首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Retinoic acid (RA) plays an important role in cell growth and tissue development and is also a regulating factor of pituitary function. However, whether RA is generated in the pituitary gland and plays a role as a paracrine and/or autocrine hormone is generally unknown. RA is synthesized from retinoids through oxidation processes. Dehydrogenases catalyzing the oxidation of retinal to RA are members of the retinaldehyde dehydrogenase (RALDH) family. In this study, we examined the expression of RALDH1, RALDH2, and RALDH3 mRNA in the rat embryonic pituitary gland. By in situ hybridization with digoxigenin-labeled cRNA probes, we detected mRNA expression for RALDH2 and RALDH3, but not RALDH1. The expression of RALDH2 and RALDH3 was located in Rathke’s pouch at embryonic day 12.5 (E12.5) and subsequently in the developing anterior pituitary gland. We also used quantitative real-time polymerase chain reaction to analyze RALDH2 and RALDH3 mRNA expression levels during the development of the pituitary gland. We found that pituitary RALDH2 and RALDH3 mRNA levels were high at E17.5 and decreased markedly after birth. Our study is the first to show that RALDH2 and RALDH3, but not RALDH1, are expressed in the embryonic anterior pituitary gland of the rat.  相似文献   

2.
Selenoprotein P (Sepp) is an extracellular glycoprotein which functions principally as a selenium (Se) transporter and antioxidant. In order to assess the spatiotemporal expression of the Sepp gene during mouse embryogenesis, quantitative RT-PCR and in situ hybridization analyses were conducted in embryos and extraembryonic tissues, including placenta. Sepp mRNA expression was detected in all embryos and extraembryonic tissues on embryonic days (E) 7.5 to 18.5. Sepp mRNA levels were high in extraembryonic tissues, as compared to embryos, on E 7.5-13.5. However, the levels were higher in embryos than in extraembryonic tissues on E 14.5-15.5, but were similar in both tissues during the subsequent periods prior to birth. According to the results of in situ hybridization, Sepp mRNA was expressed principally in the ectoplacental cone and neural ectoderm, including the neural tubes and neural folds. In whole embryos, Sepp mRNA was expressed abundantly in nervous tissues on E 9.5-12.5. Sepp mRNA was also expressed in forelimb and hindlimb buds on E 10.5-12.5. In the sectioned embryos, on E 13.5-18.5, Sepp mRNA was expressed persistently in the developing limbs, gastrointestinal tract, nervous tissue, lung, kidney and liver. On E 16.5-18.5, Sepp mRNA expression in the submandibular gland, whisker follicles, pancreas, urinary bladder and skin was apparent. In particular, Sepp mRNA was detected abundantly in blood cells during all the observed developmental periods. These results show that Sepp may function as a transporter of selenium, as well as an antioxidant, during embryogenesis.  相似文献   

3.
4.
Using in situ hybridization on whole-mounts and sections of mouse embryos we have visualized the pattern of expression for the Eph receptor ligand ephrin-A5. Non neuronal expression domains include the ectoderm of the branchial arches, the ectoderm and mesenchyme surrounding the dorsal root ganglia, the intervertebral discs, maxillary and mandibulary mesenchymal elements as well as the nasal mesenchyme and ectoderm. Within the developing nervous system, ephrin-A5 expression is very dynamic. Besides the midbrain it is also expressed in the hypothalamus, and the neurohypophysis that we studied here in more detail. Hypothalamus expression of ephrin-A5 demarks distinct nuclei, persists throughout embryonic development, and can be seen also in the adult.  相似文献   

5.
6.
7.
8.
It has been reported that mammotropes in a rodent pituitary gland are derived from somatotropes via somatomammotropes (SMTs), cells that produce both growth hormone (GH) and prolactin (Prl). However, no studies have been done on the transdifferentiation of somatotropes in the chicken pituitary gland. In this study, in order to determine the origin of mammotropes, we studied detail property of appearance of chicken somatotropes, mammotropes and pit-1 cells and then evaluated the existence of SMTs in the chicken embryonic pituitary gland. Immunohistochemical analysis revealed that GH-immunopositive (GH-ip) cells appeared on embryonic day (E) 14 and were mainly distributed in the caudal lobe, while Prl-immunopositive (Prl-ip) cells appeared in the cephalic lobe of the pituitary gland on E16. In situ hybridization (ISH) and RT-PCR analysis showed that expression of GH and Prl mRNA starts at E12 in the caudal lobe and at E14 in the cephalic lobe respectively. Pit-1 mRNA was first detected on E5 by RT-PCR, and pit-1 mRNA-expressing cells were found in the cephalic lobe on E8. Then with the ontogeny of the chicken, these cells spread into both lobes. Using a double staining method with ISH and immunohistochemistry, we could not detect the existence of SMTs in the chicken embryonic pituitary gland even in the marginal region of either lobe. These results suggest that chicken somatotropes and mammotropes independently appear in different lobes of pituitary gland and that transdifferentiation from somatotropes to mammotropes is not the central route for differentiation of mammotropes in the embryonic chicken pituitary gland.  相似文献   

9.
10.
An analysis of secreted proteins by the signal sequence trap method using a cDNA library of the rat pituitary anlage at embryonic days (E) 13.5 revealed the abundant expression of delta-like protein 1 (Dlk1) in the pituitary gland. Dlk1, an epidermal growth factor-like repeat protein in preadipocytes, functions in maintaining the preadipose state. Expression of Dlk1 mRNA in the pituitary at E13.5 and in the adult pituitary was confirmed by in situ hybridization. The expression pattern of Dlk1 during pituitary development was also studied by immunohistochemistry. Dlk1 protein first appeared in Rathke’s pouch and the infundibulum at E11.5; as development proceeded, expression became restricted to the pars distalis and pars tuberalis (PT). Dlk1 was expressed in most ACTH cells during the embryonic stages, but its expression was limited to only a few ACTH cells in the adult pituitary. It was also expressed in a small population of TSH, GTH, and PRL cells throughout development, whereas it was present in the cytoplasm of most GH cells at all developmental stages. Similarly, Dlk1 was localized in the cytoplasm of PT cells during development. These findings provide new insights into the mechanism of Dlk1 regarding its regulation of pituitary hormone-secreting cells during development.  相似文献   

11.
12.
The primordium of the mammalian adenohypophysis derived from Rathke's pouch (RP) is known to be formed by oral ectoderm invagination. However, in the early phase of pituitary development, the detailed process by which the oral ectoderm develops into the adenohypophysis remains largely unknown. Using high-resolution non-radiolabeled in situ hybridization and the BrdU and TUNEL methods, we have examined the detailed expression pattern of factors involved in the formation of RP of chicken and the changes in the mitotic and apoptotic cell regions in RP. In the chicken embryo, Sonic hedgehog (Shh) mRNA was initially expressed in the stomodeal plate but not in the oral ectoderm. After prospective diencephalon had detached from the oral ectoderm, another Shh-expressing region appeared in the most rostral part of the recess. LIM homeobox gene 3 (Lhx3) mRNA first appeared in the anterior area of Rathke's recess, and expression then spread to the caudal region. alphaGSU mRNA-expressing cells were observed at both ends of the Lhx3-expressing region, and thereafter the expression area moved to the posterior region. Furthermore, a close overlap was found between the proliferating region and Lhx3 mRNA-expressing area, and TUNEL-positive cells appeared in Seessel's pouch derived from the foregut. Thus, the primordium of the pituitary gland corresponding to the Lhx3-expressing region is surrounded by the Shh-expressing region, which appears in two steps, and the mass growth and invagination of RP of chicken result from the coordination of the dorsal extension of the anterior region and the ventral extension of the posterior region of RP.  相似文献   

13.
14.
15.
DNA-binding specificity and embryological function of Xom (Xvent-2)   总被引:30,自引:0,他引:30  
Directed cell movement is integral to both embryogenesis and hematopoiesis. In the adult, the chemokine family of secreted proteins signals migration of hematopoietic cells through G-coupled chemokine receptors. We detected embryonic expression of chemokine receptor messages by RT-PCR with degenerate primers at embryonic day 7.5 (E7.5) or by RNase protection analyses of E8.5 and E12.5 tissues. In all samples, the message encoding CXCR4 was the predominate chemokine receptor detected, particularly at earlier times (E7.5 and E8.5). Other chemokine receptor messages (CCR1, CCR4, CCR5, CCR2, and CXCR2) were found in E12.5 tissues concordant temporally and spatially with definitive (adult-like) hematopoiesis. Expression of CXCR4 was compared with that of its only known ligand, stromal cell-derived factor-1 (SDF-1), by in situ hybridization. During organogenesis, these genes have dynamic and complementary expression patterns particularly in the developing neuronal, cardiac, vascular, hematopoietic, and craniofacial systems. Defects in the first four of these systems have been reported in CXCR4- and SDF-1-deficient mice. Our studies suggest new potential mechanisms for some of these defects as well as additional roles beyond the scope of the reported abnormalities. Earlier in development, expression of these genes correlates with migration during gastrulation. Migrating cells (mesoderm and definitive endoderm) contain CXCR4 message while embryonic ectoderm cells express SDF-1. Functional SDF-1 signaling in midgastrula cells as well as E12.5 hematopoietic progenitors was demonstrated by migration assays. Migration occurred with an optimum dose similar to that found for adult hematopoietic cells and was dependent on the presence of SDF-1 in a gradient. This work suggests roles for chemokine signaling in multiple embryogenic events.  相似文献   

16.
17.
The spatial and temporal pattern of appearance of pro-apoptotic caspase-3 and p53 proteins, and anti-apoptotic bcl-2 protein was investigated in the developing pituitary gland of 6 human embryos 5-8-weeks old, using morphological and immunohistochemical techniques. Their dynamic appearance was analyzed in the Rathke's pouch (future adenohypophysis), mesenchyme, and in the developing neurohypophysis. In the 5th and 6th week, caspase-3 positive cells appeared in the Rathke's pouch (5%) and stalk (11%), in the mesenchyme, but not in the neurohypophysis. In the 6th and 7th week, apoptotic cells were more numerous in the caudal part of the Rathke's pouch due to its separation from the oral epithelium. Pro-apoptotic p53 protein was detected in all parts of the pituitary gland throughout the investigated period. Nuclear condensations characterized cells positive to caspase-3 and p53 proteins. Apoptotic cells displayed condensations of nuclear chromatin on an ultrastructural level as well. While caspase-3 dependent pathway of cell death participated in morphogenesis of the adenohypophysis and associated connective tissue, p53-mediated apoptosis most likely participates in morphogenesis of all parts of the gland, including neurohypophysis. The anti-apoptotic bcl-2 protein was also detected in all parts of the developing gland. With advancing development, the positivity to bcl-2 protein increased in the cells of the adenohypophysis, while it decreased in the neurohypophysis. Bcl-2 protein probably prevented cell death in all parts of the gland and enhanced cell differentiation. The described pattern of appearance of the investigated pro-apoptotic and anti-apoptotic factors might be important for normal morphogenesis and function of the pituitary gland.  相似文献   

18.
19.
Metallothioneins belong to a family of shock proteins characterized by an unusual high content of cystein, absence of aromatic amino acids and high metal content (Zinc and Copper). Metallothioneins are ubiquitously present in a large variety of prokaryotic and eukaryotic species as well as in all mammalian organs and tissues examined thus far. To the best of our knowledge this is the first report describing the presence of metallothioneins in the pituitary gland. Metallothioneins were identified immunohistochemically and chromatographically both in the neuro and adenohypophysis of the bovine pituitary gland. Metallothioneins are highly expressed in the neurohypophyseal glial cells, and in a subpopulation of folliculo-stellate cells located in the pars intermedia of the adenohypophysis. While the specific role of these proteins in the pituitary gland remains to be established, we hypothesize that, besides their protective action against free radicals, hypophyseal metallothioneins might be involved in the regulation of metal ion homeostasis with putative implication in release of hypothalamic peptide hormones in the neurohypophysis and synthesis/release of alpha-MSH by POMC-cells located in the pars intermedia of the adenohypophysis.  相似文献   

20.
The vertebrate inner ear, a complex sensory organ with vestibular and auditory functions, is derived from a single ectoderm structure called the otic placode. Currently, the molecular mechanisms governing the differentiation and specification of the otic epithelium are poorly understood. We present here a detailed expression study of LMO1-4 in the developing mouse inner ear using a combination of in situ hybridization and immunohistochemistry. LMO1 is specifically expressed in the vestibular and cochlear hair cells as well as the vestibular ganglia of the developing inner ear. LMO2 expression is detected in the periotic mesenchyme of the developing mouse cochlea from E12.5 to E14.5. The expression of LMO3 expression is first observed in the cochlea at E13.5 and becomes confined to the lesser epithelial ridge (LER) from E14.5 to E17.5. LMO3 is also expressed in some of the vestibular ganglion cells. LMO4 is initially expressed in the dorsolateral portion of the otic vesicle and its expression persists in the semicircular canals, macula, crista, and the spiral ganglia throughout embryogenesis. Thus, the regionalized expression patterns of LMO1-4 are closely associated with the morphogenesis of the inner ear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号