首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mesenchymal stem cells (MSCs) are a prospective cell source for tissue regeneration due to their self‐renewal abilities and potential to differentiate into different cell lineages, but the molecular mechanisms of the directed differentiation and proliferation are still unknown. Recently, multiple studies have indicated the crucial role of HOX genes in MSC differentiation and proliferation. However, the role of HOXA5 in MSCs remains unknown. Here, we investigated HOXA5 function in stem cells from the apical papilla (SCAPs). After HOXA5 depletion, the results showed a significant decrease in ALP activity and a weakened mineralization ability of SCAPs. The real‐time RT‐PCR results showed prominently lessened expression of OPN and BSP. The CCK8 and CFSE results displayed inhibited proliferation of SCAPs, and flow cytometry assays revealed arrested cell cycle progression at the S phase. Furthermore, we found that depletion of HOXA5 upregulated p16INK4A and p18INK4C and downregulated the Cyclin A. Our research demonstrated that depletion of HOXA5 inhibited osteogenic differentiation and repressed cell proliferation by arresting cell cycle progression at the S phase via p16INK4A, p18INK4C, and Cyclin A in SCAPs, indicating that HOXA5 has a significant role in maintaining the proliferation and differentiation potential of dental‐tissue‐derived MSCs.  相似文献   

3.

Background

Exploring the molecular mechanisms underlying directed differentiation is helpful in the development of clinical applications of mesenchymal stem cells (MSCs). Our previous study on dental tissue-derived MSCs demonstrated that secreted frizzled-related protein 2 (SFRP2), a Wnt inhibitor, could enhance osteogenic differentiation in stem cells from the apical papilla (SCAPs). However, how SFRP2 promotes osteogenic differentiation of dental tissue-derived MSCs remains unclear. In this study, we used SCAPs to investigate the underlying mechanisms.

Methods

SCAPs were isolated from the apical papilla of immature third molars. Western blot and real-time RT-PCR were applied to detect the expression of β-catenin and Wnt target genes. Alizarin Red staining, quantitative calcium analysis, transwell cultures and in vivo transplantation experiments were used to study the osteogenic differentiation potential of SCAPs.

Results

SFRP2 inhibited canonical Wnt signaling by enhancing phosphorylation and decreasing the expression of nuclear β-catenin in vitro and in vivo. In addition, the target genes of the Wnt signaling pathway, AXIN2 (axin-related protein 2) and MMP7 (matrix metalloproteinase-7), were downregulated by SFRP2. WNT1 inhibited the osteogenic differentiation potential of SCAPs. SFRP2 could rescue this WNT1-impaired osteogenic differentiation potential.

Conclusions

The results suggest that SFRP2 could bind to locally present Wnt ligands and alter the balance of intracellular Wnt signaling to antagonize the canonical Wnt pathway in SCAPs. This elucidates the molecular mechanism underlying the SFRP2-mediated directed differentiation of SCAPs and indicates potential target genes for improving dental tissue regeneration.
  相似文献   

4.
5.
6.
Objectives:Mesenchymal stem cells (MSCs) have become seed cells and basic elements for bone regeneration and bone tissue engineering. The aim of the present study was to investigate the roles and mechanisms of bone morphogenetic protein 2 (BMP-2) on osteogenic differentiation of MSCs.Methods:Primary MSCs were isolated from the femur and tibia bone of rats and then transfected with BMP-2 and PGC-1α adenovirus vectors. Alkaline phosphatase (ALP) activity and alizarin red staining were used to measure osteogenic differentiation of MSCs. Real-time PCR and western blot assays were performed to assess osteogenic differentiation-related proteins levels. The activities of mitochondrial respiratory chain complexes I and II and mitochondrial fluorescence intensity were used to explore mitochondria status during osteogenic differentiation of MSCs.Results:We found that the ability of BMP-2 overexpressed (OE) group osteogenic differentiation was significantly improved, compared with the negative control (NC) group. The results also indicated that BMP-2 can promote the activity of mitochondria. We further used the gain- and loss-of-function approaches to demonstrate that BMP-2 promotes mitochondrial activity by up-regulating PGC-1α to promote osteogenic differentiation of MSCs.Conclusions:These results explored the important role of BMP-2 in the osteoblast differentiation of MSCs from a new perspective, providing a theoretical and experimental basis for bone defect and repair.  相似文献   

7.
8.
9.
10.
Molecular Biology Reports - This study assessed the effect of Biodentine coated with Emdogain (Biodentine/Emdogain) on proliferation and differentiation of human stem cells from the apical papilla...  相似文献   

11.
12.
Tissue engineering is fast becoming a key approach in bone medicine studies. Designing the ideally desirable combination of stem cells and scaffolds are at the hurt of efforts for producing implantable bone substitutes. Clinical application of stem cells could be associated with serious limitations, and engineering scaffolds that are able to imitate the important features of extracellular matrix is a major area of challenges within the field. In this study, electrospun scaffolds of polyvinylidene fluoride (PVDF), PVDF-graphene oxide (GO), PVDF-polyvinyl alcohol (PVA) and PVDF-PVA-GO were fabricated to study the osteogenic differentiation potential of human induced pluripotent stem cells (iPSCs) while cultured on fabricated scaffolds. Scanning electron microscopy study, viability assay, relative gene expression analysis, immunocytochemistry, alkaline phosphates activity, and calcium content assays confirmed that the osteogenesis rate of hiPSCs cultured on PVDF-PVA-Go is significantly higher than other scaffolds. Here, we showed that the biocompatible, nontoxic, flexible, piezoelectric, highly porous and interconnected three-dimensional structure of electrospun PVDF-PVA-Go scaffold in combination with hiPSCs (as the stem cells with significant advantageous in comparison to other types) makes them a highly promising scaffold-stem cell system for bone remodeling medicine. There was no evidence for the superiority of PVDF-GO or PVDF-PVA scaffold for osteogenesis, compared to each other; however both of them showed better potentials as to PVDF scaffold.  相似文献   

13.
Transglutaminase 2 (TG2) was used to attach biologically-active BMP2 to collagen type I-coated poly-l-lactic acid (PLLA) nanofibrous scaffolds. Irreversibly cross-linked BMP2 retained its activity and induced Smad-dependent gene expression in cells seeded on PLLA–BMP2 scaffolds. These modified scaffolds promote osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) cultured in low-serum and growth factor free medium and support deposition of the calcified matrix and induction of the molecular osteogenic markers Runx2, osteopontin, osteonectin and bone sialoprotein. Importantly, the PLLA–BMP2 scaffolds did not support chondrogenic differentiation in hBMSCs as there was no expression of chondrogenic markers aggrecan, Sox 9, and collagen type II, and no deposition of cartilaginous glycosaminoglycan-rich matrix. Thus, TG2-mediated cross-linking of BMP2 to a scaffold is a novel approach to induce osteoblast-specific programming of hBMSCs in a spatially controlled manner.  相似文献   

14.
15.
16.
17.
The ubiquitin protease pathway plays important role in human bone marrow-derived mesenchymal stem cell (hBMSC) differentiation, including osteogenesis. However, the function of deubiquitinating enzymes in osteogenic differentiation of hBMSCs remains poorly understood. In this study, we aimed to investigate the role of ubiquitin-specific protease 53 (USP53) in the osteogenic differentiation of hBMSCs. Based on re-analysis of the Gene Expression Omnibus database, USP53 was selected as a positive regulator of osteogenic differentiation in hBMSCs. Overexpression of USP53 by lentivirus enhanced osteogenesis in hBMSCs, whereas knockdown of USP53 by lentivirus inhibited osteogenesis in hBMSCs. In addition, USP53 overexpression increased the level of active β-catenin and enhanced the osteogenic differentiation of hBMSCs. This effect was reversed by the Wnt/β-catenin inhibitor DKK1. Mass spectrometry showed that USP53 interacted with F-box only protein 31 (FBXO31) to promote proteasomal degradation of β-catenin. Inhibition of the osteogenic differentiation of hBMSCs by FBXO31 was partially rescued by USP53 overexpression. Animal studies showed that hBMSCs with USP53 overexpression significantly promoted bone regeneration in mice with calvarial defects. These results suggested that USP53 may be a target for gene therapy for bone regeneration.Subject terms: Cell signalling, Mesenchymal stem cells  相似文献   

18.
Collagen triple helix repeat containing 1 (CTHRC1) is associated with bone metabolism. Alveolar bone has an ability to rapidly remodel itself to adapt its biomechanical environment and function. However, whether CTHRC1 is expressed in alveolar bone tissue and the role of CTHRC1 in alveolar bone remodeling remain unclear. We used orthodontic tooth movement (OTM) rat model to study the effects of CHTRC1 in alveolar bone remodeling in vivo. We found that CTHRC1 was expressed in normal physiological condition of osteocytes, bone matrix, and periodontal ligament cells in rat. During the OTM, the expression of CTHRC1, Runx2 and TAZ were increased. We further studied the effects of CTHRC1 on osteogenic differentiation of human periodontal ligament stem cells in vitro. CTHRC1 can positively regulate the expression of TAZ and osteogenic differentiation markers like Col1, ALP, Runx2 and OCN. Overexpression of CHTRC1 increased osteogenic differentiation of PDLSCs, which could be abolished by TAZ siRNA. Our results suggest that CTHRC1 plays an important role in alveolar bone remodeling and osteogenic differentiation of PDLSCs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号