首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parkinson's disease (PD) is a well known neurodegenerative disorder characterized by selective loss of dopaminergic neurons in the substantia nigra pars compact (SN). Although the exact mechanism remains unclear, oxidative stress plays a critical role in the pathogenesis of PD. DJ-1 is a multifunctional protein, a potent antioxidant and chaperone, the loss of function of which is linked to the autosomal recessive early onset of PD. Therefore, we investigated the protective effects of DJ-1 protein against SH-SY5Y cells and in a PD mouse model using a cell permeable Tat-DJ-1 protein. Tat-DJ-1 protein rapidly transduced into the cells and showed a protective effect on 6-hydroxydopamine (6-OHDA)-induced neuronal cell death by reducing the reactive oxygen species (ROS). In addition, we found that Tat-DJ-1 protein protects against dopaminergic neuronal cell death in 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP)-induced PD mouse models. These results suggest that Tat-DJ-1 protein provides a potential therapeutic strategy for against ROS related human diseases including PD.  相似文献   

2.
3.
We previously observed marked down-regulation of the mRNA for angiogenin, a potent inducer of neovascularization, in a mouse model of Parkinson's disease (PD) based on over-expression of alpha-synuclein. Angiogenin has also been recently implicated in the pathogenesis of amyotrophic lateral sclerosis. In this study, we confirmed that mouse angiogenin-1 protein is dramatically reduced in this transgenic alpha-synuclein mouse model of PD, and examined the effect of angiogenin in cellular models of PD. We found that endogenous angiogenin is present in two dopamine-producing neuroblastoma cell lines, SH-SY5Y and M17, and that exogenous angiogenin is taken up by these cells and leads to phosphorylation of Akt. Applied angiogenin protects against the cell death induced by the neurotoxins 1-methyl-4-phenylpyridinium and rotenone and reduces the activation of caspase 3. Together our data supports the importance of angiogenin in protecting against dopaminergic neuronal cell death and suggests its potential as a therapy for PD.  相似文献   

4.
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and its pathogenesis is under intense investigation. Substantial evidence indicates that mitochondrial dysfunction and oxidative stress play central roles in the pathophysiology of PD, through activation of mitochondria-dependent apoptotic molecular pathways. Several mitochondrial internal regulating factors act to maintain mitochondrial function. However, the mechanism by which these internal regulating factors contribute to mitochondrial dysfunction in PD remains elusive. One of these factors, mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2), has been implicated in the regulation of mitochondrial redox balance and reduction of oxidative stress-induced cell injury. Here we report that IDH2 regulates mitochondrial dysfunction and cell death in MPP+/MPTP-induced DA neuronal cells, and in a mouse model of PD. Down-regulation of IDH2 increased DA neuron sensitivity to MPP+; lowered IDH2 levels facilitated induction of apoptotic cell death due to elevated mitochondrial oxidative stress. Deficient IDH2 also promoted loss of DA SNpc neurons in an MPTP mouse model of PD. Interestingly, Mito-TEMPO, a mitochondrial ROS-specific scavenger, protected degeneration of SNpc DA neurons in the MPTP model of PD. These findings demonstrate that IDH2 contributes to degeneration of the DA neuron in the neurotoxin model of PD and establish IDH2 as a molecular target of potential therapeutic significance for this disabling neurological illness.  相似文献   

5.
帕金森病(Parkinson's disease, PD)是由于黑质中多巴胺能神经元(dopaminergic neurons, DAns)的病变导致多巴胺含量降低而引起的一种神经退行性疾病,其发病机制尚不明确,而且临床缺乏有效的早期诊断和治疗手段。诱导多能干细胞(induced pluripotent stem cells, iPSCs)的出现为神经系统疾病特别是神经退行性疾病的治疗带来了希望。基于iPSCs的细胞模型可以广泛开展PD发病机制的研究,同时以iPSCs来源的DAns、神经干细胞(neural stem cells, NSCs)等的细胞移植治疗,更是未来PD治疗最有希望的手段。从基于iPSCs的不同基因突变类型的细胞模型与不同分化程度的细胞移植治疗两个方面介绍诱导多能干细胞在PD研究中的进展,旨在分析诱导多能干细胞在帕金森病方面的应用及不足。  相似文献   

6.
Parkinson's disease (PD) is a neurodegenerative disorder marked by the selective degeneration of dopaminergic neurons in the nigrostriatal pathway. Several lines of evidence indicate that mitochondrial dysfunction contributes to its etiology. Other studies have suggested that alterations in sterol homeostasis correlate with increased risk for PD. Whether these observations are functionally related is, however, unknown. In this study, we used a toxin-induced mouse model of PD and measured levels of nine sterol intermediates. We found that lanosterol is significantly (~50%) and specifically reduced in the nigrostriatal regions of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, indicative of altered lanosterol metabolism during PD pathogenesis. Remarkably, exogenous addition of lanosterol rescued dopaminergic neurons from 1-methyl-4-phenylpyridinium (MPP+)-induced cell death in culture. Furthermore, we observed a marked redistribution of lanosterol synthase from the endoplasmic reticulum to mitochondria in dopaminergic neurons exposed to MPP+, suggesting that lanosterol might exert its survival effect by regulating mitochondrial function. Consistent with this model, we find that lanosterol induces mild depolarization of mitochondria and promotes autophagy. Collectively, our results highlight a novel sterol-based neuroprotective mechanism with direct relevance to PD.  相似文献   

7.
Recent studies identifying obesity as a significant and increasingly more common cause of morbidity and mortality have intensified research efforts aimed at increasing our understanding of adipose tissue biology. These efforts have culminated in the discovery of several adipokines, or adipose tissue-derived hormones, that have been implicated in the regulation of multiple physiological functions, as well as the realization that adipose tissue dysfunction plays an important role in the pathogenesis of diseases such as obesity and diabetes. To better understand the role of adipose tissue in these physiological/pathological events, several studies have employed transgenic strategies to eliminate adipose tissue. However, these mouse models of congenital lipoatrophy/lipodystrophy exhibit severe metabolic and somatic cell dysfunction. To circumvent this limitation, we have characterized the first inducible fatless mouse. The FAT-ATTAC mouse is a transgenic model whereby expression of a myristoylated caspase 8-FKBP fusion protein enables selective ablation of adipocytes via induction of apoptosis that occurs upon treatment with a chemical dimerizer. The FAT-ATTAC mouse model not only has the advantage that adipocyte ablation be induced at any time during development, but it is also fully reversible, as adipose tissue regenerates after cessation of dimerizer treatment. The inducibility of this fatless mouse model holds potential for revealing novel physiological roles for adipose tissue as well as its contribution to the etiology and pathogenesis of various disease states. Here we describe several ongoing areas of research employing the FAT-ATTAC mouse; in addition we describe potential uses of the targeted transgenic apoptotic approach to study other cell types of interest.  相似文献   

8.
Heat shock proteins (HSPs) are a highly conserved family of proteins that are induced in response to various environmental stressors including reactive oxygen species. HSP27 is a chaperone protein with the ability to increase cell survival in response to oxidative stress. Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons. Although the mechanism of PD remains unclear, oxidative stress is known to be important in its pathogenesis. This study investigated the protective effects of PEP-1-HSP27 on neuronal damage induced by 1-methyl-4-phenyl pyridinium (MPP(+) ) in SH-SY5Y cells and in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. PEP-1-HSP27 rapidly entered the cells and protected them against MPP(+) -induced toxicity by inhibiting the reactive oxygen species levels and DNA fragmentation. Furthermore, transduced PEP-1-HSP27 prevented dopaminergic neuronal cell death in the substantia nigra of MPTP-induced PD mouse models. These results demonstrate that PEP-1-HSP27 provides a potential strategy for therapeutic delivery against various diseases and is a potential tool for the treatment of PD.  相似文献   

9.
Parkinson's disease (PD) is a common age-related neurodegenerative disease and it is critical to develop models which recapitulate the pathogenic process including the effect of the ageing process. Although the pathogenesis of sporadic PD is unknown, the identification of the mendelian genetic factor PINK1 has provided new mechanistic insights. In order to investigate the role of PINK1 in Parkinson's disease, we studied PINK1 loss of function in human and primary mouse neurons. Using RNAi, we created stable PINK1 knockdown in human dopaminergic neurons differentiated from foetal ventral mesencephalon stem cells, as well as in an immortalised human neuroblastoma cell line. We sought to validate our findings in primary neurons derived from a transgenic PINK1 knockout mouse. For the first time we demonstrate an age dependent neurodegenerative phenotype in human and mouse neurons. PINK1 deficiency leads to reduced long-term viability in human neurons, which die via the mitochondrial apoptosis pathway. Human neurons lacking PINK1 demonstrate features of marked oxidative stress with widespread mitochondrial dysfunction and abnormal mitochondrial morphology. We report that PINK1 plays a neuroprotective role in the mitochondria of mammalian neurons, especially against stress such as staurosporine. In addition we provide evidence that cellular compensatory mechanisms such as mitochondrial biogenesis and upregulation of lysosomal degradation pathways occur in PINK1 deficiency. The phenotypic effects of PINK1 loss-of-function described here in mammalian neurons provides mechanistic insight into the age-related degeneration of nigral dopaminergic neurons seen in PD.  相似文献   

10.
Neurodegenerative diseases are devastating mental illnesses without a cure. Alzheimer's disease (AD) characterized by memory loss, multiple cognitive impairments, and changes in personality and behavior. Although tremendous progress has made in understanding the basic biology in disease processes in AD and PD, we still do not have early detectable biomarkers for these diseases. Just in the United States alone, federal and nonfederal funding agencies have spent billions of dollars on clinical trials aimed at finding drugs, but we still do not have a drug or an agent that can slow the AD or PD disease process. One primary reason for this disappointing result may be that the clinical trials enroll patients with AD or PD at advances stages. Although many drugs and agents are tested preclinical and are promising, in human clinical trials, they are mostly ineffective in slowing disease progression. One therapy that has been promising is ‘stem cell therapy’ based on cell culture and pre-clinical studies. In the few clinical studies that have investigated therapies in clinical trials with AD and PD patients at stage I. The therapies, such as stem cell transplantation – appear to delay the symptoms in AD and PD. The purpose of this article is to describe clinical trials using 1) stem cell transplantation methods in AD and PD mouse models and 2) regenerative medicine in AD and PD mouse models, and 3) the current status of investigating preclinical stem cell transplantation in patients with AD and PD.  相似文献   

11.
Asthmatics with a severe form of the disease are frequently refractory to standard medications such as inhaled corticosteroids, underlining the need for new treatments to prevent the occurrence of potentially life-threatening episodes. A major obstacle in the development of new treatments for severe asthma is the heterogeneous pathogenesis of the disease, which involves multiple mechanisms and cell types. Furthermore, new therapies might need to be targeted to subgroups of patients whose disease pathogenesis is mediated by a specific pathway. One approach to solving the challenge of developing new treatments for severe asthma is to use experimental mouse models of asthma to address clinically relevant questions regarding disease pathogenesis. The mechanistic insights gained from mouse studies can be translated back to the clinic as potential treatment approaches that require evaluation in clinical trials to validate their effectiveness and safety in human subjects. Here, we will review how mouse models have advanced our understanding of severe asthma pathogenesis. Mouse studies have helped us to uncover the underlying inflammatory mechanisms (mediated by multiple immune cell types that produce Th1, Th2 or Th17 cytokines) and non-inflammatory pathways, in addition to shedding light on asthma that is associated with obesity or steroid unresponsiveness. We propose that the strategy of using mouse models to address clinically relevant questions remains an attractive and productive research approach for identifying mechanistic pathways that can be developed into novel treatments for severe asthma.  相似文献   

12.
13.
Pluripotent embryonic stem (ES) cells are the most versatile cells, with the potential to differentiate into all types of cell lineages including neural precursor cells (NPCs), which can be expanded in large numbers for significant periods of time to provide a reliable cell source for transplantation in neurodegenerative disorders such as Parkinson's disease (PD). In the present study, we used the MESPU35 mouse ES cell line, which expresses enhanced green fluorescent protein that enables one to distinguish between transplanted cells and cells of host origin. Embryoid bodies (EBs) were formed and were induced to NPCs in N2 selection medium plus fibronectin. Praxiology and immunohistochemistry methods were used to observe the survival, differentiation, and therapeutic effect of NPCs after grafted into the striatum of PD rats. We found that mouse ESc were differentiated into nestin-positive NPCs 6 days after the EBs formed and cultured in the N2 selection medium. The number of survival NPCs was increased significantly by fibronectin. About 23.76+/-2.29% of remaining cells were tyrosine hydroxylase (TH)-positive 12 days after NPCs were cultured in N2 selective medium. The survival rates of NPCs were 2.10+/-0.41% and about 90.90+/-3.00% of the engrafted NPCs were TH-positive 6 weeks after transplantation into the striatum of PD rats. The rotation of PD rats was relieved 3 weeks after the NPCs transplantation and this effect was kept for at least 6 weeks. It suggests that most of the survival NPCs derived from ES cells differentiated into TH-positive neurons after grafted into the striatum of PD rats, which produces therapeutic effect on PD.  相似文献   

14.
The accumulation of highly insoluble intracellular protein aggregates in neuronal inclusions is a hallmark of Huntington's disease (HD) and Parkinson's disease (PD) as well as several other late-onset neurodegenerative disorders. The aggregates formed in vitro and in vivo generally have a fibrillar morphology, consist of individual beta-strands and are resistant to proteolytic degradation. Although the causal relationship between aggregate formation and disease remains to be proven, the gradual deposition of mutant protein in neurons is consistent with the late-onset and progressive nature of symptoms. Recently, circumstantial evidence from mouse and Drosophila model systems suggests that abnormal protein folding and aggregation play a key role in the pathogenesis of both HD and PD. Therefore, a detailed understanding of the molecular mechanisms of protein aggregation and its effects on neuronal cell death could open new opportunities for therapy.  相似文献   

15.
Glucose-6-phosphate dehydrogenase (G6PD) plays an important role in Kupffer cell function, especially in phagocytosis activity. Although it was suggested that Kupffer G6PD may be upregulated in Kupffer phagocytosis/activation, direct morphological evidence has been lacking. Acid phosphatase (ACP), a representative lysosomal enzyme, can be used as a cytochemical marker for phagocyte activation. Using an ultrastructural enzyme-cytochemical dual staining method, I simultaneously localized G6PD and ACP activity in mouse Kupffer cells on a cell-by-cell basis, and examined whether or not cytochemically detectable G6PD activity increases in phagocytosing/activated mouse Kupffer cells. Glucose-6-phosphate dehydrogenase labelings were observed in the cytoplasm and on the cytosolic side of the endoplasmic reticulum, and ACP labelings were seen in the lysosomes. In phagocytosing Kupffer cells, in which ACP deposits were observed not only in the lysosomes but also on the phagosomal membranes and phagosomal contents, G6PD labelings were denser than dormant Kupffer cells. Enzyme-cytochemically detectable G6PD activity increases in phagocytosing/activated mouse Kupffer cells. Kupffer cell G6PD, activated in phagocytosing Kupffer cells, may play an important role not only in liver defense but also in liver disease pathogenesis/pathophysiology.  相似文献   

16.
Parkinson’s disease (PD) is one of the most common neurodegenerative diseases. Although its pathogenesis remains unclear, a number of studies indicate that microglia‐mediated neuroinflammation makes a great contribution to the pathogenesis of PD. Melatonin receptor 1 (MT1) is widely expressed in glia cells and neurons in substantia nigra (SN). Neuronal MT1 is a neuroprotective factor, but it remains largely unknown whether dysfunction of microglial MT1 is involved in the PD pathogenesis. Here, we found that MT1 was reduced in microglia of SN in 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP)‐induced PD mouse model. Microglial MT1 activation dramatically inhibited lipopolysaccharide (LPS)‐induced neuroinflammation, whereas loss of microglial MT1 aggravated it. Metabolic reprogramming of microglia was found to contribute to the anti‐inflammatory effects of MT1 activation. LPS‐induced excessive aerobic glycolysis and impaired oxidative phosphorylation (OXPHOS) could be reversed by microglial MT1 activation. MT1 positively regulated pyruvate dehydrogenase alpha 1 (PDHA1) expression to enhance OXPHOS and suppress aerobic glycolysis. Furthermore, in LPS‐treated microglia, MT1 activation decreased the toxicity of conditioned media to the dopaminergic (DA) cell line MES23.5. Most importantly, the anti‐inflammatory effects of MT1 activation were observed in LPS‐stimulated mouse model. In general, our study demonstrates that MT1 activation inhibits LPS‐induced microglial activation through regulating its metabolic reprogramming, which provides a mechanistic insight for microglial MT1 in anti‐inflammation.  相似文献   

17.
Parkinson disease (PD) is the most common age-dependent neurodegenerative movement disorder. Accumulated evidence indicates both environmental and genetic factors play important roles in PD pathogenesis, but the potential interaction between environment and genetics in PD etiology remains largely elusive. Here, we report that PD-related neurotoxins induce both expression and acetylation of multiple sites of histones in cultured human cells and mouse midbrain dopaminergic (DA) neurons. Consistently, levels of histone acetylation are markedly higher in midbrain DA neurons of PD patients compared to those of their matched control individuals. Further analysis reveals that multiple histone deacetylases (HDACs) are concurrently decreased in 1-methyl-4-phenylpyridinium (MPP+)-treated cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse brains, as well as midbrain tissues of human PD patients. Finally, inhibition of histone acetyltransferase (HAT) protects, whereas inhibition of HDAC1 and HDAC2 potentiates, MPP+-induced cell death. Pharmacological and genetic inhibition of autophagy suppresses MPP+-induced HDACs degradation. The study reveals that PD environmental factors induce HDACs degradation and histone acetylation increase in DA neurons via autophagy and identifies an epigenetic mechanism in PD pathogenesis.  相似文献   

18.
Lipoxygenase (LOX) activity has been implicated in neurodegenerative disorders such as Alzheimer''s disease, but its effects in Parkinson''s disease (PD) pathogenesis are less understood. Gene-environment interaction models have utility in unmasking the impact of specific cellular pathways in toxicity that may not be observed using a solely genetic or toxicant disease model alone. To evaluate if distinct LOX isozymes selectively contribute to PD-related neurodegeneration, transgenic (i.e. 5-LOX and 12/15-LOX deficient) mice can be challenged with a toxin that mimics cell injury and death in the disorder. Here we describe the use of a neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which produces a nigrostriatal lesion to elucidate the distinct contributions of LOX isozymes to neurodegeneration related to PD. The use of MPTP in mouse, and nonhuman primate, is well-established to recapitulate the nigrostriatal damage in PD. The extent of MPTP-induced lesioning is measured by HPLC analysis of dopamine and its metabolites and semi-quantitative Western blot analysis of striatum for tyrosine hydroxylase (TH), the rate-limiting enzyme for the synthesis of dopamine. To assess inflammatory markers, which may demonstrate LOX isozyme-selective sensitivity, glial fibrillary acidic protein (GFAP) and Iba-1 immunohistochemistry are performed on brain sections containing substantia nigra, and GFAP Western blot analysis is performed on striatal homogenates. This experimental approach can provide novel insights into gene-environment interactions underlying nigrostriatal degeneration and PD.  相似文献   

19.
20.
Parkinson’s disease (PD) is a debilitating neurodegenerative disorder, for which people above the age of 60 show an increased risk. Although there has been great advancement in understanding the disease-related abnormalities in brain circuitry and development of symptomatic treatments, a cure for PD remains elusive. The discovery of PD associated gene mutations and environmental toxins have yielded animal models of the disease. These models could recapitulate several key aspects of PD, and provide more insights into the disease pathogenesis. They have also revealed novel aspects of the disease mechanism including noncell autonomous events and spreading of pathogenic protein species across the brain. Nevertheless, none of these models so far can comprehensively represent all aspects of the human disease. While the field is still searching for the perfect model system, recent developments in stem cell biology have provided a new dimension to modelling PD, especially doing it in a patient-specific manner. In the current review, we attempt to summarize the key findings in the areas discussed above, and highlight how the core PD pathology distinguishes itself from other neurodegenerative disorders while also resembling them in many aspects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号