroundBoth Wnt signaling and TGF-β signaling have been implicated in the regulation of the phenotype of many cell types including chondrocytes, the only cell type present in the articular cartilage. A changed chondrocyte phenotype, resulting in chondrocyte hypertrophy, is one of the main hallmarks of osteoarthritis. TGF-β signaling via activin-like kinase (ALK)5, resulting in Smad 2/3 phosphorylation, inhibits chondrocyte hypertrophy. In contrast, TGF-β signaling via ALK1, leading to Smad 1/5/8 phosphorylation, has been shown to induce chondrocyte hypertrophy. In this study, we investigated the capability of Wnt3a and WISP1, a protein downstream in canonical Wnt signaling, to skew TGF-β signaling in chondrocytes from the protective Smad 2/3 towards the Smad 1/5/8 pathway.ResultsStimulation with Wnt3a, either alone or in combination with its downstream protein WISP1, decreased TGF-β-induced C-terminal phosphorylation of Smad 2/3. In addition, both Wnt3a and WISP1 increased Smad 1/5/8 phosphorylation at the C-terminal domain in both murine and human chondrocytes. DKK-1, a selective inhibitor of canonical Wnt signaling, abolished these effects. TGF-β signaling via Smad 2/3, measured by the functional CAGA12-Luc reporter construct activity, was decreased by stimulation with Wnt3a in accordance with the decrease in Smad 2/3 phosphorylation found on Western blot. Furthermore, in vivo overexpression of the canonical Wnt8a decreased Smad 2/3 phosphorylation and increased Smad 1/5/8 phosphorylation.ConclusionsOur data show that canonical Wnt signaling is able to skew TGF-β signaling towards dominant signaling via the ALK1/Smad 1/5/8 pathway, which reportedly leads to chondrocyte hypertrophy. In this way canonical Wnts and WISP1, which we found to be increased during experimental osteoarthritis, may contribute to osteoarthritis pathology. 相似文献
15.
16.
Hongyu Zhao Yan Gao Qi Chen Jie Li Meng Ren Xiaoting Zhao Wentao Yue 《Journal of cellular and molecular medicine》2021,25(4):1927-1938
Ovarian cancer (OC) is one of the leading causes of female deaths. However, the molecular pathogenesis of OC has still remained elusive. This study aimed to explore the potential genes associated with the progression of OC. In the current study, 3 data sets of OC were downloaded from the GEO database to identify hub gene. Somatic mutation data obtained from TCGA were used to analyse the mutation. Immune cells were used to estimate effect of the hub gene to the tumour microenvironment. RNA-seq and clinical data of OC patients retrieved from TCGA were used to investigate the diagnostic and prognostic values of hub gene. A series of in vitro assays were performed to indicate the function of hub gene and its possible mechanisms in OC. As a result, RAD51AP1 was found as a hub gene, which expression higher was mainly associated with poor survival in OC patients. Up-regulation of RAD51AP1 was closely associated with mutations. RAD51AP1 up-regulation accompanied by accumulated Th2 cells, but reduced CD4 + T cells and CD8 + T cells. Nomogram demonstrated RAD51AP1 increased the accuracy of the model. Down-regulation of RAD51AP1 suppressed proliferation, migration and invasion capabilities of OC cells in vitro. Additionally, scatter plots showed that RAD51AP1 was positively correlated with genes in TGF-β/Smad pathway. The above-mentioned results were validated by RT-qPCR and Western blotting. In conclusion, up-regulation of RAD51AP1 was closely associated with mutations in OC. RAD51AP1 might represent an indicator for predicting OS of OC patients. Besides, RAD51AP1 might accelerate progression of OC by TGF-β/Smad signalling pathway. 相似文献
17.
NMI promotes cell proliferation through TGFβ/Smad pathway by upregulating STAT1 in colorectal cancer
Dongjian Ji Yifei Feng Wen Peng Jie Li Qi’ou Gu Zhiyuan Zhang Wenwei Qian Qingyuan Wang Yue Zhang Yueming Sun 《Journal of cellular physiology》2020,235(1):429-441
Colorectal cancer (CRC) is still a fatal health problem around the world. The underlying mechanisms of CRC have not been fully elucidated. N-myc interactor (NMI) acts as an oncogene or a tumor-suppressor gene in several kinds of cancers but CRC. Here, the expression of NMI was found higher in CRC tissues and cells. Higher expression of NMI indicated the poorer prognosis of CRC patients. Moreover, the proliferation of CRC cells was suppressed significantly after we silenced the expression of NMI, while overexpression of NMI promoted CRC cell proliferation. Flow cytometry demonstrated that NMI promoted cell proliferation through facilitating cell transition from the G1 phase to the S phase. Furthermore, it was found that NMI suppressed the phosphorylation of Smad3 by upregulating the expression of STAT1. The effect of NMI depletion on cell proliferation could be reversed by using Smad3 inhibitor SIS3. In summary, our findings demonstrated that NMI promoted cell proliferation via TGFβ/Smad pathway and could indicate the prognosis of patients with CRC. 相似文献
18.
19.
Yonghong Sun Xingxing Chen Lili Chen Baixin Bao Chunming Li Yongning Zhou 《Journal of cellular and molecular medicine》2023,27(21):3235-3246
Liver fibrosis is a chronic inflammatory process characterized by the accumulation of extracellular matrix (ECM), which contributes to cirrhosis and hepatocellular carcinoma. Increasing evidence suggests that the activation of hepatic stellate cells (HSCs) under an inflammatory state leads to the secretion of collagens, which can cause cirrhosis. In this study, we analysed data from the Gene Expression Omnibus (GEO) databases to identify differentially expressed genes (DEGs) between quiescent and fibrotic HSCs. We found that Microfibril Associated Protein 2 (MFAP2) was elevated in carbon tetrachloride (CCl4)-induced liver fibrosis and Transforming Growth Factor-Beta 1 (TGF-β1)-activated HSCs. Knockdown of MFAP2 inhibited HSC proliferation and partially attenuated TGF-β-stimulated fibrogenesis markers. Bioinformatics analysis revealed that Fibrillin-1 (FBN1) was correlated with MFAP2, and the expression of FBN1 was significantly upregulated after MFAP2 overexpression. Silencing MFAP2 partially attenuated the activation of HSCs by inhibiting HSC proliferation and decreasing collagen deposits. In vitro results showed that the inhibition of MFAP2 alleviated hepatic fibrosis by inhibiting the activation and inducing the apoptosis of active HSCs in a CCl4-induced mouse model. In conclusion, our results suggest that MFAP2 is a potential target for the clinical treatment of liver fibrosis. 相似文献