首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The manufacture of plasma‐derived therapeutics includes dedicated viral inactivation steps to minimize the risk of infection. Traditional viral inactivation methods are effective for the removal and inactivation of enveloped viruses, but less effective against small nonenveloped viruses. UV‐C irradiation has been demonstrated to be an effective means of inactivating such viruses. The UVivatec lab system consists of a spiral tube around an UV‐C irradiation source. Flow of a solution through the chamber generates and ensures controlled mixing and uniform exposure to irradiation. A detailed assessment of the effect of flow rate, alternate cross sectional design and scale up of the irradiation chamber on Dean vortices was performed using the smoothed particle hydrodynamics method. The aim was to provide a basis for setting flow rate limits and using a laboratory scale apparatus to model viral inactivation in larger manufacturing scale equipment. The effect of flow rate related changes on the fluence rate was also investigated through chemical actinometry studies. The data were consistent with the simulations indicating that Dean vortices were present at low flow rates, but dissipated at higher flow rates through the spiral chamber. Importantly, this work also allowed a correlation between the small system and large scale system to be established. This will greatly facilitate process development and viral validation studies. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29: 359–367, 2013  相似文献   

2.
The one-parameter-tanks-in-series model was found to be an adequate model for the characterization of flow dynamics in a horizontal immobilized cell reactor, when blue dextran was used as tracer. Isobutanol proved to be inadequate, because it diffused inside the beads and thus caused tailing in RTD. The CO2 evolution rate displayed the most pronounced effect on axial liquid dispersion. At high CO2 production rates and low dilution rates each stage of the reactor behaved like a well-mixed reactor. At lower CO2 evolution rates the number of tanks (N) related to the reactor increased up to 10. The medium flow rate affects axial dispersion to a minor degree. An increase of the dilution rate from 0.328 to 1.34 h?1 resulted in a slight rise of N from 3.5 to 5 at high CO2 production and from 4 to 7 at medium CO2 production rates. Variation in the bead hold up showed the same characteristic axial mixing behavior as reflected by changing the medium flow rate. The quantitative correlation between axial mixing and the most significant fermentation parameters (dilution rate, CO2 evolution rate and bead hold up) allow to develop an overall model, which besides kinetic expressions also contains terms related to the flow dynamics of the reactor. In the third part of this communication such a model will be presented and compared with actual fermentation data.  相似文献   

3.
Fluid particle diffusion through blood flow within a capillary tube is an important phenomenon to understand, especially for studies in mass transport in the microcirculation as well as in solving technical issues involved in mixing in biomedical microdevices. In this paper, the spreading of tracer particles through up to 20% hematocrit blood, flowing in a capillary tube, was studied using a confocal micro-PTV system. We tracked hundreds of particles in high-hematocrit blood and measured the radial dispersion coefficient. Results yielded significant enhancement of the particle diffusion, due to a micron-scale flow-field generated by red blood cell motions. By increasing the flow rate, the particle dispersion increased almost linearly under constant hematocrit levels. The particle dispersion also showed near linear dependency on hematocrit up to 20%. A scaling analysis of the results, on the assumption that the tracer trajectories were unbiased random walks, was shown to capture the main features of the results. The dispersion of tracer particles was about 0.7 times that of RBCs. These findings provide good insight into transport phenomena in the microcirculation and in biomedical microdevices.  相似文献   

4.
The fully three-dimensional velocity field in a roller bottle bioreactor is simulated for two systems (creeping flow and inertial flow conditions) using a control volume-finite element method, and validated experimentally using particle imaging velocimetry. The velocity fields and flow patterns are described in detail using velocity contour plots and tracer particle pathline computations. Bulk fluid mixing in the roller bottle is then examined using a computational fluid tracer program and flow visualization experiments. It is shown that the velocity fields and flow patterns are substantially different for each of these flow cases. For creeping flow conditions the flow streamlines consist of symmetric, closed three-dimensional loops; and for inertial flow conditions, streamlines consist of asymmetric toroidal surfaces. Fluid tracers remain trapped on these streamlines and are unable to contact other regions of the flow domain. As a result, fluid mixing is greatly hindered, especially in the axial direction. The lack of efficient axial mixing is verified computationally and experimentally. Such mixing limitations, however, are readily overcome by introducing a small-amplitude vertical rocking motion that disrupts both symmetry and recirculation, leading to much faster and complete axial mixing. The frequency of such motion is shown to have a significant effect on mixing rate, which is a critical parameter in the overall performance of roller bottles.  相似文献   

5.
A continuous supermacroporous monolithic chromatographic matrix has been characterized using a capillary model, experimental breakthrough curves, and pressure drop experiments. The model describes the convective flow and its dispersive mixing effects, mass transfer resistance, pore size distribution, and the adsorption behavior of the monolithic matrix. It is possible to determine an effective pore size distribution by fitting the capillary model to experimental breakthrough curves and pressure drop experiments. The model is able to describe the flow rate dependence of the experimental breakthrough curves. Mass transport resistance was due to: (i) dispersive mixing effects in the convective flow in the pores; and (ii) slow diffusion in the stagnant film covering the surface within each pore, under adsorption conditions. The monolithic matrix can be described by a very narrow pore size distribution, illustrating one of the advantages of the gel. A broader pore size distribution results in increased band broadening. This can be studied easily using the model developed in this investigation.  相似文献   

6.
This study reveals that residence time distribution (RTD) analysis with pH monitoring after acid bolus injection can be used to globally study the flow dynamics of a perfusion bioreactor, while fluorescence microscopy and magnetic resonance imaging (MRI) were used to locally investigate mass transport within a hydrogel scaffold seeded or not with cells. The bioreactor used in this study is a close‐loop tubular reactor. A dispersion model in one dimension has been used to describe the non‐ideal behavior of the reactor. From open‐loop experiments (single‐cycle analysis), the presence of stagnant zones and back mixing were observed. The impact of the flow rate, the compliance chamber volume and mixing were investigated. Intermediate flows (30, 45, 60, and 90 mL min−1) had no effect over RTD function expressed in reduced time (θ). Lower flow rates (5 and 15 mL min−1) were associated to smaller extent of dispersion. The compliance chamber volume greatly affected the dynamics of the RTD function, while the effects of mixing and flow were small to non‐significant. An empirical equation has been proposed to localize minima of the RTD function and to predict Per. Finally, cells seeded in a gelatin gel at a density of 800,000 cells mL−1 had no effect over the permeability and the apparent diffusion coefficient, as revealed by fluorescent microscopy and MRI experiments. Biotechnol. Bioeng. 2011;108: 2488–2498. © 2011 Wiley Periodicals, Inc.  相似文献   

7.
Techniques which estimate the rate of aqueous flow generally require the use of tracer substances. Determination of the distribution of the tracer in the relevant body compartments permits calculation of the rate of flow within the limits of accuracy of the method used. The underlying theory, as well as the advantages and limitations of methods employing systemic, topical, intracameral, and intravitreal administration of tracer substances are reviewed. Since these methods all assume that the rate of aqueous secretion is constant, yet the presence of a diurnal rhythm of flow has been demonstrated in both rabbits and humans, a compartmental model of a circadian system based upon the vitreous depot technique is presented. This model estimates the degree to which a continuously changing rate of aqueous flow limits the ability to determine aqueous flow rate accurately by this particular method and illustrates this limitation, which is common to all tracer methods.  相似文献   

8.
Residence time distribution studies of gas through a rotating drum bioreactor for solid-state fermentation were performed using carbon monoxide as a tracer gas. The exit concentration as a function of time differed considerably from profiles expected for plug flow, plug flow with axial dispersion, and continuous stirred tank reactor (CSTR) models. The data were then fitted by least-squares analysis to mathematical models describing a central plug flow region surrounded by either one dead region (a three-parameter model) or two dead regions (a five-parameter model). Model parameters were the dispersion coefficient in the central plug flow region, the volumes of the dead regions, and the exchange rates between the different regions. The superficial velocity of the gas through the reactor has a large effect on parameter values. Increased superficial velocity tends to decrease dead region volumes, interregion transfer rates, and axial dispersion. The significant deviation from CSTR, plug flow, and plug flow with axial dispersion of the residence time distribution of gas within small-scale reactors can lead to underestimation of the calculation of mass and heat transfer coefficients and hence has implications for reactor design and scale-up.  相似文献   

9.
This study is concerned with reconciling theoretical modelling of the fluid flow in the airway surface liquid with experimental visualisation of tracer transport in human airway epithelial cultures. The airways are covered by a dense mat of cilia of length ∼ 6 μm beating in a watery periciliary liquid (PCL). Above this there is a layer of viscoelastic mucus which traps inhaled pathogens. Cilia propel mucus along the airway towards the trachea and mouth. Theoretical analyses of the beat cycle smithd, fulb predict small transport of PCL compared with mucus, based on the assumption that the epithelium is impermeable to fluid. However, an experimental study coord indicates nearly equal transport of PCL and mucus. Building on existing understanding of steady advection-diffusion in the ASL (Blake and Gaffney, 2001; Mitran,2004) numerical simulation of an advection-diffusion model of tracer transport is used to test several proposed flow profiles and to test the importance of oscillatory shearing caused by the beating cilia. A mechanically derived oscillatory flow with very low mean transport of PCL results in relatively little ‘smearing’ of the tracer pulses. Other effects such as mixing between the PCL and mucus, and significant transport in the upper part of the PCL above the cilia tips are tested and result in still closer transport, with separation between the tracer pulses in the two layers being less than 9%. Furthermore, experimental results may be replicated to a very high degree of accuracy if mean transport of PCL is only 50% of mucus transport, significantly less than the mean PCL transport first inferred on the basis of experimental results.  相似文献   

10.
The process of identifying active targets (hits) in high-throughput screening (HTS) usually involves 2 steps: first, removing or adjusting for systematic variation in the measurement process so that extreme values represent strong biological activity instead of systematic biases such as plate effect or edge effect and, second, choosing a meaningful cutoff on the calculated statistic to declare positive compounds. Both false-positive and false-negative errors are inevitable in this process. Common control or estimation of error rates is often based on an assumption of normal distribution of the noise. The error rates in hit detection, especially false-negative rates, are hard to verify because in most assays, only compounds selected in primary screening are followed up in confirmation experiments. In this article, the authors take advantage of a quantitative HTS experiment in which all compounds are tested 42 times over a wide range of 14 concentrations so true positives can be found through a dose-response curve. Using the activity status defined by dose curve, the authors analyzed the effect of various data-processing procedures on the sensitivity and specificity of hit detection, the control of error rate, and hit confirmation. A new summary score is proposed and demonstrated to perform well in hit detection and useful in confirmation rate estimation. In general, adjusting for positional effects is beneficial, but a robust test can prevent overadjustment. Error rates estimated based on normal assumption do not agree with actual error rates, for the tails of noise distribution deviate from normal distribution. However, false discovery rate based on empirically estimated null distribution is very close to observed false discovery proportion.  相似文献   

11.
Various in vitro and in vivo techniques exist for study of the microcirculation. Whereas in vivo systems impress with their physiological fidelity, in vitro systems excel in the amount of reduction that can be achieved. Here we introduce the autoperfused ex vivo flow chamber designed to study murine leukocytes and platelets under well-defined hemodynamic conditions. In our model, the murine heart continuously drives the blood flow through the chamber, providing a wide range of physiological shear rates. We used a balance of force approach to quantify the prevailing forces at the chamber walls. Numerical simulations show the flow characteristics in the chamber based on a shear-thinning fluid model. We demonstrate specific rolling of wild-type leukocytes on immobilized P-selectin, abolished by a blocking MAb. When uncoated, the surfaces having a constant shear rate supported individual platelet rolling, whereas on areas showing a rapid drop in shear platelets interacted in previously unreported grapelike conglomerates, suggesting an influence of shear rate on the type of platelet interaction. In summary, the ex vivo chamber amounts to an external vessel connecting the arterial and venous systems of a live mouse. This method combines the strengths of existing in vivo and in vitro systems in the study of leukocyte and platelet function. autoperfused flow chamber; intravital microscopy; inflammation; thrombus formation  相似文献   

12.
Steen HB  Stokke T 《Cytometry》2002,47(3):200-205
BACKGROUND: Cells exclude their own volume of dye solution in the sample flow which carries them through the flow chamber of the flow cytometer, thereby affecting the otherwise constant signal arising from the fluorescence of this solution. Under certain conditions, this phenomenon may significantly influence the fluorescence signal of the cells. MATERIALS AND METHODS: Using the slit scan technique, we studied this phenomenon as observed for monodisperse polystyrene particles in fluorescein solution. RESULTS: The measurements show that dye solution accumulates just in front of the particle and just behind it, with a relative void in between. This phenomenon is most likely caused by the rapid constriction of the flow as it enters the orifice of the nozzle or flow chamber, giving rise to a pulse of fluorescence which adds to that of the particle or cell itself. The magnitude of this artifact depends on the design and dimensions of the nozzle/flow chamber as well as on the rate of sample flow. CONCLUSIONS: The dye exclusion artifact may affect measurements of cells when they are in a dye solution having a fluorescence per unit volume which is significant compared to that of the cells, especially at low sample flow rates.  相似文献   

13.
The understanding of mixing and mass transfers of nutrients and drugs in the small intestine is of prime importance in creating formulations that manipulate absorption and digestibility. We characterised mixing using a dye tracer methodology during spontaneous longitudinal contractions, i.e. pendular activity, in 10 cm segments of living proximal duodenum of the rat maintained ex-vivo. The residence time distribution (RTD) of the tracer was equivalent to that generated by a small number (8) of continuous stirred tank reactors in series. Fluid mechanical modelling, that was based on real sequences of longitudinal contractions, predicted that dispersion should occur mainly in the periphery of the lumen. Comparison with the experimental RTD showed that centriluminal dispersion was accurately simulated whilst peripheral dispersion was underestimated. The results therefore highlighted the potential importance of micro-phenomena such as microfolding of the intestinal mucosa in peripheral mixing. We conclude that macro-scale modeling of intestinal flow is useful in simulating centriluminal mixing, whereas multi-scales strategies must be developed to accurately model mixing and mass transfers at the periphery of the lumen.  相似文献   

14.
塘堰湿地因其良好的生态性能而被广泛用于水稻灌区的排水净化,由于湿地的水力性能及净化效果受到诸多因素影响,客观认识这些因素的作用机理有助于提高湿地设计和运行管理的质量.本文通过示踪剂试验探讨了不同水深(20、40、60 cm)对塘堰湿地水力特性的影响.结果表明: 随着湿地水深的减小,湿地的有效容积率从0.421增加到0.844,水力效率从0.281增加到0.604;在水深较小时(20和40 cm),湿地前半部分的有效容积率达到0.9以上,明显优于湿地整体情况,湿地前半部分的水流混合情况高,接近于完全混合流.通过对原始示踪曲线的标准化分析发现,矩分析参数与水力参数有较好的数值一致性,水力参数与不受尾部截断误差影响的矩指数之间具有良好的一致性.塘堰湿地水深较小时有利于提高湿地的水力性能,试验结果可为今后塘堰湿地的优化设计提供参考.  相似文献   

15.
Flow chambers are commonly used to study microbial adhesion to surfaces under environmentally relevant hydrodynamic conditions. The parallel plate flow chamber (PPFC) is the most common design, and mass transport occurs through slow convective diffusion. In this study, we analyzed four different PPFCs to determine whether the expected hydrodynamic conditions, which control both mass transport and detachment forces, are actually achieved. Furthermore, the different PPFCs were critically evaluated based on the size of the area where the velocity profile was established and constant with a range of flow rates, indicating that valid observations could be made. Velocity profiles in the different chambers were calculated by using a numerical simulation model based on the finite element method and were found to coincide with the profiles measured by particle image velocimetry. Environmentally relevant shear rates between 0 and 10,000 s−1 could be measured over a sizeable proportion of the substratum surface for only two of the four PPFCs. Two models appeared to be flawed in the design of their inlets and outlets and allowed development of a stable velocity profile only for shear rates up to 0.5 and 500 s−1. For these PPFCs the inlet and outlet were curved, and the modeled shear rates deviated from the calculated shear rates by up to 75%. We concluded that PPFCs used for studies of microbial adhesion to surfaces should be designed so that their inlets and outlets are in line with the flow channel. Alternatively, the channel length should be increased to allow a greater length for the establishment of the desired hydrodynamic conditions.  相似文献   

16.
This paper deals with the effects of mixing time on the homogeneity and dispersion performance of adhesive mixtures for inhalation. Interactions between these effects and the carrier size fraction, the type of drug and the inhalation flow rate were studied. Furthermore, it was examined whether or not changes in the dispersion performance as a result of prolonged mixing can be explained with a balance of three processes that occur during mixing, knowing drug redistribution over the lactose carrier; (de-) agglomeration of the drug (and fine lactose) particles; and compression of the drug particles onto the carrier surface. For this purpose, mixtures containing salmeterol xinafoate or fluticasone propionate were mixed for different periods of time with a fine or coarse crystalline lactose carrier in a Turbula mixer. Drug detachment experiments were performed using a classifier based inhaler at different flow rates. Scanning electron microscopy and laser diffraction techniques were used to measure drug distribution and agglomeration, whereas changes in the apparent solubility were measured as a means to monitor the degree of mechanical stress imparted on the drug particles. No clear trend between mixing time and content uniformity was observed. Quantitative and qualitative interactions between the effect of mixing time on drug detachment and the type of drug, the carrier size fraction and the flow rate were measured, which could be explained with the three processes mentioned. Generally, prolonged mixing caused drug detachment to decrease, with the strongest decline occurring in the first 120 minutes of mixing. For the most cohesive drug (salmeterol) and the coarse carrier, agglomerate formation seemed to dominate the overall effect of mixing time at a low inhalation flow rate, causing drug detachment to increase with prolonged mixing. The optimal mixing time will thus depend on the formulation purpose and the choice for other, interacting variables.  相似文献   

17.
The airway system of the lung from the mouth to the pulmonary membrane is modelled by matching a cylindrical model of a pathway through the respiratory region of the lung onto a one-dimensional trumpet model for the conducting airways. The concentration of O2 in gas expired from this model airway system is investigated following an inspiration of air at two different flow rates (10 litres/min and 85 litres/min). In each case, expiration occurs at the same constant flow rate as that during the previous inspiration. The inspirations, which are studied in an earlier paper, are each of 2 sec duration and begin at a lung volume of 2300 ml and a lung oxygen tension of 98 mm Hg. The equations are solved numerically and plots of expired O2 concentration against time and against expired volume are shown. It is found that at 85 litres/min, gas mixing in the lung is complete after about 0.7 sec of expiration whereas at 10 litres/min, about 2.6 sec of expiration is required for complete equilibration. It is suggested that the experimental alveolar plateau slope is not in general caused by a slow approach to equilibrium of gas concentrations; except at very low flow rates in the early part of the concentration/time plateau.  相似文献   

18.
A fluidized-bed biofilm reactor using activated carbon particles of 1.69 mm diameter as the support for biomass growth and molasses as the carbon source is used for wastewater denitrification.The start-up of the reactor was successfully achieved in 1 week by using a liquor from garden soil leaching as the inoculum and a superficial velocity u(0) = 5u(mf). Typical biofilm thickness is 800 mum; therefore covered activated carbon particles have 3.3 mm in diameter.Reactor hydrodynamics was studied by tracer (KCl solution) experiments. The analysis based on residence time distribution theory involved a model with axial dispersion flow and tracer diffusion with linear adsorption inside the biofilm. Peclet numbers higher than 100 were found, allowing the plug flow assumption for the reactor model.Experimental profiles of nitrate and nitrite species were explained by a kinetic model of two consecutive zero-order reactions coupled with substrate diffusion inside the biofilm. Under the operating conditons used thick biofilms were obtained working in a diffusion-controlled regime.Comparison is made with results obtained in the same reactor with sand particles as the support for biomass growth. Activated carbon as the support has the following advantages: good adsorptive characteristics, homogeneous biofilm thickness along the reactor, and easy restart-up of the reactor. (c) 1992 John Wiley & Sons, Inc.  相似文献   

19.
A model of gas exchange by low-tidal-volume (VT), high-frequency ventilation (HFV) is presented, based on the physical principles of dispersion. These are the nonuniformity of the velocity profile and the nonreversible mixing of fluid components in a diffusive manner. A numerical method was used to incorporate these principles into a quantitative model. The airways of a symmetrically bifurcating bronchial-tree model were partitioned in the radial direction into two concentric layers representing the kinematic dispersion by nonuniformity of the velocity profile. Mixing between the layers was invoked in proportion to the diffusivity and local dimensions. The effects of frequency (f), VT, shape of the velocity profile, and bronchial-model configuration were tested in the model, with favorable comparison to available experimental data. The model predicts that for a frequency-dependent velocity profile, the rate of tracer exchange is proportional to the square root of f and to the square of VT-V0, where V0 is a constant small volume under which gas exchange was nil. Intracycle asymmetric mixing is predicted to have a stronger effect on gas exchange than asymmetric velocity profile. Gas exchange when turbulent-flow regime is assumed is predicted to be less for the higher VT values than with laminar flow and with mixing by molecular diffusivity. This model was found to be didactic, flexible, and capable of modeling combinations of factors affecting either one of the two fundamental processes of dispersion.  相似文献   

20.
Unravelling (bio)chemical reaction mechanisms and macromolecular folding pathways on the (sub)microsecond time scale is limited by the time resolution of kinetic instruments for mixing reactants and observation of the progress of the reaction. To improve the mixing time resolution, turbulent four- and two-jet tangential micro-mixers were designed and characterized for their mixing and (unwanted) premixing performances employing acid–base reactions monitored by a pH-sensitive fluorescent dye. The mixing performances of the micro-mixers were determined after the mixing chamber in a free-flowing jet. The premixing behavior in the vortex chamber was assessed in an optically transparent glass–silicon replica of a previously well-characterized stainless-steel four-jet tangential micro-mixer. At the highest flow rates, complete mixing was achieved in 160 ns with only approximately 9% premixing of the reactants. The mixing time of 160 ns is at least 50 times shorter than estimated for other fast mixing devices. Key aspects to the design of ultrafast turbulent micro-mixers are discussed. The integration of these micro-mixers with an optical flow cell would enable the study of the very onset of chemical reactions in general and of enzyme catalytic reactions in particular.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号