首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this paper we show that MCG3 cells, a murine T lymphoma, contain a factor(s) that inhibits the proliferation of cells of different histological origin. The lack of sensitivity of this cell proliferation-inhibiting factor (CPIF) to the treatment with proteolytic enzymes and its solubility in organic solvent demonstrated that it is a lipid-like substance. Separation by thin-layer chromatography showed it migrates before the prostaglandins with activity on cell proliferation. CPIF activity was reversible and more intense on bone marrow cells than on tumor cells, suggesting that it can play a role in cell growth regulation.  相似文献   

3.
CCR7 and its ligands, CCL19 and CCL21, are responsible for directing the migration of T cells and dendritic cells into lymph nodes, where these cells play an important role in the initiation of the immune response. Recently, we have shown that systemic application of CCL19-IgG is able to inhibit the colocalization of T cells and dendritic cells within secondary lymphoid organs, resulting in pronounced immunosuppression with reduced allograft rejection after organ transplantation. In this study, we demonstrate that the application of sustained high concentrations of either soluble or immobilized CCL19 and CCL21 elicits an inhibitory program in T cells. We show that these ligands specifically interfere with cell proliferation and IL-2 secretion of CCR7(+) cells. This could be demonstrated for human and murine T cells and was valid for both CD4(+) and CD8(+) T cells. In contrast, CCL19 had no inhibitory effect on T cells from CCR7 knockout mice, but CCR7(-/-) T cells showed a proliferative response upon TCR-stimulation similar to that of CCL19-treated wild-type cells. Furthermore, the inhibition of proliferation is associated with delayed degradation of the cyclin-dependent kinase (CDK) inhibitor p27(Kip1) and the down-regulation of CDK1. This shows that CCR7 signaling is linked to cell cycle control and that sustained engagement of CCR7, either by high concentrations of soluble ligands or by high density of immobilized ligands, is capable of inducing cell cycle arrest in TCR-stimulated cells. Thus, CCR7, a chemokine receptor that has been demonstrated to play an essential role during activation of the immune response, is also competent to directly inhibit T cell proliferation.  相似文献   

4.
The activation requirements of alloreactive and antigen reactive murine T cells were examined by stimulating class II restricted T cell clones with monoclonal B lymphoma cells. One B lymphoma cell line (T27A) was found to stimulate IL 2 release from some alloreactive T cell clones without stimulating any significant T cell proliferation response. The same B lymphoma cells are capable of stimulating IL 2 release and proliferative responses from other T cell clones. Evidence is presented suggesting that B lymphoma cell stimulation of these T cell clones is largely IL 1 independent and that at least some T cell clones may require activation signals other than Ia, antigen, and IL 1. The addition of exogenous, purified IL 1 to the T cell activation assays was found to have a wide range of stimulatory effects on the proliferative responses of different T cell clones. The absence of comparable IL 1-induced stimulation of IL 2 secretion suggests that IL 1 primarily enhances antigen specific T cell proliferation through mechanisms other than acting as a co-stimulant for IL 2 release.  相似文献   

5.
From a population of wild type S49 cells, a clone, DTB6, was isolated in a single step from selective medium containing thymidine and dibutyryl cyclic AMP that exhibited a 60% deficiency in AMP deaminase (AMP-D) activity. The AMP-D deficiency conferred to the DTB6 cells a striking susceptibility to killing by low concentrations of either adenine or adenosine, the latter in the presence of an inhibitor of adenosine deaminase activity. This growth supersensitivity of DTB6 cells toward adenine could be ameliorated by the addition of hypoxanthine to the culture medium. Immunoprecipitation of AMP-D from wild type and mutant cells revealed that the DTB6 cell line contained markedly diminished amounts of the AMP-D isozyme which reacts with antisera to the predominant isoform expressed in adult kidney. The quantities of the AMP-D isozyme immunoprecipitated by antisera raised to the predominant isoform prepared from adult heart were equivalent in the two cell lines. Although Northern blot analyses revealed no alterations in mRNA sizes or levels encoded by either of the AMP-D genes, Southern blots of genomic DNA hybridized to a cDNA specific for the ampd2 gene revealed the presence of a new BamHI restriction fragment in the DNA of DTB6 cells. These data suggested that a point mutation has occurred in the ampd2 gene of DTB6 cells which encodes the AMP-D isozyme recognized by the kidney antisera. The DTB6 cells also possessed a virtual complete deficiency in thymidine kinase activity. The two enzyme deficiencies were distinguishable. The ability to isolate single step mutants with two seemingly independent biochemical abnormalities raises the speculation that there may be some link between cellular functions responsible for purine nucleotide and thymidine metabolism.  相似文献   

6.
BackgroundEllagic acid (EA) possesses prominent inhibitory activities against various cancers, including hepatocellular carcinoma (HCC). Our recent study demonstrated EA's activities in reducing HCC cell proliferation and tumor formation. However, the mechanisms of EA to exert its anticancer activities and its primary targets in cancer cells have not been systematically explored.MethodsCell proliferation assay and flow cytometric analysis were used to examine the effects of EA treatment on viability and apoptosis, respectively, of HepG2 cells. RNA-seq studies and associated pathway analyses by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were employed to determine EA's primary targets. Differentially expressed genes (DEG) in EA-treated HepG2 cells were verified by RT-qPCR and Western blot. Integrative analyses of the RNA-seq dataset with a TCGA dataset derived from HCC patients were conducted to verify EA-targeted genes and signaling pathways. Interaction network analysis of the DEGs, shRNA-mediated knockdown, cell viability assay, and colony formation assay were used to validate EA's primary targets.ResultsEA reduced cell viability, caused DNA damage, and induced cell cycle arrest at G1 phase of HepG2 cells. We identified 5765 DEGs encoding proteins with over 2.0-fold changes in EA-treated HepG2 cells by DESeq2. These DEGs showed significant enrichment in the pathways regulating DNA replication and cell cycle progression. As primary targets, p21 was significantly upregulated, while MCM2–7 were uniformly downregulated in response to EA treatment. Consistently, p21 knockdown desensitized liver cells to EA in cell viability and colony formation assays.ConclusionEA induced G1 phase arrest and promoted apoptosis of HCC cells through activating the p21 gene and downregulating the MCM2–7 genes, respectively.General significanceThe discoveries in this study provide helpful insights into developing novel strategies in the therapeutic treatment of HCC patients.  相似文献   

7.
8.
Cystic fibrosis (CF) airway epithelial cells have a reduced mass of ether-linked diacylglycerols which might alter protein kinase C (PKC)-regulated Cl secretion. PKC regulation of basolateral Na-K-2Cl cotransport (NKCC1) was investigated in CF nasal polyp epithelial cells and a CF/T43 cell line to ascertain whether PKC signaling was altered in CF. NKCC1 was detected as bumetanide-sensitive (86)Rb influx. Methoxamine, a alpha(1)-adrenergic agonist, increased PKC activity in cytosol and a particulate fraction for a prolonged time period, as predicted from previous studies on the generation of diglycerides induced with methoxamine. Short-term stimulation of CF/T43 cells for 40 s promoted a shift in PKC-delta and -zeta to a particulate fraction, increased activity of immune complexes of cytosolic PKC-delta and of particulate PKC-zeta and increased activity of NKCC1. Pretreatment with antisense oligonucleotide to PKC-delta blocked methoxamine-stimulated PKC-delta activity, reduced PKC-delta mass by 61.4%, and prevented methoxamine-stimulated activity of NKCC1. Sense and missense oligonucleotide to PKC-delta and antisense oligonucleotide to PKC-zeta did not alter expression of PKC-delta or the effects of methoxamine. These results demonstrate that PKC-delta-dependent activation of NKCC1 is preserved in CF cells and suggest that regulation of NKCC1 is independent of low ether-linked diglyceride mass.  相似文献   

9.
10.
11.
In this study, the role of the rice(Oryza sativa L.)histidine kinase Os HK3 in abscisic acid(ABA)-induced antioxidant defense was investigated. Treatments with ABA, H2O2,and polyethylene glycol(PEG) induced the expression of Os HK3 in rice leaves, and H2O2 is required for ABA-induced increase in the expression of Os HK3 under water stress. Subcellular localization analysis showed that Os HK3 is located in the cytoplasm and the plasma membrane. The transient expression analysis and the transient RNA interference test in rice protoplasts showed that Os HK3 is required for ABA-induced upregulation in the expression of antioxidant enzymes genes and the activities of antioxidant enzymes. Further analysis showed that Os HK3 functions upstream of the calcium/calmodulin-dependent protein kinase Os DMI3 and the mitogen-activated protein kinase Os MPK1 to regulate the activities of antioxidant enzymes in ABA signaling. Moreover, Os HK3was also shown to regulate the expression of nicotinamide adenine dinucleotide phosphate oxidase genes, Osrboh B and Osrboh E, and the production of H2O2 in ABA signaling. Our data indicate that Os HK3 play an important role in the regulation of ABA-induced antioxidant defense and in the feedback regulation of H2O2 production in ABA signaling.  相似文献   

12.
Plant-derived polyphenolic compounds have beneficial health effects. In the present study, we determined the ability of ellagic acid (EA) to prevent platelet-derived growth factor-BB (PDGF-BB)-induced proliferation of primary cultures of rat aortic smooth muscle cells (RASMCs). We also determined the ability of EA to prevent atherosclerosis in streptozotocin-induced diabetic rats. Proliferation of cells was measured via Alamar Blue assay and through propidium iodide-based cell cycle analysis in flow cytometer. Reactive oxygen species (ROS) were measured via 2′,7′-dichlorofluorescin diacetate and Amplex red methods. Expression of proliferation markers and activation of kinases were assessed by immunoblot analysis. Cotreatment of primary cultures of RASMCs with 25 μmol/L of EA significantly reduced PDGF-BB (20 ng/ml)-induced proliferation by blocking S-phase entry. EA effectively blocked PDGF receptor-β (PDGFR-β) tyrosine phosphorylation, generation of intracellular ROS and downstream activation of extracellular signal-regulated kinase 1/2. It also blocked PDGF-BB-induced expression of cyclin D1. Computational molecular docking of EA with the PDGFR-β–PDGF-BB complex revealed two putative inhibitor binding sites which showed similar binding energies with the known PDGFR-β inhibitor AG1295. In diabetic rats, supplementation of diet with 2% EA significantly blocked diabetes-induced medial thickness, and lipid and collagen deposition in the arch of aorta. These were assessed through haematoxylin and eosin, Oil Red O and Masson’s trichome staining, respectively. EA treatment also blocked cyclin D1 expression in medial smooth muscle cells in experimental animals. Thus, EA is effective in reducing atherosclerotic process by blocking proliferation of vascular smooth muscle cells.  相似文献   

13.
Hypersensitivity pneumonitis (HP) is characterized by an influx of activated T cells in the lungs. The CD28/B7 system provides costimulatory signals essential for complete T cell activation and differentiation. We have previously demonstrated that alveolar macrophages from patients with HP have an up-regulated expression of B7 molecules. In the present study, we investigated the effect of i. p. administration of CTLA4-Ig, a CD28/B7 antagonist, on the lung inflammation of mice inoculated with Saccharoplyspora rectivirgula (SR), a major causative agent of HP. Five groups of C57BL/6 mice were intranasally instilled with SR or saline for 3 consecutive days per wk during 3 wk. CTLA4-Ig was administered starting either after 1 wk of SR challenge or 6 h before the first antigenic exposure and continued during the whole period of sensitization. A control-IgG was given similarly during the 3 wk of SR exposure. The groups included: 1, saline; 2, SR; 3, SR + control-Ig; 4, SR + CTLA4-Ig for the last 2 wk; and 5, SR + CTLA4-Ig for 3 wk. CTLA4-Ig treatment markedly decreased lung inflammation as shown by significantly fewer inflammatory cells in the bronchoalveolar lavage and in lung tissue and reduced SR-specific serum and bronchoalveolar lavage Ig levels. Production of IL-4, IL-10, and IFN-gamma by IL-2-stimulated pulmonary T cells was also decreased by CTLA4-Ig. Administration of CTLA4-Ig did not affect the SR-induced up-regulation of B7-2 expression. These results show that blockade of CD28/B7 interactions by CTLA4-Ig inhibits SR-induced lung inflammation and immune response to SR Ag in mice and may provide a novel approach in the treatment of HP.  相似文献   

14.
Palmitoylation of cysteines 3 and 5 is necessary for targeting Lck to lipid rafts and is needed for Lck function in T cell receptor (TCR) signaling. Point mutations of cysteines 3 and 5 result in a form of Lck that fails to associate with the plasma membrane, which limits the usefulness of this genetic approach to address the role of palmitoylation in the distribution of Lck within the plasma membrane. To circumvent this problem, we sought to identify a palmitic acid analogue that would enable plasma membrane association of Lck, but not facilitate its localization within lipid rafts. Here we examined the effects of the heteroatom-substituted analogue of palmitic acid, 13-oxypalmitic acid (13-OP), on Lck subcellular localization and function. 13-OP is similar in chain length to palmitic acid, but possesses reduced hydrophobicity. We found that treatment of cells with 13-OP inhibited incorporation of omega-[(125)I]iodopalmitate into Lck. 13-OP inhibited localization of Lck to lipid rafts without altering its membrane localization. Consistent with the dissociation of Lck from rafts, treatment with 13-OP abolished Lck association with the GPI-anchored protein, CD48, but not the transmembrane glycoprotein CD4. Jurkat T cells treated with 13-OP showed marked reduction in tyrosine phosphorylation and activation of mitogen-activated protein kinase upon TCR stimulation. In conclusion, the less hydrophobic analogue of palmitate, 13-OP, alters the normal acylation of Lck that provides Lck with the necessary hydrophobicity and tight packing order required for inclusion in lipid rafts.  相似文献   

15.
16.
5-Aminolevulinic acid (ALA) is a value-added compound with potential applications in the fields of agriculture and medicine. Although massive efforts have recently been devoted to building microbial producers of ALA through metabolic engineering, few studies focused on the cellular response and tolerance to ALA. In this study, we demonstrated that ALA caused severe cell damage and morphology change of Escherichia coli via generating reactive oxygen species (ROS), which were further determined to be mainly hydrogen peroxide and superoxide anion radical. ALA treatment activated the native antioxidant defense system by upregulating catalase (CAT) and superoxide dismutase (SOD) expression to combat ROS. Further overexpressing CAT (encoded by katG and katE) and SOD (encoded by sodA, sodB, and sodC) not only improved ALA tolerance but also its production level. Notably, coexpression of katE and sodB in an ALA synthase expressing strain enhanced the biomass and final ALA titer by 81% and 117% (11.5 g/L) in a 5 L bioreactor, respectively. This study demonstrates the importance of tolerance engineering in strain development. Reinforcing the antioxidant defense system holds promise to improve the bioproduction of chemicals that cause oxidative stress.  相似文献   

17.
Dendritic cells (DCs) are the major antigen-presenting cells and play an important role in autoimmune uveitis. Emerging evidence suggests that bile acids (BAs) regulate DCs maturation. However, the underlying mechanisms by which BAs regulate the function of DCs still need to be clarified. Here, we demonstrate that lithocholic acid (LCA) inhibits the production of pro-inflammatory cytokines and the expression of surface molecules in bone marrow-derived dendritic cells (BMDCs). LCA attenuates the severity of EAU by modulating the maturation of splenic CD11C+MHCIIhigh DCs. Notably, Takeda G-protein coupled receptor 5 (TGR5) deficiency partially reverses the inhibitory effect of LCA on DCs in vitro and in vivo. TGR5 activation also downregulates the NF-κB and MAPK pathways by inhibiting glutathione production and inducing oxidative stress in DCs, which leads to apoptosis and autophagy in DCs. In addition, LCA or INT-777 treatment increases the TGR5 expression in monocyte-derived dendritic cells (MD-DCs) of patients with active BD, whereas both LCA and TGR5 agonists inhibit the activation of MD-DCs. These results suggest that LCA and TGR5 agonists might be potential therapeutic drugs for the treatment of autoimmune uveitis.  相似文献   

18.
Contraction-induced production of reactive oxygen species has been shown to cause oxidative stress to skeletal muscle. As an adaptive response, muscle antioxidant defense systems are upregulated in response to exercise. Nuclear factor kappaB and mitogen-activated protein kinase are two major oxidative-stress-sensitive signal transduction pathways that have been shown to activate the gene expression of a number of enzymes and proteins that play important roles in maintenance of intracellular oxidant-antioxidant homeostasis. This mini-review will discuss the main mechanisms and gene targets for these signaling pathways during exercise and the biological significance of the adaptation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号