首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
How growth, mortality, and dispersal in a species affect the species' spread and persistence constitutes a central problem in spatial ecology. We propose impulsive reaction-diffusion equation models for species with distinct reproductive and dispersal stages. These models can describe a seasonal birth pulse plus nonlinear mortality and dispersal throughout the year. Alternatively, they can describe seasonal harvesting, plus nonlinear birth and mortality as well as dispersal throughout the year. The population dynamics in the seasonal pulse is described by a discrete map that gives the density of the population at the end of a pulse as a possibly nonmonotone function of the density of the population at the beginning of the pulse. The dynamics in the dispersal stage is governed by a nonlinear reaction-diffusion equation in a bounded or unbounded domain. We develop a spatially explicit theoretical framework that links species vital rates (mortality or fecundity) and dispersal characteristics with species' spreading speeds, traveling wave speeds, as well as minimal domain size for species persistence. We provide an explicit formula for the spreading speed in terms of model parameters, and show that the spreading speed can be characterized as the slowest speed of a class of traveling wave solutions. We also give an explicit formula for the minimal domain size using model parameters. Our results show how the diffusion coefficient, and the combination of discrete- and continuous-time growth and mortality determine the spread and persistence dynamics of the population in a wide variety of ecological scenarios. Numerical simulations are presented to demonstrate the theoretical results.  相似文献   

2.
Many populations live and disperse in advective media. A fundamental question, known as the “drift paradox” in stream ecology, is how a closed population can survive when it is constantly being transported downstream by the flow. Recent population-level models have focused on the role of diffusive movement in balancing the effects of advection, predicting critical conditions for persistence. Here, we formulate an individual-based stochastic analog of the model described in (Lutscher et al., SIAM Rev. 47(4):749–772, 2005) to quantify the effects of demographic stochasticity on persistence. Population dynamics are modeled as a logistic growth process and dispersal as a position-jump process on a finite domain divided into patches. When there is no correlation in the interpatch movement of residents, stochasticity simply smooths the persistence-extinction boundary. However, when individuals disperse in “packets” from one patch to another and the flow field is memoryless on the timescale of packet transport, the probability of persistence is greatly enhanced. The latter transport mechanism may be characteristic of larval dispersal in the coastal ocean or wind-dispersed seed pods.  相似文献   

3.
The dendritic structure of a river network creates directional dispersal and a hierarchical arrangement of habitats. These two features have important consequences for the ecological dynamics of species living within the network. We apply matrix population models to a stage-structured population in a network of habitat patches connected in a dendritic arrangement. By considering a range of life histories and dispersal patterns, both constant in time and seasonal, we illustrate how spatial structure, directional dispersal, survival, and reproduction interact to determine population growth rate and distribution. We investigate the sensitivity of the asymptotic growth rate to the demographic parameters of the model, the system size, and the connections between the patches. Although some general patterns emerge, we find that a species’ modes of reproduction and dispersal are quite important in its response to changes in its life history parameters or in the spatial structure. The framework we use here can be customized to incorporate a wide range of demographic and dispersal scenarios.  相似文献   

4.
Models for population dynamics in rivers and streams have highlighted the importance of spatial and temporal variations for population persistence. We present a novel model that considers the longitudinal variation as introduced by the sinuosity of a meandering river where a main channel is laterally extended to point bars in bends. These regions offer different habitat conditions for aquatic populations and therefore may enhance population persistence. Our model is a nonstandard reaction–advection–diffusion model where the domain of definition consists of the real line (representing the main channel) with periodically added intervals (representing the point bars). We give an existence and uniqueness proof for solutions of the equations. We then study population persistence as the (in-) stability of the trivial solution and population spread as the minimal wave speed of traveling periodic waves. We conduct a sensitivity analysis to highlight the importance of each parameter on the model outcome. We find that sinuosity can enhance species persistence.  相似文献   

5.
Despite the considerable evidence showing that dispersal between habitat patches is often asymmetric, most of the metapopulation models assume symmetric dispersal. In this paper, we develop a Monte Carlo simulation model to quantify the effect of asymmetric dispersal on metapopulation persistence. Our results suggest that metapopulation extinctions are more likely when dispersal is asymmetric. Metapopulation viability in systems with symmetric dispersal mirrors results from a mean field approximation, where the system persists if the expected per patch colonization probability exceeds the expected per patch local extinction rate. For asymmetric cases, the mean field approximation underestimates the number of patches necessary for maintaining population persistence. If we use a model assuming symmetric dispersal when dispersal is actually asymmetric, the estimation of metapopulation persistence is wrong in more than 50% of the cases. Metapopulation viability depends on patch connectivity in symmetric systems, whereas in the asymmetric case the number of patches is more important. These results have important implications for managing spatially structured populations, when asymmetric dispersal may occur. Future metapopulation models should account for asymmetric dispersal, while empirical work is needed to quantify the patterns and the consequences of asymmetric dispersal in natural metapopulations.  相似文献   

6.
An integro-differential equation on a tree graph is used to model the time evolution and spatial distribution of a population of organisms in a river network. Individual organisms become mobile at a constant rate, and disperse according to an advection-diffusion process with coefficients that are constant on the edges of the graph. Appropriate boundary conditions are imposed at the outlet and upstream nodes of the river network. The local rates of population growth/decay and that by which the organisms become mobile, are assumed constant in time and space. Imminent extinction of the population is understood as the situation whereby the zero solution to the integro-differential equation is stable. Lower and upper bounds for the eigenvalues of the dispersion operator, and related Sturm-Liouville problems are found. The analysis yields sufficient conditions for imminent extinction and/or persistence in terms of the values of water velocity, channel length, cross-sectional area and diffusivity throughout the river network.  相似文献   

7.
Habitat quality and habitat geometry are two crucial factors driving metapopulation dynamics. However, their intricacy has prevented so far a reliable test of their relative impact on local population dynamics and persistence. Here we report on a long‐term study in which we manipulated habitat quality within a butterfly metapopulation, whereas habitat geometry was kept constant. The treatment consisted in lowering the quality of certain habitat patches while others were kept untreated, using the same spatial design over years. The effect of the treatment on metapopulation dynamics was assessed by comparing residence probability and dispersal rates within the same habitat network on 11 and 6 independent butterfly generations before and after treatment, respectively. Results showed that the experimental decrease in habitat quality generated significantly higher emigration rates from treated patches. This increase was associated with a significant decrease in dispersal rates out of untreated patches, and a significant higher residence probability in these patches. The direct relation between lower habitat quality and higher dispersal propensity in treated patches was expected. However, the lower dispersal from untreated patches after treatment was opposite to the expectation of positive density dependent dispersal generally observed in butterflies. Such negative density‐dependent dispersal would allow a rapid fine‐tuning of dispersal rates to changes in habitat quality, particularly when the spatial autocorrelation of the environmental is low. Accordingly, dispersal would promote an ideal free distribution of individuals in the landscape according to their fitness expectation.  相似文献   

8.
Graph models of habitat mosaics   总被引:7,自引:0,他引:7  
Graph theory is a body of mathematics dealing with problems of connectivity, flow, and routing in networks ranging from social groups to computer networks. Recently, network applications have erupted in many fields, and graph models are now being applied in landscape ecology and conservation biology, particularly for applications couched in metapopulation theory. In these applications, graph nodes represent habitat patches or local populations and links indicate functional connections among populations (i.e. via dispersal). Graphs are models of more complicated real systems, and so it is appropriate to review these applications from the perspective of modelling in general. Here we review recent applications of network theory to habitat patches in landscape mosaics. We consider (1) the conceptual model underlying these applications; (2) formalization and implementation of the graph model; (3) model parameterization; (4) model testing, insights, and predictions available through graph analyses; and (5) potential implications for conservation biology and related applications. In general, and for a variety of ecological systems, we find the graph model a remarkably robust framework for applications concerned with habitat connectivity. We close with suggestions for further work on the parameterization and validation of graph models, and point to some promising analytic insights.  相似文献   

9.
Species associated with transient habitats need efficient dispersal strategies to ensure their regional survival. Using a spatially explicit metapopulation model, we studied the effect of the dispersal range on the persistence of a metapopulation as a function of the local population and landscape dynamics (including habitat patch destruction and subsequent regeneration). Our results show that the impact of the dispersal range depends on both the local population and patch growth. This is due to interactions between dispersal and the dynamics of patches and populations via the number of potential dispersers. In general, long-range dispersal had a positive effect on persistence in a dynamic landscape compared to short-range dispersal. Long-range dispersal increases the number of couplings between the patches and thus the colonisation of regenerated patches. However, long-range dispersal lost its advantage for long-term persistence when the number of potential dispersers was low due to small population growth rates and/or small patch growth rates. Its advantage also disappeared with complex local population dynamics and in a landscape with clumped patch distribution.  相似文献   

10.
Design and decision-making for marine protected areas (MPAs) on coral reefs require prediction of MPA effects with population models. Modeling of MPAs has shown how the persistence of metapopulations in systems of MPAs depends on the size and spacing of MPAs, and levels of fishing outside the MPAs. However, the pattern of demographic connectivity produced by larval dispersal is a key uncertainty in those modeling studies. The information required to assess population persistence is a dispersal matrix containing the fraction of larvae traveling to each location from each location, not just the current number of larvae exchanged among locations. Recent metapopulation modeling research with hypothetical dispersal matrices has shown how the spatial scale of dispersal, degree of advection versus diffusion, total larval output, and temporal and spatial variability in dispersal influence population persistence. Recent empirical studies using population genetics, parentage analysis, and geochemical and artificial marks in calcified structures have improved the understanding of dispersal. However, many such studies report current self-recruitment (locally produced settlement/settlement from elsewhere), which is not as directly useful as local retention (locally produced settlement/total locally released), which is a component of the dispersal matrix. Modeling of biophysical circulation with larval particle tracking can provide the required elements of dispersal matrices and assess their sensitivity to flows and larval behavior, but it requires more assumptions than direct empirical methods. To make rapid progress in understanding the scales and patterns of connectivity, greater communication between empiricists and population modelers will be needed. Empiricists need to focus more on identifying the characteristics of the dispersal matrix, while population modelers need to track and assimilate evolving empirical results.  相似文献   

11.
12.
Ocean currents, prevailing winds, and the hierarchical structures of river networks are known to create asymmetries in re-colonization between habitat patches. The impacts of such asymmetries on metapopulation persistence are seldom considered, especially rarely in theoretical studies. Considering three classical models (the island, the stepping stone and the distance-dependent model), we explore how metapopulation persistence is affected by (i) asymmetry in dispersal strength, in which the colonization rate between two patches differs in direction, and (ii) asymmetry in connectivity, in which the overall colonization pattern displays asymmetry (circulating or dendritic networks). Viability can be drastically reduced when directional bias in dispersal strength is higher than 25%. Re-colonization patterns that allow for strong local connectivity provide the highest persistence compared to systems that allow circulation. Finally, asymmetry has relatively weak effects when metapopulations maintain strong general connectivity.  相似文献   

13.
Integrodifference models of growth and dispersal are analyzed on finite domains to investigate the effects of emigration, local growth dynamics and habitat heterogeneity on population persistence. We derive the bifurcation structure for a range of population dynamics and present an approximation that allows straighforward calculation of the equilibrium populations in terms of local growth dynamics and dispersal success rates. We show how population persistence in a heterogeneous environment depends on the scale of the heterogeneity relative to the organism's characteristic dispersal distance. When organisms tend to disperse only a short distance, population persistence is dominated by local conditions in high quality patches, but when dispersal distance is relatively large, poor quality habitat exerts a greater influence.  相似文献   

14.
15.
Sound management of species requires reliable estimates of dispersal. Indeed, dispersal of individuals among local populations is a key factor in the biology and persistence of local populations and metapopulations. Here, the small-scale dispersal pattern of a vulnerable species, the endemic Sardinian chalk hill blue butterfly, was studied by applying capture–recapture multistate models and a model selection based on AIC values. Model parameters were survival, capture and movement probabilities. The model selection showed that (a) survival probability of individuals varied between sexes, (b) capture probability varied between sexes and among patches, and (c) movement probability varied with direction. The probability of movement among adjacent local populations was generally low and ranged from 0.009 to 0.212. Movement probabilities were subsequently modeled using data on interpatch distance and donor patch population size or area. The ultrastructural biology-based models turned out to be the most appropriate models for inference, showing that dispersal decreases with increasing interpatch distance and increasing donor patch population size or area, and suggesting that butterfly dispersal is affected by patch geometry and the presence of conspecifics. The application of multistate models, the model selection approach, and ultrastructural modeling allowed testing the validity of some general hypotheses related to dispersal in metapopulations and helped elucidate the butterfly small-scale dispersal pattern.  相似文献   

16.
Journal of Mathematical Biology - A reaction–diffusion–advection equation with strong Allee effect growth rate is proposed to model a single species stream population in a...  相似文献   

17.
We introduce a model for the dynamics of a patchy population in a stochastic environment and derive a criterion for its persistence. This criterion is based on the geometric mean (GM) through time of the spatial-arithmetic mean of growth rates. For the population to persist, the GM has to be >/=1. The GM increases with the number of patches (because the sampling error is reduced) and decreases with both the variance and the spatial covariance of growth rates. We derive analytical expressions for the minimum number of patches (and the maximum harvesting rate) required for the persistence of the population. As the magnitude of environmental fluctuations increases, the number of patches required for persistence increases, and the fraction of individuals that can be harvested decreases. The novelty of our approach is that we focus on Malthusian local population dynamics with high dispersal and strong environmental variability from year to year. Unlike previous models of patchy populations that assume an infinite number of patches, we focus specifically on the effect that the number of patches has on population persistence. Our work is therefore directly relevant to patchily distributed organisms that are restricted to a small number of habitat patches.  相似文献   

18.
19.
20.
Journal of Mathematical Biology - We study the population dynamics of an aquatic species in a river network. The habitat is viewed as a binary tree-like metric graph with the population density...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号