首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radioactive gibberellin A1 (3H-GA1) was injected into excised fruits of peas and Japanese morning glory. These were then grown in sterile culture to maturity and the label was followed in the seeds during further development and subsequent germination. During development of both pea and morning-glory seeds a large part of the radioactivity became associated with the aqueous fraction, while another part of the 3H-GA1 was converted into 2 new, acidic, biologically active compounds, designated X1 and X2. A relatively small part of the neutral compounds could be converted back to 3H-GA1, X1, and X2 by means of mild acid hydrolysis. During germination of pea and morning-glory seeds, part of the bound compounds was released in the form of 3H-GA1, X1 and X2 while, particularly during rapid seedling growth, a further conversion of 3H-GA1, mainly to X1, took place. In pea seedlings, growth during the first 2 to 3 days after imbibition was not affected by Amo-1618, an inhibitor of gibberellin biosynthesis. This, in conjunction with the findings on the interconversions between free and bound 3H-GA1 suggests that, at least in peas, early seedling growth may at least partly be regulated by gibberellins released from a bound form which was formed during seed development.  相似文献   

2.
Radioactive gibberellin a(5) and its metabolism in dwarf peas   总被引:5,自引:5,他引:0       下载免费PDF全文
Radioactive gibberellin A5 (3H-GA5) was synthesized from gibberellic acid. When it was applied to dwarf peas grown in the dark, an average of 3% was converted to another acid gibberellin within 48 hours. The biological activity of the metabolite did not account for the response to applied GA5. GA5 is therefore assumed to be biologically active per se.3H-GA5 did not appear to form a stable complex with a macromolecule in pea shoots. When injected into dwarf pea pods, 3H-GA5 was readily metabolized by maturing seed to more water-soluble substances and to two other acidic compounds. This metabolism continued even throughout germination of the seed without reconversion of the metabolites to GA5. It is concluded that “bound” GA5 plays no part in the germination of dwarf pea seeds.  相似文献   

3.
G. W. M. Barendse 《Planta》1971,99(4):290-301
Summary Developing seeds ofPharbitis nil accumulate free as well as bound gibberellins until a maximum level is reached at approximately 25 days after anthesis. Seeds from CCC-treated parent plants have a strongly reduced level of free as well as bound gibberellins. When different spray reagents were used it was found that trichloroacetic acid in particular was suitable to locate non-hydrolysed bound GA fractions on thin-layer plates. Chromatography showed two major bound GA fractions, determined with spray reagents as well as by means of hydrolysis.3H-GA1 applied to youngPharbitis plants was converted to two water-soluble compounds present in the aqueous phase. The rate of conversion was significantly enhanced when3H-GA1 and14C-glucose were applied to the same plants. Chromatography indicated that one of the conversion products of3H-GA1 became at least partly associated with the applied14C-glucose (or its products). This suggestion was also supported by the fact that mild acid hydrolysis of the aqueous fraction resulted in the reappearance of3H-GA1 and a conversion product of3H-GA1, including a14C-radioactivity peak cochromatographing with14C-glucose. However, the conversion products obtained with3H-GA1 applied to plants appeared to be chromatographycally different from any of the bound-GA fraction established by means of hydrolysis or spray reagents in developing seeds.Abbreviation GA(s) gibberellin(s).  相似文献   

4.
[3H]-Gibberellin A1 (GA1) and 3H-GA4 were applied separately to Phaseolus coccineus seedlings grown under red light. 3H-GA1 was converted to a compound with gas-liquid radiochromatography retention times identical to those of GA8. 3H-GA4 underwent conversion to at least three metabolites, none of which corresponded to GA1-38. The rate of metabolism of 3H-GA4 was significantly higher than that of 3H-GA1.  相似文献   

5.
Summary When barley aleurone layers were incubated with 3H-Gibberellin A1 (3H-GA1), the hormone was converted to 3H-GA-X (not identified), 3H-GA8 and two other compounds tentatively identified as 3H-GA1-glucoside, and 3H-GA8-glucoside. Uptake and metabolism of the 3H-GA1 were markedly enhanced by simultaneous treatment with abscisic acid (ABA). Uptake of 3H-GA1 from the medium containing ABA was linear over a 24-h period, whereas in the absence of ABA, uptake of 3H-GA1 leveled off after 5 h. After 24 h, aleurones treated with 3H-GA1 and 3H-GA1 plus ABA, had taken up 9 and 24%, respectively, of the original 3H-GA1 provided. Metabolism of 3H-GA1 proceeded at a linear rate in the presence of ABA. The amount of 3H-GA1-metabolites which had accumulated by the end of a 24-h incubation appeared to be linearly correlated to the logarithm of the ABA concentration. Gibberellins A8 and-A8-glucoside did not reverse GA1-enhanced synthesis of -amylase.  相似文献   

6.
Tritium-labeled gibberellin A9 (3H-GA9) was metabolized by etiolated shoots of dwarf pea (Pisum sativum cv. Meteor) to GA20, GA10, 2,3-dihydro-GA31, and a number of highly polar, acidic GA-like substances. Identifications were made by gasliquid radiochromatography and combined gas chromatography-mass spectrometry. Kinetic studies showed that GA30 and 2,3-dihydro-GA31 were produced within 5 hours following 3H-GA9 application to pea shoots. The polar GA-like substances were produced between 5 and 10 hours after 3H-GA9 application. Levels of GA10 increased with time, and since no GA10 was produced during the purification procedures, GA10 was, in all probability, produced from 3H-GA9 within the plant tissue. The radioactive interconversion products produced by pea from 3H-GA9 have chromatographic properties similar to biologically active GA-like substances present in etiolated shoots of dwarf pea. Large scale applications of 3H-GA9 with very low specific activity to etiolated pea shoots showed that the radioactivity of the interconversion products was correlated exactly with biological activity as assayed by dwarf rice (Oryza sativa cv. Tan-ginbozu).  相似文献   

7.
Summary When radioactive gibberellin A5 (3H-GA5) was applied to the apices and surrounding young leaves of the long-day plant Silene armeria, it was partially converted to at least two other acidic substances. One of them was similar to GA3 in chromatographic, but not in biological properties. The other metabolite was more polar than GA3 and inactive in the dwarf d-5 corn assay.The rate of 3H-GA5 conversion was influenced by the photoperiod under which Silene plants were grown. Exposure to 2 long days significantly increased 3H-GA5 metabolism over that in control plants kept under short days. The increased conversion of 3H-GA5 persisted for at least a few days after transferring Silene plants back from long to short days. Likewise, stem growth induced by long photoperiods continued for a considerable period of time under subsequent short days.Application of the growth retardant AMO-1618 to Silene reduced the levels of two endogenous GA-like substances, one of them with GA5-like properties, more under long than under short days. These results indicate that long photoperiods, which induce flower formation and stem elongation in Silene, increase the turnover of endogenous gibberellins.  相似文献   

8.
The transport of 3H-GA1 through hypocotyl segments of cucumber (Cucumis sativus L.) was found to be nonpolar. The transport of 3H-GA1 was increased by pretreatment with relatively high concentrations of either IAA or Ethephon (2-chloroethylphosphonic acid). Hypocotyl segments from plants of a gynoecious genotype transported more 3H-GA1 than those of an androecious. The metabolism of 3H-GA1 in hypocotyl segments was neither related to the sex genotype of the cucumber plant nor influenced by pretreatment with Ethephon. The primary metabolite of GA1 was suggested to be GA8. Two other suspected metabolites were not identified. Differences in the endogenous GA of gynoecious and androecious plants could not be accounted for by transport differences.  相似文献   

9.
Following application of 3H-Gibberellin A20 (GA20) to roots of G2 pea seedlings and homogenization of the roots, about 3% of the radioactivity in the tissue could be precipitated from a 30,000 × g supernatant with trichloroacetic acid (TCA) (soluble fraction) while about 5% of the radioactivity pelleted at 30,000 × g (particulate fraction). The radioactivity in the particulate fraction was soluble in sodium dodecyl sulfate (SDS), but was not dialyzable and was insoluble in ethanol. Electrophoresis of the soluble fraction gave only one band of radioactivity, while that of the particulate fraction gave multiple bands. Acid hydrolysis of the soluble fraction released radioactivity that ran coincident with acid-treated GA20 on silicic-acid column chromatography. The particulate fraction gave numerous radioactive peaks following acid hydrolysis, two of which were coincident with GA20 and GA29 (hydroxylation product of GA20) on silicic acid chromatography. Treatment of the particulate and soluble fractions with RNase, DNase, and proteases showed a significant solubilization of radioactivity only with the proteases, suggesting that the GA is bound to a proteinaceous macromolecule. Complete proteolytic hydrolyis followed by thin layer chromatography showed 65% of the radioactivity from the soluble fraction running separately from free GAs or the individual amino acids; the particulate fraction gave mainly (60%) free GAs on enzymatic hydrolysis and much smaller amounts (17%) in a position separate from that of the GAs or amino acids. Binding of 3H-GA to protease-sensitive material was obtained with biologically active 3H-GA20 and 3H-GA1.  相似文献   

10.
Summary When aleurone layers were treated with labeled gibberellin A1 (3H-GA1), gibberellin A5 (3H-GA5) and the methyl ester of 3H-GA5 (3H-GA5-ME), radioactivity was accumulated by the tissue for a period of 20–30 h. After this time, radioactivity was released into the medium. Concomitantly, ribonuclease was also liberated by the tissue. The radioactivity accumulated by aleurone layers was associated with polar metabolites of the respective GAs, and the extent of extent of accumulation was a function of the degree of GA metabolism (GA5-ME>GA5>GA1). Accumulation of radioactivity was inhibited in the cold and by the metabolic poisons NaF and dinitrophenol. This was thought to be due to inbition of GA metabolism. The accumulation of 3H-GA1 in aleurone tissue did not reach saturation when unlabeled GA3 up to 10-2 M was added to the incubation medium.Abbreviations GA gibberellin - GA5 ME, gibberellin A5 methyl ester - RNase ribonuclease  相似文献   

11.
Summary When shoots of 6-day-old, dark-grown peas were excised 30 mm below the apex and floated on a solution of radioactive gibberellin A 1 (3H-GA1) or radioactive gibberellin A5 (3H-GA5), more radioactivity accumulated in the apical part of the stem which responds to GA than in the basal, unresponsive region. The accumulation of 3H-GA1 was, however, less pronounced than the accumulation of 3H-GA5. GA derivatives of very low biological activity were not taken up preferentially by the apical region of the stem. Light, which lowers the responsiveness of dwarf peas to GA1 and particularly to GA5, also reduced the accumulation of these GAs in the apical part of the stem. Sections from the GA-responsive region were able to retain a higher level of GA5 than sections from the non-responsive, basal region. The accumulation and retention of GA in the hormone-responsive tissue may be due to binding of the hormone to specific GA receptors.This work was supported by the United States Atomic Energy Commission under Contract AT (11-1)-1338.  相似文献   

12.
The localization of tritium-radioactivity in dwarf kidney bean plants (Phaseolus vulgaris) of 3H-gibberellm A3(3H-GA3) applied in a large quantity was investigated in advance of the study on GA3 metabolism in this plant. Immediately after the application of 3H-GA3, the radioactivity was distributed uniformly in the top of this plant; no further transportation of the radioactivity into the growing apical region from mature leaves and stems was the observed as the growth stage proceeded. An investigation on the intracellular localization of the radioactivity demonstrated that most part of the radioactivity was found in the cellular soluble fraction, while no radioactivity was detected in such subcellular particles as nuclei, mitochondria and microsomes. Examinations of the occurrence of GA3 bound with such macromolecules as RNA and protein gave negative results.  相似文献   

13.
The effect of application of GA3 on hypocotyl growth, the endogenous GAs, and the metabolism of applied 3H-GA1 were investigated in relation to dwarfism and light-mediated growth inhibition in the normal (tall) strain Violet and the dwarf strain Kidachi of Japanese morning glory (Pharbitis nil). GA3 applied in a wide concentration range (10−9 to 10−3m) to 4-day-old seedlings caused great extension of the hypocotyls in light-grown plants of both the normal and the dwarf strain. However, the dwarf strain did not attain the same length as the normal one at any given GA3 concentration, even when saturation was reached. Dark-grown plants of the dwarf strain responded to GA3, although relatively much less than light-grown ones; dark-grown plants of the normal strain showed no GA3 response at all.  相似文献   

14.
[3H]-Gibberellin A5 ([3H]-GA5) applied to seedlings of dark-grown dwarf pea (Pisum sativum L. cv. Meteor), was converted to two acidic compounds, GA3 and a chromatographically similar unknown. Identification of GA3 was made by gas-liquid radiochromatography using three stationary phases.  相似文献   

15.
The first and second leaf sheaths of Zea mays L. cv Golden Jubilee were extracted and the extract centrifuged at 100,000g to yield a supernatant or cytosol fraction. Binding of [3H]gibberellin A1 (GA1) to a soluble macromolecular component present in the cytosol was demonstrated at 4°C by Sephadex G-200 chromatography. The binding component was of high molecular weight (HMW) and greater than 500 kilodaltons. The HMW component was shown to be a protein and the 3H-activity bound to this protein was largely [3H]GA1 and not a metabolite. Binding was pH sensitive but only a small percentage (20%) appeared to be exchangeable on addition of unlabeled GA1. Both biologically active and inactive GAs and non-GAs were able to inhibit GA1 binding. [3H]GA1 binding to an intermediate molecular weight (IMW) fraction (40-100 kilodaltons) was also detected, provided cytosol was first desalted using Sephadex G-200 chromatography. Gel filtration studies suggest that the HMW binding component is an aggregate derived from the IMW fraction. The HMW binding fraction can be separated into two components using anion exchange chromatography.  相似文献   

16.
The fate of gibberllins (GAs) was studied in the flavedo (theexternal colored peel layer) of green-harvested orange fruits,during natural and ethylene-induced senescence. GA-like substances were determined by the sugar-release barleyendosperm bioassay. Careful solvent partition and TLC separationwere undertaken to avoid interference of abscisic acid (ABA)and other growth inhibitors with the bioassay. Three zones ofGA-like activity were detected in chromatograms of the acidfraction, all of which decreased sharply after 72 hr in 35 µl/literethylene. Tritium-labeled gibberellin A3 (3H-GA3) was applied to fruitsat 5.6 mg/liter. After 5 days storage in air or ethylene, 28.5and 20.2 percent, respectively, of extractable radioactivitywere recovered as 3H-GA3, whereas 37.0 and 59.7 percent, respectively,had been converted into water-soluble compounds. The significance of GA metabolism in senescent plant organsis discussed. (Received December 25, 1973; )  相似文献   

17.
Synechococcus PCC 6301 synthesized sucrose as a compatible solute following hyperosmotic shock induced by NaCl. Initial rates of photosynthetic 14C incorporation were reduced following salt shock. Photosynthetic rates were comparable in cells enriched for glycogen (by growth in NO 3 - -deficient medium) and cells grown in NO 3 - -sufficient medium in the absence of osmotic shock. Incorporation of 14C was predominantly into the NaOH fraction and the residual acidic fraction in cells grown in NO 3 - -sufficient medium, whereas incorporation was predominantly into the residual acidic fraction in cells grown in NO 3 - -deficient medium. Following salt stress, 14C incorporation was initially into the ethanol-soluble fraction and the majority of tracer was recovered in sucrose. Carbon-14 was detected in sucrose in cells which had been enriched for [14C]glycogen prior to salt stress, inferring that glycogen can act as a carbon source for sucrose synthesis following salt stress. Changes in the specific activity of sucrose are consistent with an initial synthesis of sucrose from glycogen followed by synthesis of sucrose using newly fixed carbon, in response to salt stress.This work was supported by the Agricultural and Food Research Council.  相似文献   

18.
The kinetics of acidic residual chromosomal protein synthesis and transport were studied throughout the cell cycle in HeLa S-3 cells synchronized by 2 mM thymidine block and selective detachment of mitotic cells. Pulse labeling the cells with leucine-3H for 2 min and then "chasing" the radioactive proteins for up to 3 hr showed that the amount of protein synthesized, transported, and retained in the acidic residual chromosomal protein fraction is greater immediately after mitosis and later in G1 than in the S or G2 phases of the cell cycle. During S, only 20–25% of the proteins synthesized and transported to the acidic residual chromosomal protein fraction are chased during the first 2 hr after pulse labeling, whereas up to 40% of the material entering the residual nuclear fraction in mitosis, G1, and G2 leaves during a 2 hr chase. Polyacrylamide gel electrophoretic profiles of these proteins, at various times after pulse labeling, reveal that the turnover of individual polypeptides within this fraction has kinetics of synthesis and turnover which are markedly different from one another and undergo stage-specific changes.  相似文献   

19.
[6-3H1] (24S)-24-Ethylcholesta-5,22,25-trien-3β-ol added to the growth medium of a culture of Trebouxia sp. 213/3 was efficiently taken-up by the cells and converted into (24R)-24-ethylcholesta-5,22-dien-3β-ol (poriferasterol) which is one of the major sterols of this alga. A cell-free homogenate was obtained from Trebouxia which catalysed the NADPH-dependent reduction of [6-3H1] (24S)-24-ethylcholesta-5,22,25-trien-3β-ol to yield poriferasterol. The δ25-sterol reductase was found to be mainly localized in the microsomal fraction of the homogenate.  相似文献   

20.
Versicolorin A hemiacetal was converted to versicolorin C in cell-free systems fromAspergillus parasiticus. The rate of reaction catalyzed by the 35–70% ammonium sulfate fraction was 0.43 nmol min–1 mg–1 with NADPH as cosubstrate and 0.17 nmol. min–1 mg–1 with NADH at 25°C at pH 7.4. The product from incubation of 17-hdyroxy-16,17-dihydrosterigmatocystin with the 35–70% ammonium sulfate fraction and NADPH was a polar compound which was converted to dihydrosterigmatocystin by 0.4 M HCl. The olar comound is proposed to be the 14,17-hydrated open-chain derivative of dihydrosterigmatocystin. Aflatoxin G2a was also reduced in this system to a polar product tentatively identified as the 13,16-hydrated open-chain derivative of AFG2. The reductase activity may be involved in the formation of reduced intermediates and aflatoxins in cultures ofA. parasiticus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号