首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The EMAPII (endothelial monocyte-activating polypeptide II) domain is a tRNA-binding domain associated with several aminoacyl-tRNA synthetases, which becomes an independent domain with inflammatory cytokine activity upon apoptotic cleavage from the p43 component of the multisynthetase complex. It comprises a domain that is highly homologous to bacterial tRNA-binding proteins (Trbp), followed by an extra domain without homology to known proteins. Trbps, which may represent ancient tRNA chaperones, form dimers and bind one tRNA per dimer. In contrast, EMAPII domains are monomers. Here we report the crystal structure at 1.14 Angstroms of human EMAPII. The structure reveals that the Trbp-like domain, which forms an oligonucleotide-binding (OB) fold, is related by degenerate 2-fold symmetry to the extra-domain. The pseudo-axis coincides with the dyad axis of bacterial TtCsaA, a Trbp whose structure was solved recently. The interdomain interface in EMAPII mimics the intersubunit interface in TtCsaA, and may thus generate a novel OB-fold-based tRNA-binding site. The low sequence homology between the extra domain of EMAPII and either its own OB fold or that of Trbps suggests that dimer mimicry originated from convergent evolution rather than gene duplication.  相似文献   

2.
Structural basis of interdomain communication in the Hsc70 chaperone   总被引:7,自引:0,他引:7  
Hsp70 family proteins are highly conserved chaperones involved in protein folding, degradation, targeting and translocation, and protein complex remodeling. They are comprised of an N-terminal nucleotide binding domain (NBD) and a C-terminal protein substrate binding domain (SBD). ATP binding to the NBD alters SBD conformation and substrate binding kinetics, but an understanding of the mechanism of interdomain communication has been hampered by the lack of a crystal structure of an intact chaperone. We report here the 2.6 angstroms structure of a functionally intact bovine Hsc70 (bHsc70) and a mutational analysis of the observed interdomain interface and the immediately adjacent interdomain linker. This analysis identifies interdomain interactions critical for chaperone function and supports an allosteric mechanism in which the interdomain linker invades and disrupts the interdomain interface when ATP binds.  相似文献   

3.
BackgroundCellobiose dehydrogenase (CDH) is a fungal extracellular oxidoreductase which fuels lytic polysaccharide monooxygenase with electrons during cellulose degradation. Interdomain electron transfer between the flavin and cytochrome domain in CDH, preceding the electron flow to lytic polysaccharide monooxygenase, is known to be pH dependent, but the exact mechanism of this regulation has not been experimentally proven so far.MethodsTo investigate the structural aspects underlying the domain interaction in CDH, hydrogen/deuterium exchange (HDX-MS) with improved proteolytic setup (combination of nepenthesin-1 with rhizopuspepsin), native mass spectrometry with ion mobility and electrostatics calculations were used.ResultsHDX-MS revealed pH-dependent changes in solvent accessibility and hydrogen bonding at the interdomain interface. Electrostatics calculations identified these differences to result from charge neutralization by protonation and together with ion mobility pointed at higher electrostatic repulsion between CDH domains at neutral pH. In addition, we uncovered extensive O-glycosylation in the linker region and identified the long-unknown exact cleavage point in papain-mediated domain separation.ConclusionsTransition of CDH between its inactive (open) and interdomain electron transfer-capable (closed) state is shown to be governed by changes in the protein surface electrostatics at the domain interface. Our study confirms that the interdomain electrostatic repulsion is the key factor modulating the functioning of CDH.General significanceThe results presented in this paper provide experimental evidence for the role of charge repulsion in the interdomain electron transfer in cellobiose dehydrogenases, which is relevant for exploiting their biotechnological potential in biosensors and biofuel cells.  相似文献   

4.
G-protein alpha subunits consist of two domains: a Ras-like domain also called GTPase domain (GTPaseD), structurally homologous to monomeric G-proteins, and a more divergent domain, unique to heterotrimeric G-proteins, called helical domain (HD). G-protein activation, requires the exchange of bound GDP for GTP, and since the guanine nucleotide is buried in a deep cleft between both domains, it has been postulated that activation may involve a conformational change that will allow the opening of this cleft. Therefore, it has been proposed, that interdomain interactions are playing an important role in regulating the nucleotide exchange rate of the alpha subunit. While constructing different Gs(alpha) quimeras, we identified a Gs(alpha) random mutant, which was very inefficient in stimulating adenylyl cyclase activity. The introduced mutation corresponded to the substitution of Ser(111) for Asn (S111N), located in the carboxi terminal end of helix A of the HD, a region neither involved in AC interaction nor in the interdomain interface. In order to characterize this mutant, we expressed it in bacteria, purified it by niquel-agarose chromatography, and studied its nucleotide exchange properties. We demonstrated that the recombinant S111N Gs(alpha) was functional since it was able to undergo the characteristic conformational change upon GTP binding, detected by the acquisition of a trypsin-resistant conformation. When the biochemical properties were determined, the mutant protein exhibited a reduced GDP dissociation kinetics and as a consequence a slower GTPgammaS binding rate that was responsible for a diminished adenylyl cyclase activation when GTPgammaS was used as activator. These data provide new evidence that involves the HD as a regulator of Gs(alpha) function, in this case the alphaA helix, which is not directly involved with the nucleotide binding site nor the interdomain interface.  相似文献   

5.
An important goal of structural studies of modular proteins is to determine the inter-module orientation, which often influences biological function. The N-terminal domain of human fibronectin (Fn) is composed of a string of five type 1 modules (F1). Despite their small size, to date F1 modules have proved intractable to X-ray structure solution, although there are several NMR structures available. Here, we present the first structures (two X-ray models and an NMR-derived model) of the (2)F1(3)F1 module pair, which forms part of the binding site for Fn-binding proteins from pathogenic bacteria. The crystallographic structure determination was aided by the novel technique of UV radiation damage-induced phasing. The individual module structures are very similar in all three models. In the NMR structure and one of the X-ray structures, a similar but smaller interdomain interface than that observed previously for (4)F1(5)F1 is seen. The other X-ray structure has a different interdomain orientation. This work underlines the benefits of combining X-ray and NMR data in the studies of multi-domain proteins.  相似文献   

6.
The functional mechanisms of multidomain proteins often exploit interdomain interactions, or “cross-talk.” An example is human Pin1, an essential mitotic regulator consisting of a Trp–Trp (WW) domain flexibly tethered to a peptidyl-prolyl isomerase (PPIase) domain, resulting in interdomain interactions important for Pin1 function. Substrate binding to the WW domain alters its transient contacts with the PPIase domain via means that are only partially understood. Accordingly, we have investigated Pin1 interdomain interactions using NMR paramagnetic relaxation enhancement (PRE) and molecular dynamics (MD) simulations. The PREs show that apo-Pin1 samples interdomain contacts beyond the range suggested by previous structural studies. They further show that substrate binding to the WW domain simultaneously alters interdomain separation and the internal conformation of the WW domain. A 4.5-μs all-atom MD simulation of apo-Pin1 suggests that the fluctuations of interdomain distances are correlated with fluctuations of WW domain interresidue contacts involved in substrate binding. Thus, the interdomain/WW domain conformations sampled by apo-Pin1 may already include a range of conformations appropriate for binding Pin1''s numerous substrates. The proposed coupling between intra-/interdomain conformational fluctuations is a consequence of the dynamic modular architecture of Pin1. Such modular architecture is common among cell-cycle proteins; thus, the WW–PPIase domain cross-talk mechanisms of Pin1 may be relevant for their mechanisms as well.  相似文献   

7.
12/15-Lipoxygenases (12/15-LOXs) have been implicated in inflammatory and hyperproliferative diseases but the structural biology of these enzymes is not well developed. Most LOXs constitute single polypeptide chain proteins that fold into a two-domain structure. In the crystal structure the two domains are tightly associated, but small angle X-ray scattering data and dynamic fluorescence studies suggested a high degree of structural flexibility involving movement of the N-terminal domain relative to catalytic subunit. When we inspected the interdomain interface we have found a limited number of side-chain contacts which are involved in interactions of these two structural subunits. One of such contact points involves tyrosine 98 of N-terminal domain. This aromatic amino acid is invariant in vertebrate LOXs regardless of overall sequence identity. To explore in more detail the role of aromatic interactions in interdomain association we have mutated Y98 to various residues and quantified the structural and functional consequences of these alterations. We have found that loss of an aromatic moiety at position 98 impaired the catalytic activity and membrane binding capacity of the mutant enzymes. Although CD and fluorescence emission spectra of wild-type and mutant enzyme species were indistinguishable, the mutation led to enlargement of the molecular shape of the enzyme as detected by analytic gel filtration and this structural alteration was shown to be associated with a loss of protein thermal stability. The possible role of tight interdomain association for the enzyme's structural performance is discussed.  相似文献   

8.
The structure of the two-domain response regulator PrrA from Mycobacterium tuberculosis shows a compact structure in the crystal with a well defined interdomain interface. The interface, which does not include the interdomain linker, makes the recognition helix and the trans-activation loop of the effector domain inaccessible for interaction with DNA. Part of the interface involves hydrogen-bonding interactions of a tyrosine residue in the receiver domain that is believed to be involved in signal transduction, which, if disrupted, would destabilize the interdomain interface, allowing a more extended conformation of the molecule, which would in turn allow access to the recognition helix. In solution, there is evidence for an equilibrium between compact and extended forms of the protein that is far toward the compact form when the protein is inactivated but moves toward a more extended form when activated by the cognate sensor kinase PrrB.  相似文献   

9.
Interleukin-3 (IL-3) is a cytokine produced by activated T-cells and mast cells that is active on a broad range of hematopoietic cells and in the nervous system and appears to be important in several chronic inflammatory diseases. In this study, alanine substitutions were used to investigate the role of residues of the human beta-common (hbetac) receptor and the murine IL-3-specific (beta(IL-3)) receptor in IL-3 binding. We show that the domain 1 residues, Tyr(15) and Phe(79), of the hbetac receptor are important for high affinity IL-3 binding and receptor activation as shown previously for the related cytokines, interleukin-5 and granulocyte-macrophage colony-stimulating factor, which also signal through this receptor subunit. From the x-ray structure of hbetac, it is clear that the domain 1 residues cooperate with domain 4 residues to form a novel ligand-binding interface involving the two protein chains of the intertwined homodimer receptor. We demonstrate by ultracentrifugation that the beta(IL-3) receptor is also a homodimer. Its high sequence homology with hbetac suggests that their structures are homologous, and we identified an analogous binding interface in beta(IL-3) for direct IL-3 binding to the high affinity binding site in hbetac. Tyr(21) (A-B loop), Phe(85), and Asn(87) (E-F loop) of domain 1; Ile(320) of the interdomain loop; and Tyr(348) (B'-C' loop) and Tyr(401) (F'-G' loop) of domain 4 were shown to have critical individual roles and Arg(84) and Tyr(317) major secondary roles in direct murine IL-3 binding to the beta(IL-3)receptor. Most surprising, none of the key residues for direct IL-3 binding were critical for high affinity binding in the presence of the murine IL-3 alpha receptor, indicating a fundamentally different mechanism of high affinity binding to that used by hbetac.  相似文献   

10.
Using a data set of aligned protein domain superfamilies of known three-dimensional structure, we compared the location of interdomain interfaces on the tertiary folds between members of distantly related protein domain superfamilies. The data set analyzed is comprised of interdomain interfaces, with domains occurring within a polypeptide chain and those between two polypeptide chains. We observe that, in general, the interfaces between protein domains are formed entirely in different locations on the tertiary folds in such pairs. This variation in the location of interface happens in protein domains involved in a wide range of functions, such as enzymes, adapters, and domains that bind protein ligands, or cofactors. While basic biochemical functionality is preserved at the domain superfamily level, the effect of biochemical function on protein assemblies is different in these protein domains related by superfamily. The divergence between proteins, in most cases, is coupled with domain recruitment, with different modes of interaction with the recruited domain. This is in complete contrast to the observation that in closely related homologous protein domains, almost always the interaction interfaces are topologically equivalent. In a small subset of interacting domains within proteins related by remote homology, we observe that the relative positioning of domains with respect to one another is preserved. Based on the analysis of multidomain proteins of known or unknown structure, we suggest that variation in protein-protein interactions in members within a superfamily could serve as diverging points in otherwise parallel metabolic or signaling pathways. We discuss a few representative cases of diverging pathways involving domains in a superfamily.  相似文献   

11.
As a unique member of the voltage-gated potassium channel family, a large conductance, voltage- and Ca2+-activated K+ (BK) channel has a large cytosolic domain that serves as the Ca2+ sensor, in addition to a membrane-spanning domain that contains the voltage-sensing (VSD) and pore-gate domains. The conformational changes of the cytosolic domain induced by Ca2+ binding and the conformational changes of the VSD induced by membrane voltage changes trigger the opening of the pore-gate domain. Although some structural information of these individual functional domains is available, how the interactions among these domains, especially the noncovalent interactions, control the dynamic gating process of BK channels is still not clear. Previous studies discovered that intracellular Mg2+ binds to an interdomain binding site consisting of D99 and N172 from the membrane-spanning domain and E374 and E399 from the cytosolic domain. The bound Mg2+ at this narrow interdomain interface activates the BK channel through an electrostatic interaction with a positively charged residue in the VSD. In this study, we investigated the potential interdomain interactions between the Mg2+-coordination residues and their effects on channel gating. By introducing different charges to these residues, we discovered a native interdomain interaction between D99 and E374 that can affect BK channel activation. To understand the underlying mechanism of the interdomain interactions between the Mg2+-coordination residues, we introduced artificial electrostatic interactions between residues 172 and 399 from two different domains. We found that the interdomain interactions between these two positions not only alter the local conformations near the Mg2+-binding site but also change distant conformations including the pore-gate domain, thereby affecting the voltage- and Ca2+-dependent activation of the BK channel. These results illustrate the importance of interdomain interactions to the allosteric gating mechanisms of BK channels.  相似文献   

12.
13.
The proton-translocating nicotinamide nucleotide transhydrogenases (TH) provide a simple model for understanding chemically coupled transmembrane proton translocation. To further our understanding of TH structure-function relationships, we have identified all sequenced homologous of these vectorial enzymes and have conducted sequence comparison studies. The NAD-binding domains of TH are homologous to bacterial alanine dehydrogenases (ADH) and eukaryotic saccharopine dehydrogenases (SDH) as well as N5(carboxyethyl)-L-ornithine synthase of Lactococcus lactis and dipicolinate synthase of Bacillus subtilis. A multiple alignment, a phylogenetic tree, and two signature sequences for this family, designated the TH-ADH-SDH or TAS superfamily, have been derived. Additionally, the TH family has been characterized. Phylogenetic analyses suggested that these proteins have evolved without inter-system shuffling. However, interdomain splicing-fusion events have occurred during the evolution of several of these systems. Analyses of the multiple alignment for the TH family revealed that domain conservation occurs in the order: NADP-binding domain (domain III) > NAD-binding domain (domain I) > proton-translocating transmembrane domain (domain II). A topologic model for the proton-translocating transmembrane domain consistent with published data is presented, and a possible involvement of specific transmembrane alpha-helical segments in channel formation is suggested.  相似文献   

14.
15.
16.
Flavocytochrome b(2) catalyzes the oxidation of L-lactate to pyruvate and the transfer of electrons to cytochrome c. The enzyme consists of a flavin-binding domain, which includes the active site for lacate oxidation, and a b(2)-cytochrome domain, required for efficient cytochrome c reduction. To better understand the structure and function of intra- and interprotein electron transfer, we have determined the crystal structure of the independently expressed flavin-binding domain of flavocytochrome b(2) to 2.50 A resolution and compared this with the structure of the intact enzyme, redetermined at 2.30 A resolution, both structures being from crystals cooled to 100 K. Whereas there is little overall difference between these structures, we do observe significant local changes near the interface region, some of which impact on amino acid side chains, such as Arg289, that have been shown previously to have an important role in catalysis. The disordered loop region found in flavocytochrome b(2) and its close homologues remain unresolved in frozen crystals of the flavin-binding domain, implying that the presence of the b(2)-cytochrome domain is not responsible for this positional disorder. The flavin-binding domain interacts poorly with cytochrome c, but we have introduced acidic residues in the interdomain interface region with the aim of enhancing cytochrome c binding. While the mutations L199E and K201E within the flavin-binding domain resulted in unimpaired lactate dehydrogenase activity, they failed to enhance electron-transfer rates with cytochrome c. This is most likely due to the disordered loop region obscuring all or part of the surface having the potential for productive interaction with cytochrome c.  相似文献   

17.
Human gammaD-crystallin (HgammaD-Crys) is a monomeric eye lens protein composed of two highly homologous beta-sheet domains. The domains interact through interdomain side chain contacts forming two structurally distinct regions, a central hydrophobic cluster and peripheral residues. The hydrophobic cluster contains Met43, Phe56, and Ile81 from the N-terminal domain (N-td) and Val132, Leu145, and Val170 from the C-terminal domain (C-td). Equilibrium unfolding/refolding of wild-type HgammaD-Crys in guanidine hydrochloride (GuHCl) was best fit to a three-state model with transition midpoints of 2.2 and 2.8 M GuHCl. The two transitions likely corresponded to sequential unfolding/refolding of the N-td and the C-td. Previous kinetic experiments revealed that the C-td refolds more rapidly than the N-td. We constructed alanine substitutions of the hydrophobic interface residues to analyze their roles in folding and stability. After purification from E. coli, all mutant proteins adopted a native-like structure similar to wild type. The mutants F56A, I81A, V132A, and L145A had a destabilized N-td, causing greater population of the single folded domain intermediate. Compared to wild type, these mutants also had reduced rates for productive refolding of the N-td but not the C-td. These data suggest a refolding pathway where the domain interface residues of the refolded C-td act as a nucleating center for refolding of the N-td. Specificity of domain interface interactions is likely important for preventing incorrect associations in the high protein concentrations of the lens nucleus.  相似文献   

18.
Proteins from the LTBP/fibrillin family perform key structural and functional roles in connective tissues. LTBP1 forms the large latent complex with TGFβ and its propeptide LAP, and sequesters the latent growth factor to the extracellular matrix. Bioinformatics studies suggest the main structural features of the LTBP1 C-terminus are conserved through evolution. NMR studies were carried out on three overlapping C-terminal fragments of LTBP1, comprising four domains with characterised homologues, cbEGF14, TB3, EGF3 and cbEGF15, and three regions with no homology to known structures. The NMR data reveal that the four domains adopt canonical folds, but largely lack the interdomain interactions observed with homologous fibrillin domains; the exception is the EGF3-cbEGF15 domain pair which has a well-defined interdomain interface. 15N relaxation studies further demonstrate that the three interdomain regions act as flexible linkers, allowing a wide range of motion between the well-structured domains. This work is consistent with the LTBP1 C-terminus adopting a flexible “knotted rope” structure, which may facilitate cell matrix interactions, and the accessibility to proteases or other factors that could contribute to TGFβ activation.  相似文献   

19.
In solution, Lys48-linked di-ubiquitin exists in dynamic equilibrium between closed and open conformations. To understand the effect of interdomain motion in polyubiquitin chains on their ability to bind ligands, we cyclized di-ubiquitin by cross-linking the free C terminus of the proximal ubiquitin with the side chain of residue 48 in the distal ubiquitin, using a chemical cross-linker, 1,6-Hexane-bis-vinylsulfone. Our NMR studies confirm that the cyclization affects conformational dynamics in di-ubiquitin by restricting opening of the interface and shifting the conformational equilibrium toward closed conformations. The cyclization, however, did not rigidly lock di-ubiquitin in a single closed conformation: The chain undergoes slow exchange between at least two closed conformations, characterized by interdomain contacts involving the same hydrophobic patch residues (Leu8-Ile44-Val70) as in the uncyclized di-ubiquitin. Lowering the pH changes the relative populations of these conformations, but in contrast with the uncyclized di-ubiquitin, does not lead to opening of the interface. This restriction of domain motions inhibits direct access of protein molecules to the hydrophobic patch residues located at the very center of the interdomain interface in di-ubiquitin, although the residual motions are sufficient to allow access of small molecules to the interface. This renders di-ubiquitin unable to bind protein molecules (e.g., UBA2 domain) in the normal manner, and thus could interfere with Ub(2) recognition by various downstream effectors. These results emphasize the importance of the opening/closing domain motions for the recognition and function of di-ubiquitin and possibly longer polyubiquitin chains.  相似文献   

20.
Available crystallographic data for homologous immunoglobulin constant domains were correlated with measured association constants for these domains. High correlation was found between the association constant and both the buried surface area (number of interdomain contacts) and the number of salt bridges formed in the interaction, whereas no correlation with the number of hydrogen bonds between domains was evident. The total free energy of binding, as determined from the association constant, was related to the number of contacts, hydrogen bonds and salt bridges found in the domain:domain interface by the crystallographic studies. These calculations yielded reasonable average energy terms for each interaction category.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号