首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
vasa is essential for germline development. However, the precise processes in which vasa involves vary considerably in diverse animal phyla. Here we show that vasa is required for primordial germ cell (PGC) migration in the medakafish. vasa knockdown by two morpholinos led to the PGC migration defect that was rescued by coinjection of vasa RNA. Interestingly, vasa knockdown did not alter the PGC number, identity, proliferation and motility even at ectopic locations. We established a cell culture system for tracing PGCs at the single cell level in vitro. In this culture system, control and morpholino-injected gastrulae produced the same PGC number and the same time course of PGC survival. Importantly, vasa-depleted PGCs in culture had similar motility and locomotion to normal PGCs. Expression patterns of wt1a, sdf1b and cxcr4b in migratory tissues remained unchanged by vasa knockdown. By chimera formation we show that PGCs from vasa-depleted blastulae failed to migrate properly in the normal environment, whereas control PGCs migrated normally in vasa-disrupted embryos. Furthermore, ectopic PGCs in vasa-depleted embryos also retained all the PGC properties examined. Taken together, medaka vasa is cell-autonomously required for PGC migration, but dispensable to PGC proliferation, motility, identity and survival.  相似文献   

4.
Turning germ cells into stem cells   总被引:5,自引:0,他引:5  
Primordial germ cells (PGCs), the embryonic precursors of the gametes of the adult animal, can give rise to two types of pluripotent stem cells. In vivo, PGCs can give rise to embryonal carcinoma cells, the pluripotent stem cells of testicular tumors. Cultured PGCs exposed to a specific cocktail of growth factors give rise to embryonic germ cells, pluripotent stem cells that can contribute to all the lineages of chimeric embryos including the germline. The conversion of PGCs into pluripotent stem cells is a remarkably similar process to nuclear reprogramming in which a somatic nucleus is reprogrammed in the egg cytoplasm. Understanding the genetics of embryonal carcinoma cell formation and the growth factor signaling pathways controlling embryonic germ cell derivation could tell us much about the molecular controls on developmental potency in mammals.  相似文献   

5.
Primordial germ cells (PGCs) are the only cells in developing embryos with the potential to transmit genetic information to the next generation. In our previous study, a single PGC transplanted into a host differentiated into fertile gametes and produced germ-line chimeras of cyprinid fish, including zebrafish. In this study, we aimed to induce germ-line chimeras by transplanting donor PGCs from various sources (normal embryos at different stages, dissociated blastomeres, embryoids, or embryoids cryopreserved by vitrification) into host blastulae, and compare the migration rates of the PGCs towards the gonadal ridge. Isolated, cultured blastomeres not subject to mesodermal induction were able to differentiate into PGCs that retained their motility. Moreover, these PGCs successfully migrated towards the gonadal ridge of the host and formed viable gametes. Motility depended on developmental stage and culture duration: PGCs obtained at earlier developmental stages and with shorter cultivation periods showed an increased rate of migration to the gonadal ridge. Offspring were obtained from natural spawning between normal females and chimeric males. These results provide the basis for new methods of gene preservation in zebrafish.  相似文献   

6.
Primordial germ cells (PGCs) in mice have been recognized histologically as alkaline phosphatase (AP) activity-positive cells at 7.2 days post coitum (dpc) in the extra-embryonic mesoderm. However, mechanisms regulating PGC formation are unknown, and an appropriate in vitro system to study the mechanisms has not been established. Therefore, we have developed a primary culture of explanted embryos at pre- and early-streak stages, and have studied roles of cell and/or tissue interactions in PGC formation. The emergence of PGCs from 5.5 dpc epiblasts was observed only when they were co-cultured with extra-embryonic ectoderm, which may induce the conditions required for PGC formation within epiblasts. From 6.0 dpc onwards, PGCs emerged from whole epiblasts as did a fragment of proximal epiblast that corresponds to the area containing presumptive PGC precursors without neighboring extra-embryonic ectoderm and visceral endoderm. Dissociated epiblasts at these stages, however, did not give rise to PGCs, indicating that interactions among a cluster of a specific number of proximal epiblast cells is needed for PGC differentiation. In contrast, we observed that dissociated epiblast cells from a 6.5-b (6.5+15-16 hours) to 6.75 dpc embryo that had undergone gastrulation gave rise to PGCs. Our results demonstrate that stage-dependent tissue and cell interactions play key roles in PGC determination.  相似文献   

7.
8.
Information obtained mainly from in vitro culture studies and genetic analysis of mouse mutants White spotting and Steel indicate a pivotal role of growth factors in the development of mouse primordial germ cells (PGCs). While stem cell factor (SCF) and TGFβ1 seem to have a role in PGC migration (as an adhesion factor and a chemoattractant, respectively), the former is certainly required for PGC survival in vitro and probably in vivo as well. Recent findings suggest that the mechanism by which SCF supports PGC survival is by preventing PGC apoptosis. A similar action appears to be exerted by leukemia inhibitory factor (LIF), a further growth factor influencing PGC growth in culture.PGC proliferation seems to be mainly induced by cAMP dependent mechanisms, but futther investigations are needed to clarify the interrelationships among the different molecular pathways activated by SCF, LIF, cAMP and other putative PGC growth factors (i.e. bFGF). Stimulation of long-term proliferation of PGCs, leading to derivation of ES-like cells (embryonal germ cells) obtained by using a combination of growth factors (bFGF, SCF and LIF), opens new intriguing perspectives for such studies and transgenic technology.  相似文献   

9.
Primordial germ cells (PGCs) are the only cells in developing embryos that can transmit genetic information to the next generation. PGCs therefore have considerable potential value for gene banking and cryopreservation, particularly via production of donor gametes using germ-line chimeras. In some animal species, including teleost fish, the feasibility of using PGC transplantation to obtain donor-derived offspring, within and between species, has been demonstrated. Successful use of PGC transplantation to produce germ-line chimeras is absolutely dependent on the migration of the transplanted cells from the site of transplantation to the host gonadal region. Here, we induced germ-line chimeras between teleost species using two different protocols: blastomere transplantation and single PGC transplantation. We evaluated the methods using the rate of successful migration of transplanted PGCs to the gonadal region of the host embryo. First, we transplanted blastomeres from zebrafish, pearl danio, goldfish, or loach into blastula-stage zebrafish embryos. Some somatic cells, derived from donor blastomeres, were co-transplanted with the PGCs and formed aggregates in the host embryos; a low efficiency of PGC transfer was achieved. Second, a single PGC from the donor species was transplanted into a zebrafish embryo. In all inter-species combinations, the donor PGC migrated toward the gonadal region of the host embryo at a comparatively high rate, regardless of the phylogenetic relationship of the donor and host species. These transplantation experiments showed that the mechanism of PGC migration is highly conserved beyond the family barrier in fish and that transplantation of a single PGC is an efficient method for producing inter-species germ-line chimeras.  相似文献   

10.
生殖细胞是多细胞生物体遗传物质传递的载体,在发育生物学、临床医学及畜牧业生产等领域中具有广阔的应用前景。原始生殖细胞作为胚胎体内最早出现的生殖细胞,在发育过程中受多种信号因子的诱导,发生特化、迁移、分化及减数分裂,最终形成单倍体的配子,此过程在遗传学和表观遗传学方面受到严格的调控。另外,多能性干细胞向生殖细胞的分化以及生殖细胞的体外培养方面在最近均取得了较大的进展。该文将主要围绕原始生殖细胞,综述最近几年来关于生殖细胞形成中的转录调控及体外培养体系的进展。  相似文献   

11.
Primordial germ cells (PGCs) are the founder cells of all gametes. PGCs differentiate from pluripotent epiblasts cells by mesodermal induction signals during gastrulation. Although PGCs are unipotent cells that eventually differentiate into only sperm or oocytes, they dedifferentitate to pluripotent stem cells known as embryonic germ cells (EGCs) in vitro and give rise to testicular teratomas in vivo, which indicates a "metastable" differentiation state of PGCs. We have shown that an appropriate level of phosphoinositide-3 kinase (PI3K)/Akt signaling, balanced by positive and negative regulators, ensures the establishment of the male germ lineage by preventing its dedifferentiation. Specifically, hyper-activation of the signal leads to testicular teratomas and enhances EGC derivation efficiency. In addition, PI3K/Akt signaling promotes PGC dedifferentiation via inhibition of the tumor suppressor p53, a downstream molecule of the PI3K/Akt signal. On the other hand, Akt activation during mesodermal differentiation of embryonic stem cells (ESCs) generates PGC-like pluripotent cells, a process presumably induced through equilibrium between mesodermal differentiation signals and dedifferentiation-inducing activity of Akt. The transfer of these cells to ESC culture conditions results in reversion to an ESC-like state. The interconversion between ESC and PGC-like cells helps us to understand the metastability of PGCs. The regulatory mechanisms of PGC dedifferentiation are discussed in comparison with those involved in the dedifferentiation of testicular stem cells, ESC pluripotency, and somatic nuclear reprogramming.  相似文献   

12.

Background

Primordial germ cells (PGCs) are the embryonic precursors of the sperm and eggs. Environmental or genetic defects that alter PGC development can impair fertility or cause formation of germ cell tumors.

Results

We demonstrate a novel role for cholesterol during germ cell migration in mice. Cholesterol was measured in living tissue dissected from mouse embryos and was found to accumulate within the developing gonads as germ cells migrate to colonize these structures. Cholesterol synthesis was blocked in culture by inhibiting the activity of HMG CoA reductase (HMGCR) resulting in germ cell survival and migration defects. These defects were rescued by co-addition of isoprenoids and cholesterol, but neither compound alone was sufficient. In contrast, loss of the last or penultimate enzyme in cholesterol biosynthesis did not alter PGC numbers or position in vivo. However embryos that lack these enzymes do not exhibit cholesterol defects at the stage at which PGCs are migrating. This demonstrates that during gestation, the cholesterol required for PGC migration can be supplied maternally.

Conclusion

In the mouse, cholesterol is required for PGC survival and motility. It may act cell-autonomously by regulating clustering of growth factor receptors within PGCs or non cell-autonomously by controlling release of growth factors required for PGC guidance and survival.  相似文献   

13.
Cell death in the germ line is controlled by both positive and negative mechanisms that maintain the appropriate number of germ cells and that prevent the possible formation of germ cell tumors. In the mouse embryo, Steel/c-Kit signaling is required to prevent migrating primordial germ cells (PGCs) from undergoing Bax-dependent apoptosis. In our current study, we show that migrating PGCs also undergo apoptosis in Nanos3-null embryos. We assessed whether the Bax-dependent apoptotic pathway is responsible for this cell death by knocking out the Bax gene together with the Nanos3 gene. Differing from Steel-null embryos, however, the Bax elimination did not completely rescue PGC apoptosis in Nanos3-null embryos, and only a portion of the PGCs survived in the double knockout embryo. We further established a mouse line, Nanos3-Cre-pA, to undertake lineage analysis and our results indicate that most of the Nanos3-null PGCs die rather than differentiate into somatic cells, irrespective of the presence or absence of Bax. In addition, a small number of surviving PGCs in Nanos3/Bax-null mice are maintained and differentiate as male and female germ cells in the adult gonads. Our findings thus suggest that heterogeneity exists in the PGC populations and that Nanos3 maintains the germ cell lineage by suppressing both Bax-dependent and Bax-independent apoptotic pathways.  相似文献   

14.
Primordial germ cell (PGC) allocation, characterization, lineage restriction, and differentiation have been extensively studied in the mouse. Murine PGC can be easily identified using markers as alkaline phosphatase content or the expression of pluripotent markers such as Pou5f1, Nanog, Sox2, Kit, SSEA1, and SSEA4. These tools allowed us to clarify certain aspects of the complex interactions of somatic and germinal cells in the establishment of the germ cell lineage, its segregation from the neighbouring somatic tissue, and the guidance mechanisms during migration that direct most of the germ cells into the genital ridges. Few data are available from other domestic animals and here we reported our preliminary studies on the isolation, characterization, and in vitro culture of sheep PGCs. Sheep PGCs can be identified with the markers previously used in mouse, but, in some cases, these markers are not coherently expressed in the same cell depending on the grade of differentiation and on technical problems related to commercial antibodies used. Pluripotency of PGCs in culture (EGCs) from domestic animals also needs further evaluation even though the derivation of embryonic pluripotent cell lines from large mammals may be an advantage as they are more physiologically similar to the human and perhaps more relevant for clinical translation studies. Comprehensive epigenetic reprogramming of the genome in early germ cells, and derived EGCs including extensive erasure of epigenetic modifications, may be relevant for gaining insight into events that lead to reprogramming and establishment of totipotency. EGCs can differentiate in vitro in a various range of tissues, form embryonic bodies, but in many cases failed to generate tumours when transplanted into immunodeficient mice and are not able to generate germline chimeric animals after their transfer. Such incomplete information clearly indicates the urge to improve the studies on derivation of stem cells in farm animals and shows the need for a multidisciplinary investigation in order to create farm animal models to set up suitable ethical and technical systems for cell regenerative therapies in humans.  相似文献   

15.
16.
The germ cell lineage segregates from the somatic cell lineages in early embryos. Germ cell determination in mice is not regulated by maternally inherited germplasm, but is initiated within the embryo during gastrulation. However, the mechanisms of germ cell specification in mice remain unknown. We located precursors to primordial germ cells (PGCs) within early embryos, and show here that cell-cell interaction among these precursors is required for germ cell specification. We found that the expression of a calcium-dependent cell adhesion molecule, E-cadherin, is restricted to the proximal region of extra-embryonic mesoderm that contains PGC precursors, and that blocking the functions of E-cadherin with an antibody inhibits PGC formation in vitro. These results showed that E-cadherin-mediated cell-cell interaction among cells containing PGC precursors is essential to directing such cells to the germ cell fate.  相似文献   

17.
Human embryonic germ (hEG) cells derive from the transformation of primordial germ cells (PGCs) under appropriate culture conditions with embryonic fibroblast feeder cells. Although the pluripotent and proliferative capacity of hEG cells is thought to be equivalent to that of human embryonic stem (hES) cells, the difficulties of isolating and maintaining hEG cell lines in vitro have restricted their availability for experimental use. Despite this, some of the factors involved in PGC development, their transformation into embryonic germ cells and the differentiation of embryonic germ cells to specific cell phenotypes have been explored. The potential use of hEG cells in cell therapy applications will, however, depend on a more thorough understanding of how to derive and maintain these cells in vitro.  相似文献   

18.
Primordial germ cells (PGCs) are the embryonic precursors of the gametes of the adult. PGCs derive from cells of the most proximal part of the cup-shaped epiblast corresponding to the presumptive region of the extraembryonic mesoderm. At 7.2 days post coitum (dpc) a small group of PGCs located at the base of the allantois can be recognised due to a strong alkaline phosphatase activity. Thus far, scant information was available on the mechanism(s) controlling the lineage of PGCs in the mouse embryo. However, results obtained in mice defective for bone morphogenetic protein-4 (Bmp4) secreted molecule revealed that this growth factor has important functions for the derivation of PGCs from extraembryonic mesoderm cells. In this paper, we have studied the effects in culture of Bmp4 on epiblast cells obtained from egg-cylinder stage mouse embryos (5.5-6.0 dpc) and PGCs from 11.5 dpc embryos. We found that Bmp4 treatment enables recruitment of pluripotent cells to a PGC phenotype by a multi-step process involving an initial pre-commitment of epiblast cells and a following stage of PGC phenotypic determination. We further provide evidences that Bmp4 may promote the growth of gonadal PGCs through a Smad1/4 signalling.  相似文献   

19.
Tang X  Zhang C  Jin Y  Ge C  Wu Y 《Cell biology international》2007,31(9):1016-1021
Many studies demonstrated that chicken primordial germ cells (PGCs) could maintain undifferentiated state on mouse embryonic fibroblast feeders supplemented with growth factors and cytokines. However, the xenosupport systems may run risk of cross-transfer of animal pathogens from the other animal feeder, matrix to the PGCs, then influencing later transgenic technology. In this study, chicken PGCs were identified by alkaline phosphatase, stage-specific embryonic antigen-1 and Oct-4 immunocytochemical stainings. Three different homologous somatic cell feeder layers (chicken embryonic fibroblast feeder layer, CEF; embryonic skeletal myoblast feeder layer; follicular granulosa cell feeder layer) were used to support growth and proliferation of PGCs to find a better supporting culture system. In addition, the effects of fetal calf serum (FCS), leukemia inhibitory factor (LIF) and the combination of insulin, transferring and selenite (ITS) on PGC proliferation were compared. Results showed that CEF was the best supporter for PGC growth and proliferation, which was verified by 5-bromo-2'-deoxyuridine incorporation stain. FCS alone or in combination with LIF could significantly promote PGC proliferation in the presence of CEF in ITS medium. This study will contribute to providing a safer supporting system for chicken PGC amplification in vitro, and may be applied in transgenic chicken production and transplantation therapy.  相似文献   

20.

Background

The extraembryonic tissues, visceral endoderm (VE) and extraembryonic ectoderm (ExE) are known to be important for the induction of primordial germ cells (PGCs) in mice via activation of the bone morphogenetic protein (BMP) signalling pathway. We investigated whether the VE and ExE have a direct role in the specification of PGCs, or in an earlier event, namely the induction of the PGC precursors in the proximal posterior epiblast cells.

Results

We cultured embryonic day (E) 5.75 to E7.0 mouse embryos in an explant-assay with or without extraembryonic tissues. The reconstituted pieces of embryonic and extraembryonic tissues were assessed for the formation of both PGC precursors and specified PGCs. For this, Blimp1:gfp and Stella:gfp transgenic mouse lines were used to distinguish between PGC precursors and specified PGC, respectively. We observed that the VE regulates formation of an appropriate number of PGC precursors between E6.25–E7.25, but it is not essential for the subsequent specification of PGCs from the precursor cells. Furthermore, we show that the ExE has a different role from that of the VE, which is to restrict localization of PGC precursors to the posterior part of the embryo.

Conclusion

We show that the VE and ExE have distinct roles in the induction of PGC precursors, namely the formation of a normal number of PGC precursors, and their appropriate localization during early development. However, these tissues do not have a direct role during the final stages of specification of the founder population of PGCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号