首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ObjectivesDespite advances in the development of novel targeted therapies, the need for B-ALL alternative treatments has not been met. Anlotinib could blunt the proangiogenic activity of VEGFR, PDGFR, and FGFR, and has shown strong antitumor activities across multiple tumors. However, anlotinib cytotoxicity against B-ALL has not ever been evaluated, thus prompting us to initiate this study.MethodsExpression2Kinases program was used to identify potential treatment targets. Cell viability and apoptosis were determined by CCK-8 and Annexin V/PI staining kit, respectively. qRT-PCR and Western blotting were utilized to investigate the molecular mechanisms. In vivo antileukemia activity of Anlotinib was evaluated in a Ph+ B-ALL patient-Derived Xenograft (PDX) model.ResultsCompared with treatment-naive B-ALL cases, RR B-ALL patients had higher activities in the VEGF/VEGFR signaling and the PI3K/AKT/mTOR pathway. Exposure of Ph and Ph+ B-ALL cells to anlotinib resulted in significant cell viability reduction, apoptosis enhancement, and cell cycle arrest at G2/M phase. Importantly, anlotinib treatment led to remarkably decreased leukemia burdens and extended the survival period in a Ph+ B-ALL PDX model. Blockade of the role of the proangiogenic mediators, comprising VEGFR2, PDGFR-beta, and FGFR3, played a critical role in the cytotoxicity of anlotinib against Ph and Ph+ B-ALL. Moreover, anlotinib dampened the activity of PI3K/AKT/mTOR pathway that resides in the convergence of the three mentioned proangiogenic signals.ConclusionThis work provides impressive preclinical evidence of anlotinib against Ph and Ph+ B-ALL and raises a rationale for future clinical evaluation of this drug in the management of Ph and Ph+ B-ALL.  相似文献   

2.
Anlotinib is a novel molecular targeted agent targeting the vascular endothelial growth factor receptor, which differs from the other currently available non-small cell lung cancer (NSCLC) molecular targeted drugs targeting this receptor. Although the application of anlotinib may bring new hope for patients with advanced NSCLC, the cost of treatment is high. The results of this study showed that microRNA-6077 (miR-6077) represses the expression of GLUT1 (glucose transporter 1) and enhances the sensitivity of patient-derived lung adenocarcinoma (AC) cells to anlotinib. The miR-6077, which potentially binds to the 3’untranslated region of GLUT1, was identified and screened by miRDB, an online tool; sequences of miR-6077 were prepared as lentivirus particles. A549 cells (a lung adenocarcinoma cell line) and five patient-derived AC cell lines were infected with control miRNA or miR-6077, and subsequently treated with the indicated concentration of anlotinib. The expression of proteins, such as GLUT1, was determined by western blotting. The antitumor effect of anlotinib was identified through in-vitro (e.g., MTT) or in-vivo methods (e.g., subcutaneous tumor model). Overexpression of miR-6077 repressed the expression of GLUT1 and decreased the glucose uptake, lactate production, or ATP generation in AC cells. In addition, MiR-6077 may enhance the antitumor effect of anlotinib on A549 or patient-derived AC cell lines. Therefore, our results indicated that miR-6077 represses the expression of GLUT1 and enhances the sensitivity of patients-derived lung AC cells to anlotinib.  相似文献   

3.
Mitochondrial permeability transition (MPT) is thought to determine cell death under oxidative stress. However, MPT inhibitors only partially suppress oxidative stress-induced cell death. Here, we demonstrate that cells in which MPT is inhibited undergo cell death under oxidative stress. When C6 cells were exposed to 250 μM t-butyl hydroperoxide (t-BuOOH), the loss of a membrane potential-sensitive dye (tetramethylrhodamine ethyl ester, TMRE) from mitochondria was observed, indicating mitochondrial depolarization leading to cell death. The fluorescence of calcein entrapped in mitochondria prior to addition of t-BuOOH was significantly decreased to 70% after mitochondrial depolarization. Cyclosporin A suppressed the decrease in mitochondrial calcein fluorescence, but not mitochondrial depolarization. These results show that t-BuOOH induced cell death even when it did not induce MPT. Prior to MPT, lactate production and respiration were hampered. Taken together, these data indicate that the decreased turnover rate of glycolysis and mitochondrial respiration may be as vital as MPT for cell death induced under moderate oxidative stress.  相似文献   

4.
Despite the significant advances in the treatment of multiple myeloma (MM), this disease is still considered incurable because of relapse and chemotherapy resistance, underscoring the need to seek novel therapies with different mechanisms. Anlotinib, a novel multi-targeted tyrosine kinase inhibitor (TKI), has exhibited encouraging antitumor activity in several preclinical and clinical trials, but its effect on MM has not been studied yet. In this study, we found that anlotinib exhibits encouraging cytotoxicity in MM cells, overcomes the protective effect of the bone marrow microenvironment and suppresses tumor growth in the MM mouse xenograft model. We further examined the underlying molecular mechanism and found that anlotinib provokes cell cycle arrest, induces apoptosis and inhibits multiple signaling pathways. Importantly, we identify c-Myc as a novel direct target of anlotinib. The enhanced ubiquitin proteasomal degradation of c-Myc contributes to the cell apoptosis induced by anlotinib. In addition, anlotinib also displays strong cytotoxicity against bortezomib-resistant MM cells. Our study demonstrates the extraordinary anti-MM effect of anlotinib both in vitro and in vivo, which provides solid evidence and a promising rationale for future clinical application of anlotinib in the treatment of human MM.Subject terms: Myeloma, Target identification  相似文献   

5.
Oral squamous cell carcinoma (OSCC) is one of the most prevalent carcinomas worldwide. MicroRNAs (miRNAs) are short, non-coding RNAs that regulate gene expression and modulate physiological or pathological processes including OSCC carcinogenesis. miR-31 has been found to be up-regulated in OSCC and to act as an oncogenic miRNA. However, the molecular mechanism underlying miR-31 up-regulation in OSCC is still obscure. The activation of epidermal growth factor receptor (EGFR) signaling axis plays key roles in driving oral carcinogenesis. Our screening identified that there is up-regulation of miR-31, miR-181b and miR-222 in OSCC cells following EGF treatment. Subsequent analysis showed that EGF treatment led to AKT activation, which then resulted in miR-31 up-regulation. Moreover, EGF treatment and the AKT activation induced by exogenous expression up-regulated C/EBPβ expression. The miR-31 up-regulation induced by EGF was abrogated by AKT inhibition or by the knockdown of C/EBPβ expression. In OSCC cell subclones stably overexpressing the functional isoform of C/EBPβ, miR-31 expression was up-regulated. Curcumin is a natural ingredient exhibiting anti-cancer potential. It was found that curcumin attenuated AKT activation and the up-regulation of C/EBPβ and miR-31 caused by EGF stimulation in OSCC cells. Lastly, concordance across the expression of EGFR, the expression of C/EBPβ and the expression of miR-31 in OSCC tissues was found. This study describes a novel scenario where the up-regulation of miR-31 expression in OSCC is, at least in part, a consequence of EGFR oncogenic activation. Although the AKT activation and C/EBPβ expression after EGF treatment might not be directly linked, both events are the crucial mediators underlying miR-31 up-regulation in the EGFR signaling axis.  相似文献   

6.
Mitochondrial abnormalities are associated with cancer development, yet how oncogenic signals affect mitochondrial functions has not been fully understood. In this study, we investigate the relationship between mitochondrial alterations and PI3K/protein kinase B (AKT) signaling activation using hepatocytes and liver tissues as our experimental models. We show here that liver-specific deletion of Pten, which leads to activation of PI3K/AKT, is associated with elevated oxidative stress, increased mitochondrial mass, and augmented respiration accompanied by enhanced glycolysis. Consistent with these observations, estrogen-related receptor α (ERRα), an orphan nuclear receptor known for its role in mitochondrial biogenesis, is up-regulated in the absence of phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Our pharmacological and genetic studies show that PI3K/AKT activity regulates the expression of ERRα and mitochondrial biogenesis/respiration. Furthermore, cAMP-response element-binding protein, as a downstream target of AKT, plays a role in the regulation of ERRα, independent of PKA signaling. ERRα regulates reactive oxygen species production, and ERRα knockdown attenuates proliferation and colony-forming potential in Pten-null hepatocytes. Finally, analysis of clinical datasets from liver tissues showed a negative correlation between expressions of ERRα and PTEN in patients with liver cancer. Therefore, this study has established a previously unrecognized link between a growth signal and mitochondrial metabolism.  相似文献   

7.
8.
Nicotine contributes to the onset and progression of several pulmonary diseases. Among the various pathophysiological mechanisms triggered by nicotine, oxidative stress and cell death are reported in several cell types. We found that chronic exposure to nicotine (48 h) induced NOX1-dependent oxidative stress and apoptosis in primary pulmonary cells. In murine (MLE-12) and human (BEAS-2B) lung epithelial cell lines, nicotine acted as a sensitizer to cell death and synergistically enhanced apoptosis when cells were concomitantly exposed to hyperoxia. The precise signaling pathway was investigated in MLE-12 cells in which NOX1 was abrogated by a specific inhibitor or stably silenced by shRNA. In the early phase of exposure (1 h), nicotine mediated intracellular Ca2+ fluxes and activation of protein kinase C, which in its turn activated NOX1, leading to cellular and mitochondrial oxidative stress. The latter triggered the intrinsic apoptotic machinery by modulating the expression of Bcl-2 and Bax. Overexpression of Bcl-2 completely prevented nicotine’s detrimental effects, suggesting Bcl-2 as a downstream key regulator in nicotine/NOX1-induced cell damage. These results suggest that NOX1 is a major contributor to the generation of intracellular oxidative stress induced by nicotine and might be an important molecule to target in nicotine-related lung pathologies.  相似文献   

9.
Frontal cortex samples from frozen human brains were used to assess tissue respiration; content of mitochondria; mitochondrial oxygen uptake; activity of respiratory complexes and of mitochondrial nitric oxide synthase (mtNOS); content of cytochromes a, b, and c; oxidative damage (protein carbonyls and TBARS); and expression of Mn-SOD in patients with Parkinson disease (PD) and with dementia with Lewy bodies (DLB) in comparison with those of normal healthy controls. Brain cortex and mitochondrial O2 uptake and complex I activity were significantly lower in PD and DLB, whereas mtNOS activity, cytochrome content, expression of Mn-SOD, mitochondrial mass, and oxidative damage were significantly higher in the frontal cortex in PD and DLB. The decreases in tissue and mitochondrial O2 uptake and in complex I activity are considered the consequences of mitochondrial oxidative damage. The increases in mtNOS activity and in mitochondrial mass are interpreted as an adaptive response of the frontal cortex that involves increased NO signaling for mitochondrial biogenesis. The adaptive response would partially compensate for mitochondrial dysfunction in these neurodegenerative diseases and would afford a human evolutionary response to shortage of ATP in the frontal cortex.  相似文献   

10.
Carvedilol, a β-adrenoreceptor antagonist with strong antioxidant activity, produces a high degree of cardioprotection in a variety of experimental models of ischemic cardiac injury. Although growing evidences suggest specific effects on mitochondrial metabolism, how carvedilol would exert its overall activity has not been completely disclosed. In the present work we have investigated the impact of carvedilol-treatment on mitochondrial bioenergetic functions and ROS metabolism in H9C2 cells. This analysis has revealed a dose-dependent decrease in respiratory fluxes by NAD-dependent substrates associated with a consistent decline of mitochondrial complex I activity. These changes were associated with an increase in mitochondrial H2O2 production, total glutathione and protein thiols content. To evaluate the antioxidant activity of carvedilol, the effect of the exposure of control and carvedilol-pretreated H9C2 cells to H2O2 were investigated. The H2O2-mediated oxidative insult resulted in a significant decrease of mitochondrial respiration, glutathione and protein thiol content and in an increased level of GSSG. These changes were prevented by carvedilol-pretreatment. A similar protective effect on mitochondrial respiration could be obtained by pre-treatment of the cells with a sub-saturating amount of rotenone, a complex I inhibitor.We therefore suggest that carvedilol exerts its protective antioxidant action both by a direct antioxidant effect and by a preconditioning-like mechanism, via inhibition of mitochondrial complex I.  相似文献   

11.
The clinical management of advanced hepatocellular carcinoma (HCC) is challenging due to its resistance to chemotherapy. In our work, we demonstrate that an antiparasitic drug atovaquone at clinically relevant concentrations is active against chemoresistant HCC. We show that atovaquone inhibits proliferation and induces apoptosis in not only HCC parental cells but also cells exposed to long time culture of chemotherapeutic agents. Consistently, the combination of atovaquone with cisplatin or doxorubicin achieved remarkably greater efficacy than single drug alone. Mechanistically, atovaquone overcomes HCC chemoresistance via supressing mitochondrial respiration and inducing oxidative stress. Atovaquone but not cisplatin or doxorubicin is ineffective in mitochondrial respiration-deficient ρ0, confirming mitochondria as a specific upstream target of atovaquone. Interestingly, we show that prolonged exposure of HCC cells to chemotherapeutic agents induces higher level of mitochondrial respiration, suggesting that tumors which develop chemoresistance after chemotherapy might be more dependent on mitochondrial respiration than primary tumors and explaining the sensitivity of chemoresistant HCC cells to atovaquone. We further show that atovaquone at tolerable does significantly inhibits chemoresistant HCC growth in mice throughout the duration of treatment. In line with in vitro data, we observe the increased oxidative stress in atovaquone-treated tumors. Our findings highlight the dependency of chemoresistant HCC on mitochondrial respiration and demonstrate that atovaquone is a potential drug to overcome HCC chemoresistance.  相似文献   

12.
The conserved Blm10/PA200 activators bind to the proteasome core particle gate and facilitate turnover of peptides and unfolded proteins in vitro. We report here that Blm10 is required for the maintenance of functional mitochondria. BLM10 expression is induced 25-fold upon a switch from fermentation to oxidative metabolism. In the absence of BLM10, Saccharomyces cerevisiae cells exhibit a temperature-sensitive growth defect under oxidative growth conditions and produce colonies with dysfunctional mitochondria at high frequency. Loss of BLM10 leads to reduced respiratory capacity, increased mitochondrial oxidative damage, and reduced viability in the presence of oxidative stress or death stimuli. In the absence of BLM10, increased fragmentation of the mitochondrial network under oxidative stress is observed indicative of elevated activity of the mitochondrial fission machinery. The degradation of Dnm1, the main factor mediating mitochondrial fission, is impaired in the absence of BLM10 in vitro and in vivo. These data suggest that the mitochondrial functional and morphological changes observed are related to elevated Dnm1 levels. This hypothesis is supported by the finding that cells that constitutively overexpress DNM1 display the same mitochondrial defects as blm10Δ cells. The data are consistent with a model in which Blm10 proteasome-mediated turnover of Dnm1 is required for the maintenance of mitochondrial function and provides cytoprotection under conditions that induce increased mitochondrial damage and programmed cell death.  相似文献   

13.
Lu W  Hu Y  Chen G  Chen Z  Zhang H  Wang F  Feng L  Pelicano H  Wang H  Keating MJ  Liu J  McKeehan W  Wang H  Luo Y  Huang P 《PLoS biology》2012,10(5):e1001326
Elevated aerobic glycolysis in cancer cells (the Warburg effect) may be attributed to respiration injury or mitochondrial dysfunction, but the underlying mechanisms and therapeutic significance remain elusive. Here we report that induction of mitochondrial respiratory defect by tetracycline-controlled expression of a dominant negative form of DNA polymerase γ causes a metabolic shift from oxidative phosphorylation to glycolysis and increases ROS generation. We show that upregulation of NOX is critical to support the elevated glycolysis by providing additional NAD+. The upregulation of NOX is also consistently observed in cancer cells with compromised mitochondria due to the activation of oncogenic Ras or loss of p53, and in primary pancreatic cancer tissues. Suppression of NOX by chemical inhibition or genetic knockdown of gene expression selectively impacts cancer cells with mitochondrial dysfunction, leading to a decrease in cellular glycolysis, a loss of cell viability, and inhibition of cancer growth in vivo. Our study reveals a previously unrecognized function of NOX in cancer metabolism and suggests that NOX is a potential novel target for cancer treatment.  相似文献   

14.
The effects of three tetrachlorobiphenylols [2′,3′,4′,5′-tetrachloro-2-biphenylol (1); 2′,3′,4′,5′-tetrachloro-4-biphenylol (2); and 2′,3′,4′,5′-tetrachloro-3-biphenylol (3)]; three monochlorobiphenylols [5-chloro-2-biphenylol (5), 3-chloro-2-biphenylol (6); and 2-chloro-4-biphenylol (7)] and a tetrachlorobiphenyldiol [3,3′,5,5′-tetrachloro-4,4′-biphenyldiol (4) on respiration, adenosine triphosphatase (ATPase)] activity, and swelling in isolated mouse liver mitochondria have been investigated. Tetrachlorobiphenylols (13) and the tetrachlorobiphenyldiol (4) inhibited state-3 respiration in a concentration-dependent manner with succinate as substrate (flavin adenine dinucleotide [FAD]-linked) and the tetrachlorobiphenyldiol (4) caused a more pronounced inhibitory effect on state-3 respiration than the other congeners. The monochlorobiphenylols 57 were less active as inhibitors of state-3 mitochondrial respiration and significant effects were observed only at higher concentration (≥0.4 μM). However, in the presence of the nicotinamide adenine dinucleotide (NAD)-linked substrates (glutamate plus malate), hydroxylated PCBs (17) significantly inhibited mitochondrial state-3 respiration in a concentration-dependent manner. Compounds 5, 6, and 7 uncoupled mitochondrial oxidative phosphorylation only in the presence of FAD-linked substrate as evidenced by increased oxygen consumption during state-4 respiratory transition, stimulating ATPase activity, releasing oligomycin-inhibited respiration, and inducing mitochondrial swelling (5, 6, and 7). Tetrachlorobiphenylols 1, 2, and 3 had no effect on mitochondrial ATPase activity while the tetrachlorobiphenyldiol, 4, decreased the enzyme activity. The possible inhibitory site of electron transport by these compounds and their toxicologic significance is discussed.  相似文献   

15.
While atypical expression of special AT-rich sequence-binding protein 2 (SATB2) has been approved associated with tumor progression, metastasis and unfavourable prognosis in various carcinomas. However, in oral squamous cell carcinoma (OSCC), both the expressive state and associated functions of SATB2's are still undefined. Here we show that, in clinical samples from a retrospective cohort of 58 OSCC patients, high expression of SATB2 is associated with poor prognosis of OSCC patients. In this study, we investigated SATB2 is highly expressed in OSCC tissues and cell lines, which can promote OSCC cells' proliferation, migration, invasion and tumor growth. According to sequencing results based on previous literature, we identified NOX4 is a bona fide downstream target of SATB2, when it was knockdown, OSCC's proliferation can be partially suppressed. Furthermore, NOX4 knockdown inhibits tumorigenicity, which can be rescued partially by ectopic expression of SATB2 in HNSCC cell line, and vice versa. Collectively, our findings not only indicate overexpression of SATB2 triggers the proliferative, migratory and invasive mechanisms which are important in the malignant phenotype of OSCC, but also identify NOX4 as the downstream gene for SATB2. These findings indicate that SATB2 may play a key role in OSCC tumorigenicity and may be a future target for the development of new therapeutic regimens.  相似文献   

16.
We previously reported that Polo-like kinase 2 (PLK2) is highly expressed in cells with defective mitochondrial respiration and is essential for their survival. Although PLK2 has been widely studied as a cell cycle regulator, we have uncovered an antioxidant function for this kinase that activates the GSK3–NRF2 signaling pathway. Here, we report that the expression of PLK2 is responsive to oxidative stress and that PLK2 mediates antioxidant signaling by phosphorylating GSK3, thereby promoting the nuclear translocation of NRF2. We further show that the antioxidant activity of PLK2 is essential for preventing p53-dependent necrotic cell death. Thus, the regulation of redox homeostasis by PLK2 promotes the survival of cells with dysfunctional mitochondria, which may have therapeutic implications for cancer and neurodegenerative diseases.  相似文献   

17.
Xanthohumol is a prenylflavonoid extracted from hops (Humulus lupulus). It possesses anti-cancer and anti-inflammatory activities in vitro and in vivo, and offers therapeutic benefits for treatment of metabolic syndromes. However, the precise mechanisms underlying its pharmacological effects remain to be elucidated, together with its cellular target. Here, we provide evidence that xanthohumol directly interacts with the mitochondrial electron transfer chain complex I (NADH dehydrogenase), inhibits the oxidative phosphorylation, triggers the production of reactive oxygen species, and induces apoptosis. In addition, we show that as a result of the inhibition of the mitochondrial oxidative phosphorylation, xanthohumol exposure causes a rapid decrease of mitochondrial transmembrane potential. Furthermore, we showed that xanthohumol up-regulates the glycolytic capacity in cells, and thus compensates cellular ATP generation. Dissection of the multiple steps of aerobic respiration by extracellular flux assays revealed that xanthohumol specifically inhibits the activity of mitochondrial complex I, but had little effect on that of complex II, III and IV. Inhibition of complex I by xanthohumol caused the overproduction of reactive oxygen species, which are responsible for the induction of apoptosis in cancer cells. We also found that isoxanthohumol, the structural isomer of xanthohumol, is inactive to cells, suggesting that the reactive 2-hydroxyl group of xanthohumol is crucial for its targeting to the mitochondrial complex I. Together, the remodeling of cell metabolism revealed here has therapeutic potential for the use of xanthohumol.  相似文献   

18.
Anlotinib is a multi-target tyrosine kinase inhibitor. Previous studies confirmed that anlotinib exerts anti-cancer efficiency. However, the functional roles of anlotinib on cancer stem cells (CSCs) are yet to be elucidated. In this study, lung CSCs were isolated and identified in vitro, and mouse xenografts were established in vivo. MTT assays, tumour sphere formation assays, TdT-mediated dUTP nick-end labelling (TUNEL) staining, Annexin V-FITC/PI staining, immunofluorescence analysis and Western blot were performed to investigate the anti-cancer effects of anlotinib on lung CSCs. The results showed that anlotinib inhibits the growth of lung CSCs in vitro and in vivo. In addition, anlotinib induced apoptosis of these cells along with down-regulated expression level of Bcl-2 whereas up-regulated Bax and cleaved caspase-3 expression. It also sensitized lung CSCs to the cytotoxicity of cisplatin and paclitaxel; the tumour sphere formation and expression levels of multiple stemness-associated markers, such as ALDH1 and CD133, were also decreased. Furthermore, the underlying mechanism indicated that anlotinib reduces the phosphorylated levels of NF-κB p65 and IκB-α in lung CSCs. Taken together, these findings suggested that anlotinib exerts potent anti-cancer effects against lung CSCs through apoptotic induction and stemness phenotypic attenuation. The mechanism could be associated with the suppression of NF-κB activity.  相似文献   

19.
Sepsis impairs mitochondrial respiration but the mechanisms responsible are incompletely understood. We propose that Krebs cycle enzymes are inhibited in sepsis, contributing to reduced rates of oxidative phosphorylation. Hypothesis. The activities of Krebs cycle enzymes are decreased in endotoxemia and contribute to reduced rates of oxidative phosphorylation. Methods. Adult male rats received an intraperitoneal injection of either endotoxin or saline. Cardiac mitochondria were subsequently isolated and measures of mitochondrial respiration and enzyme activities performed. Main results. By 24 h post endotoxin administration, there was a 28% reduction in mitochondrial respiration (P = 0.0005) and a 24% reduction in aconitase activity (P = 0.001). Functional activity of the electron transport chain was unaffected. Conclusion. Our data demonstrate that in the heart, the administration of endotoxin significantly and selectively decreased aconitase activity in association with reduced rates of oxidative phosphorylation. We conclude that decreased activity of aconitase contributes to the endotoxin-stimulated reduction in mitochondrial respiration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号