首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During synthrophic growth of Hydrogenophaga palleronii (strain S1) and Agrobacterium radiobacter (strain S2) with 4-aminobenzene sulfonate (4ABS) only strain S1 desaminates 4ABS by regioselective 3,4-dioxygenation. The major part of the metabolite catechol-4-sulfonate (4CS) is excreted and further metabolized by strain S2. Although both organisms harbour activities of protocatechuate pathways assimilation of the structural analog 4CS requires first of all enzyme activities with broader substrate specificity: protocatechuate 3,4-dioxygenase and carboxymuconate cycloisomerase activities were identified which in addition to the natural substrates also convert 4CS requires first of all enzyme activities with Carboxymethyl-4-sulfobut-2-en-4-olide (4SL) was identifed as a metabolite. Its further metabolism requires a desulfonating enzyme which eliminates sulfite from (4SL) and generates maleylacetate. Convergence with the 3-oxoadipate pathway is catalyzed by a maleyl acetate reductase, which was identified in cell-free extracts of both organisms S1 and S2. Characteristically, only strain S1 can oxidize sulfite and thus contributes to the interdependence of the two bacteria during growth with 4ABS.  相似文献   

2.
Segments of young inflorescences of Triticum aestivum cv. Chinese Spring (CS), its F1 hybrids with Agropyron trachycaulum and A. scirpeum and backcross derivatives with A. yezoense, A. intermedium and A. junceum, and of a A. yezoense x T. aestivum cv. Wichita hybrid were cultured. Different parts of young spikelets of A. trachycaulum x CS F1 and A. yezoense x Wichita F1 's were also cultured. Percent callus induction was lower in wheat than in the wheat-Agropyron hybrids or backcross derivatives. Percent callus induction from different organs in both hybrids was in the descending order of whole spikelet, spikelet without glumes, rachis, and glumes. No plants could be regenerated from calli of wheat and backcross derivatives except those of CS x A. intermedium combination. Callus induction in hybrids varied from 54 to 84% and plant regeneration from 14 to 31%. The regenerants required no vernalization. Variants including one with top-dense spikes and another with elongated spikelets were recovered. Out of eight A. trachycaulm x CS hybrid regenerants, one had anthers and stigma as opposed to neutral flowers of the original hybrid.  相似文献   

3.
Zhong Z  Chen R  Xing R  Chen X  Liu S  Guo Z  Ji X  Wang L  Li P 《Carbohydrate research》2007,342(16):2390-2395
Sulfanilamide derivatives of chitosan (2-(4-acetamido-2-sulfanimide)-chitosan (HSACS, LSACS), 2-(4-acetamido-2-sulfanimide)-6-sulfo-chitosan (HSACSS, LSACSS) and 2-(4-acetamido-2-sulfanimide)-6-carboxymethyl-chitosan (HSACMCS, LSACMCS)) were prepared using different molecular weights of chitosan (CS), carboxymethyl chitosan (CMCS) and chitosan sulfates (CSS) reacted with 4-acetamidobenzene sulfonyl chloride in dimethylsulfoxide solution. The structures of the derivatives were characterized by FT-IR spectroscopy and elemental analysis, which showed that the substitution degree of sulfanilamide group of HSACS, HSACSS, HSACMCS, LSACS, LSACSS and LSACMCS were 0.623, 0.492, 0.515, 0.576, 0.463 and 0.477, respectively. The solubility of the derivatives (pH<7.5) was higher than that of chitosan (pH<6.5). The antifungal activities of the derivatives against Aiternaria solani and Phomopsis asparagi were evaluated based on the method of Jasso et al. in the experiment. The results indicated that all the prepared sulfanilamide derivatives had a significant inhibiting effect on the investigated fungi in the polymer concentration range from 50 to 500 microg mL(-1). The antifungal activities of the derivatives increased with increasing the molecular weight, concentration or the substitution degree. The sulfanilamide derivatives of CS, CMCS and CSS show stronger antifungal activities than CS, CMCS and CSS.  相似文献   

4.
Four 2-phenylbenzotriazole (PBTA)-type compounds (PBTA-4, PBTA-6, PBTA-7, and PBTA-8) were identified as major mutagens in blue cotton/rayon-adsorbed substances collected at sites below textile dyeing factories or municipal water treatment plants treating domestic waste and effluents from textile dyeing factories in several rivers in Japan. The main purpose of this study is to understand the basis of the roles of human cytochrome P450 (CYP) and N-acetyltransferases (NATs) in genotoxic activation of PBTA derivatives. We compared the induction of umuC gene expression as a measure of genotoxicity using Salmonella typhimurium TA1535/pSK1002 (parental strain), NM2009 (bacterial O-acetyltransferase-overexpressing strain) established in our laboratories. PBTA-4, PBTA-6, PBTA-7, and PBTA-8 induced the umuC gene expression more strongly in the bacterial O-acetyltransferase-overproducing strain than in the parental strain in the presence of rat S9 mix. We determined the activation of PBTA derivatives by cDNA-based recombinant (Trichoplusia ni) systems expressing human or rat cytochrome P450 enzymes (P450 or CYP) and NADPH-P450 reductase using S. typhimurium NM2009. The results showed that human recombinant CYP1A1 enzyme was much more active than CYP1A2 and CYP3A4 in the genotoxic activation of PBTA-4, PBTA-6, PBTA-7, and PBTA-8. Similarly, rat recombinant CYP1A1 enzyme catalyzed the activation of these chemicals at high rates. α-Naphthoflavone, a known inhibitor of CYP1A1, was found to inhibit genotoxic activation caused by PBTA derivatives. We further determined the activation of PBTA derivatives using S. typhimurium NM6001 (human NAT1-expressing strain), S. typhimurium NM6002 (human NAT2-expressing strain), and S. typhimurium NM6000 (O-AT-deficient parent strain) in the presence of S9 mix. PBTA-4 showed almost similar sensitivity in the NAT1-expressing strain and the NAT2-expressing strain, although NAT2-expressing strain exhibited relatively higher sensitivity to PBTA-6, PBTA-7, and PBTA-8 than NAT1-expressing strain. The results support the view that O-acetylation by human NAT1 and NAT2 enzymes is involved in the genotoxic activation of PBTA compounds. These results demonstrate for the first time that human P4501A1 and NATs (NAT1 and NAT2) contribute significantly to the activation of PBTA-type compounds to genotoxic metabolites that induce umuC gene expression in S. typhimurium tester strains.  相似文献   

5.
Aims: Isolation and characterization of nicotine‐degrading bacteria with advantages suitable for the treatment of nicotine‐contaminated water and soil and detection of their metabolites. Methods and Results: A novel nicotine‐degrading bacterial strain was isolated from tobacco field soil. Based on morphological and physiochemical properties and sequence of 16S rDNA, the isolate was identified as Pseudomonas sp., designated as CS3. The optimal culture conditions of strain CS3 for nicotine degradation were 30°C and pH 7·0. However, the strain showed broad pH adaptability with high nicotine‐degrading activity between pH 6·0 and 10·0. Strain CS3 could decompose nicotine nearly completely within 24 h in liquid culture (1000 mg L?1 nicotine) or within 72 h in soil (1000–2500 mg kg?1 nicotine) and could endure up to 4000 mg L?1 nicotine in liquid media and 5000 mg kg?1 nicotine in soil. Degradation tests in flask revealed that the strain had excellent stability and high degradation activity during the repetitive degradation processes. Additionally, three intermediates, 3‐(3,4‐dihydro‐2H‐pyrrol‐5‐yl) pyridine, 1‐methyl‐5‐(3‐pyridyl) pyrrolidine‐2‐ol and cotinine, were identified by GC/MS and NMR analyses. Conclusions: The isolate CS3 showed outstanding nicotine‐degrading characteristics such as high degradation efficiency, strong substrate endurance, broad pH adaptability, and stability and persistence in repetitive degradation processes and may serve as an excellent candidate for applications in the bioaugmentation process to treat nicotine‐contaminated water and soil. Also, detection of nicotine metabolites suggests that strain CS3 might decompose nicotine via a unique nicotine‐degradation pathway. Significance and Impact of the Study: The advantage of applying the isolated strain lies in broad pH adaptability and stability and persistence in repetitive use, the properties previously less focused in other nicotine‐degrading micro‐organisms. The strain might decompose nicotine via a nicotine‐degradation pathway different from those of other nicotine‐utilizing Pseudomonas bacteria reported earlier, another highlight in this study.  相似文献   

6.
The mutualistic interactions in a 4-aminobenzenesulfonate (sulfanilate) degrading mixed bacterial culture were studied. This coculture consisted of Hydrogenophaga palleronii strain S1 and Agrobacterium radiobacter strain S2. In this coculture only strain S1 desaminated sulfanilate to catechol-4-sulfonate, which did not accumulate in the medium but served as growth substrate for strain S2. During growth in batch culture with sulfanilate as sole source of carbon, energy, nitrogen and sulfur, the relative cell numbers (colony forming units) of both strains were almost constant. None of the strains reached a cell number which was more than threefold higher than the cell number of the second strain. A mineral medium with sulfanilate was inoculated with different relative cell numbers of both strains (relative number of colony forming units S1:S2 2200:1 to 1:500). In all cases, growth was found and the proportion of both strains moved towards an about equal value of about 3:1 (strain S1:strain S2). In contrast to the coculture, strain S1 did not grow in a mineral medium in axenic culture with 4-aminobenzenesulfonate or any other simple organic compound tested. A sterile culture supernatant from strain S2 enabled strain S1 to grow with 4-aminobenzenesulfonate. The same growth promoting effect was found after the addition of a combination of 4-aminobenzoate, biotin and vitamin B12. Strain S1 grew with 4-aminobenzenesulfonate plus the three vitamins with about the same growth rate as the mixed culture in a mineral medium. When (resting) cells of strain S1 were incubated in a pure mineral medium with sulfanilate, up to 30% of the oxidized sulfanilate accumulated as catechol-4-sulfonate in the culture medium. In contrast, only minor amounts of catechol-4-sulfonate accumulated when strain S1 was grown with 4ABS in the presence of the vitamins.Abbreviations 4ABS 4-aminobenzenesulfonate - CFU colony forming units - 4CS catechol-4-sulfonate - 4HB 4-hydroxybenzoate  相似文献   

7.
The cultural conditions were investigated for a Brevibacterium flavum mutant, No. 2–190, with a low level of citrate synthase (CS) and with feedback-resistant phosphoenoipyruvate (PEP) carboxylase and aspartokinase (AK). The productivity was increased from 28 to 38 g/1 (as the HC1 salt) with a medium containing 10% glucose. From this strain, pyruvate kinase (PK)-defective mutants were derived and selected as to the inability to grow on ribose. Among them, strain Kl-18 showed higher lysine productivity than the parent under all cultural conditions tested, and produced 43 g/1 of lysine, at maximum. A lysine-producing mutant, No. 536–4, with a feedback- resistant AK was derived from PK-defective strain KH-21 which had low CS activity and a feedback-resistant PEP carboxylase. The mutant was isolated by a new selection method, that is, on the basis of resistance to α-amino-ß-hydroxyvaleric acid, a threonine analogue plus lysine. In this strain, HD had been altered so as to become feedback-resistant at the same time, resulting in the byproduction of threonine and isoleucine. The total amount of these aspartate family amino acids was higher on molar basis than that of lysine produced by strain No. 2–190.  相似文献   

8.
Mycelial yield and production of three trichothecenes, namely T-2 toxin, diacetoxyscirpenol (DAS) and neosolaniol (NEO) were compared in control (CS) and carbendazim-resistant strains (RS) ofFusarium sporotrichioides. Each strain was exposed to graded concentrations of carbendazim (0, 1, 2, and 4 μg/ml media) for 2, 5 and 7 days under shake-culture conditions at an incubation temperature of 25°C. Mycelial yield was significantly (P<0.001) affected by strain, carbendazim concentration and incubation time. The strain differences in mycelial mass at 2 days (P<0.05) became more pronounced at 5 and 7 days of incubation (P<0.001). However, mycelial growth differences between the two strains were greatest following exposure to carbendazim, with the effects becoming more divergent with time. Combined results for the three incubation times showed dose related effects in carbendazim inhibition of T-2 toxin production by CS isolates. In contrast, RS cultures exposed to the 2 μg/ml addition of carbendazim significantly increased T-2 toxin production (P<0.05 or better). At 1 and 4 μg/ml additions, T-2 toxin inhibition occurred but the effect was less marked than in the CS series. RS yielded more DAS than CS at 5 days (P<0.05) and at 7 days (P<0.01) of incubation. The major component of this strain difference arose from the effects of the 2 μg/ml addition of carbendazim (P<0.01). NEO production was also higher in RS than in CS, with the difference becoming progressively more pronounced from day 5 (P<0.05) to day 7 (P<0.01) of incubation. However, these differences reflected enhanced NEO output with carbendazim addition of 4 μg/ml (P<0.05) in day 5 extracts and of both 2 μg/ml (P<0.01) and 4 μg/ml additions (P<0.05) in day 7 samples. Moreover, the ratio of NEO to T-2 toxin production was affected by an interaction involving incubation time, strain and carbendazim dose (P<0.05 or better). On day 5, this ratio was greater in CS exposed to 2 μg/ml, but at 4 μg/ml, the ratio was higher in RS. It is concluded that carbendazim resistance induced genuine differences in the synthesis of T-2 toxin and NEO. It is suggested that the strain difference may reside in the conversion of NEO to T-2 toxin which may be sensitive to fungicide concentration. This would imply that carbendazim resistance induces changes in the terminal rather than initial phases of trichothecene biosynthesis.  相似文献   

9.
Chitosan (CS) is a naturally occurring biopolymer. It has important biological properties such as biocompatibility, antifungal and antibacterial activity, wound healing ability, anticancerous property, anticholesteremic properties, and immunoenhancing effect. Recently, CS nanoparticles have been used for biomedical applications. However, due to the limited solubility of CS in water its water-soluble derivatives are preferred for the above said applications. In this work, the nanoparticles of CS and its water-soluble derivatives such as O-carboxymethyl chitosan (O-CMC) and N,O-carboxymethyl chitosan (N,O-CMC) was synthesized and characterized. In addition, cytotoxicity and antibacterial activity of the prepared nanoparticles was also evaluated for biomedical applications.  相似文献   

10.
Summary FemaleAcheta domestica did not discriminate between pairs of model calling songs (CSs) which differed only in syllable period (SP; Fig. 1). The females selected the louder CS (Fig. 2) or the CS with a faster chirp rate (CR; Fig. 3) when presented with pairs of otherwise identical CSs. A CS with an SP of 50 ms (modal for the male's CS) was preferred when it was 5 dB louder than one with a 60-ms SP while a CS with a 60-ms SP was only consistently chosen when it was 10 dB louder than a CS with a 50-ms SP (Fig. 4). A more intense CS was preferred by the females regardless of whether its CR was faster or slower than that of the CS produced at a lower intensity (Fig. 6). When CSs with SPs of 50 or 60 ms had several different CRs, the females that made a significant choice preferred a CS with a 50-ms SP regardless of whether it was produced at a faster or slower CR (Figs. 7, 8). No significant selection between CSs with 40- and 50-ms SPs resulted when they were produced at different intensities (Fig. 5) or CRs (Fig. 9). Females only significantly chose a CS with a 50-ms SP over those with 40 ms SPs when the 50-ms-SP CS was louder and produced at a different CR (Fig. 10). From these results, it was apparent that SP, intensity, and CR all influenced a female's choice of a CS, and thus the male producing it. However, our results indicate that SP was the most important feature influencing the female's choice and that intensity was more effective than CR.Abbreviations CR chirp rate - CS calling song - POD polar orientation diagram - SP syllable period  相似文献   

11.
A bacterium (strain TJ330) capable of using carbon disulphide (CS2) as its sole energy source in an acidic environment was isolated from a peat biofilter used in experiments to remove CS2 and hydrogen sulphide (H2S) from air. Its physiology and taxonomy are described here. The strain oxidized CS2, H2S and elemental sulphur to sulphate chemolithotrophically. The rate of sulphate production was highest at pH 2. The maximum growth rate constant (micromax) using CS2 as a substrate was 3.9 x 10(-2) h(-1) (generation time 18 h) and the Monod constant (Ks) was 0.97-2.6 micromol l(-1) CS2 (74-198 microg l(-1)), corresponding to an equilibrium with 15-40 ppm CS2 in the headspace. The optimum growth temperature using elemental sulphur as a substrate was 28 degrees C. The strain bears morphological and physiological similarities to Thiobacillus thiooxidans, but the latter is incapable of oxidizing CS2. The strain TJ330 (DSM 8985) showed only 44.2 + 11.8% DNA homology with the type strain T. thiooxidans ATCC 19377, while its homology with T. ferrooxidans ATCC 23270 was 17.1 + 3.4%. The strain TJ 330 represents a high-affinity bacterium which can effectively remove low CS2 concentrations in an acid environment. These properties can be utilized in biotechnological purification applications.  相似文献   

12.
Gene organization and functional motif analyses of the 123 two-component system (2CS) genes in Pseudomonas aeruginosa PAO1 were carried out. In addition, NJ and ML trees for the sensor kinases and the response regulators were constructed, and the distances measured and comparatively analyzed. It was apparent that more than half of the sensor-regulator gene pairs, especially the 2CSs with OmpR-like regulators, are derivatives of a common ancestor and have most likely co-evolved through gene pair duplication. Several of the 2CS pairs, especially those with NarL-like regulators, however, appeared to be relatively divergent. This is supportive of the recruitment model, in which a sensor gene and regulator gene with different phylogenetic history are assembled to form a 2CS. Correlation of the classification of sensor kinases and response regulators provides further support for these models. Upon comparison of the phylogenetic trees comprised of sensors and regulators, we have identified six congruent clades, which represent the group of the most recently duplicated 2CS gene pairs. Analyses of the congruent 2CS pairs of each of the clades revealed that certain paralogous 2CS pairs may carry a redundant function even after a gene duplication event. Nevertheless, comparative analysis of the putative promoter regions of the paralogs suggested that functional redundancy could be prevented by a differential control. Both codon usage and G+C content of these 2CS genes were found to be comparable with those of the P. aeruginosa genome, suggesting that they are not newly acquired genes.Reviewing Editor: Dr. Martin Kreitman  相似文献   

13.
【目的】通过理性改造柠檬酸合酶(citrate synthase,CS)、丙酮酸脱氢酶系E1p (pyruvate dehydrogenase complex,PDHC,编码基因aceE)和ATP-柠檬酸裂解酶(ATP-Citrate lyase,ACL),有效供应胞内丙酮酸和乙酰-CoA,以提高L-亮氨酸产量。【方法】以谷氨酸棒杆菌(Corynebacterium glutamicum)为底盘细胞,分析不同CS和PDHC酶活水平对L-亮氨酸合成的影响。随后,考查协同改造CS和PDHC或引入绿硫菌(Chlorobium tepidum)中ACL对L-亮氨酸合成的影响。【结果】低强度的CS酶活(即重组菌XL-3 P_(dapA-R2)gltA)有利于L-亮氨酸的合成,L-亮氨酸产量达到17.5±0.6 g/L。而改变PDHC酶活水平不利于L-亮氨酸的合成。此外,以启动子P_(dapA-R2)控制CS表达,而以启动子P_(gapA)控制PDHC表达时(即重组菌XL-4),可实现胞内丙酮酸和乙酰-CoA的有效供给,L-亮氨酸产量达到20.2±1.7 g/L,且显著降低副产物产量。若在重组菌XL-4中引入C.tepidum,ACL会显著抑制菌体生长而不利于L-亮氨酸合成,而引入到出发菌XL-3中因胞内丙酮酸和乙酰-CoA得到有效供给,目标重组菌XL-5L-亮氨酸产量达到18.5±1.2 g/L,比出发菌株XL-3增加了14.2%。【结论】重组菌XL-4中因协同控制CS和PDHC酶活,从而实现胞内丙酮酸和乙酰-CoA有效供给,促进L-亮氨酸的合成。该研究结果对后续利用代谢工程技术强化微生物合成L-亮氨酸等支链氨基酸具有重要的参考价值。  相似文献   

14.
The yeast, Saccharomyces cerevisiae, contains two citrate synthase isoenzymes, mitochondrial (CS1) and cytosolic (CS2). In this study, we have examined the metabolic consequences of the absence of CS1, CS2, and both isoenzymes in the respective mutant strains CS1-, CS2-, and CS1-CS2-. No significant differences were found in the growth rates of the parental, CS1-, or CS2- strains when grown in the single carbon sources galactose, glycerol, lactate, pyruvate, or glutamate. However, in nonfermentable carbon sources, the lag period in growth of CS1- was approximately 4 times that of the parental strain and the CS2- mutant. This difference was found even in glutamate. The CS1- mutant failed to grow on acetate in either complete or minimal liquid medium. Total cellular citrate concentration in the CS1- compared to the parental strain was higher when the cells were grown in lactate or pyruvate. On these same substrates, the malate concentration was 2-fold higher in the CS1-mutant when compared to the parental or CS2- strains. The production of 14CO2 by CS1- from [1-14C]acetate was 36% and that from [2-14C]acetate was 9.2% of the amount from the parental or CS2- strains. The 14CO2 production from [1-14C]glutamate was 28% and 20% in CS1- and CS1-CS2-, respectively, compared to the parental strain. Since these results are not easily explained solely by the absence of mitochondrial citrate synthase enzyme, we also determined the activity of some other enzymes of the citric acid cycle and electron transport chain. We found decreased activity of pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, and aconitase, while the rest of the citric acid cycle enzymes and oxidative enzymes did not change significantly. The same changes in enzyme activities were found in two different yeast strains carrying the same citrate synthase mutations.  相似文献   

15.
The factors of bile tolerance (as one among the fundamental characteristics of probiotic bacteria) were determined in lactococci by using plasmid variants. Bile tolerance of Lactococcus lactis wild-type (WT) strains 527 and N7 (determined by viability counts on bile-containing agar) was equivalent to the corresponding plasmid-free derivatives. In contrast, L. lactis WT strain DRC1 had lower bile tolerance than its plasmid-free derivative DRC1021. Plasmid pDR1-1B, extracted from strain DRC1, was introduced into strain DRC1021 by co-transformation with the vector plasmid pGKV21 as an indicator. Strain DRC121 (DRC1021 harboring pGKV21) had good bile tolerance as did strain DRC1021, while strain DRC13 (DRC1021 harboring both pDR1-1B and pGKV21) did not. Fatty acid (FA) composition was different between strains DRC121 and DRC13. The plasmid pDR1-1B or plasmid profile and FA composition are key factors for bile tolerance of strain DRC1, and therefore changing the plasmid profile might be a way of modulating bile tolerance in lactococci.  相似文献   

16.
The high complexity of naturally occurring microbial communities is the major drawback limiting the study of these important biological systems. In this study, a comparison between pure cultures of Pseudomonas reinekei sp. strain MT1 and stable community cultures composed of MT1 plus the addition of Achromobacter xylosoxidans strain MT3 (in a steady‐state proportion 9:1) was used as a model system to study bacterial interactions that take place under simultaneous chemical and oxidative stress. Both are members of a real community isolated from a polluted sediment by enrichment in 4‐chlorosalicylate (4CS). The analysis of dynamic states was carried out at the proteome, metabolic profile and population dynamic level. Differential protein expression was evaluated under exposure to 4CS and high concentrations of toxic intermediates (4‐chlorocatechol and protoanemonin), including proteins from several functional groups and particularly enzymes of aromatic degradation pathways and outer membrane proteins. Remarkably, 4CS addition generated a strong oxidative stress response in pure strain MT1 culture led by alkyl hydroperoxide reductase, while the community showed an enhanced central metabolism response, where A. xylosoxidans MT3 helped to prevent toxic intermediate accumulation. A significant change in the outer membrane composition of P. reinekei MT1 was observed during the chemical stress caused by 4CS and in the presence of A. xylosoxidans MT3, highlighting the expression of the major outer membrane protein OprF, tightly correlated to 4CC concentration profile and its potential detoxification role.  相似文献   

17.
Zhong Z  Xing R  Liu S  Wang L  Cai S  Li P 《Carbohydrate research》2008,343(3):566-570
Three different acyl thiourea derivatives of chitosan (CS) were synthesized and their structures were characterized by FT-IR spectroscopy and elemental analysis. The antimicrobial behaviors of CS and its derivatives against four species of bacteria (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Sarcina) and four crop-threatening pathogenic fungi (Alternaria solani, Fusarium oxysporum f. sp. vasinfectum, Colletotrichum gloeosporioides (Penz.) Saec, and Phyllisticta zingiberi) were investigated. The results indicated that the antimicrobial activities of the acyl thiourea derivatives are much better than that of the parent CS. The minimum value of MIC and MBC of the derivatives against E. coli was 15.62 and 62.49 microg/mL, respectively. All of the acyl thiourea derivatives had a significant inhibitory effect on the fungi in concentrations of 50-500 microg/mL; the maximum inhibitory index was 66.67%. The antifungal activities of the chloracetyl thiourea derivatives of CS are noticeably higher than the acetyl and benzoyl thiourea derivatives. The degree of grafting of the acyl thiourea group in the derivatives was related to antifungal activity; higher substitution resulted in stronger antifungal activity.  相似文献   

18.
The mutant strain M5N1 CS of Rhizobium meliloti produces, in a Rhizobium complete medium supplemented with fructose and sucrose, a partially acetylated homopolymer of D -glucuronic acid residues linked β-(1 → 4). This polysaccharide forms thermoreversible gels with monovalent salts and thermally stable gels with divalent salts. In order to define the different levels of structural characterization, modeling simulations were performed for both the regular (1 → 4)-β-D -glucuronan and the acetylated derivatives. This required the evaluation of the accessible conformational space for the 16 disaccharides. Detailed conformational analysis was accomplished using the flexible residue of the MM3 molecular mechanics procedure and the results were used to access the configurational statistics of representative polysaccharide chains. Within the potential energy surfaces calculated for each disaccharide, several low energy conformers can be identified. When these conformations are extrapolated to regular polysaccharide structures, they generate polymers with right- and left-handed chirality along with a 2-fold axis. This later arrangement (n = 2, h = 5.16 Å) closely corresponds to that derived from a fiber x-ray diffraction investigation. The insertion of acetyl groups induces changes in the helical features of the polymer. As for the simulation of the configurational properties of (1 → 4)-β-D -glucuronan, an extended disordered chain having a persistence length of 105 Å (corresponding to 22 monomers) is predicted. This agrees with previous conclusions derived from solution study. The inclusion of varying amounts of acetyl groups only slightly perturbs the calculated persistence length. © 1998 John Wiley & Sons, Inc. Biopoly 45: 165–175, 1998  相似文献   

19.
The effect of five 3-(2-alkoxyphenylcarbamoyloxy)chinuclidium chlorides (alkoxy = butoxy-octyloxy) on survival of a wild-type strain and repair-deficient strains ofChlamydomonas reinhardtii was studied. There was a direct relationship with increased toxic effects in the algal strains as a function of the elongation of the alkyl chain of the alkoxy substituents of the phenylcarbamate acid derivatives. Repairdeficient strains were more sensitive than the wild-type strain. The recombination-deficient strain uvs10 expressed the highest sensitivity to the test agents. This suggests that a gene responsible for recombination repair is involved in an important role in DNA repair of damages induced inC. reinhardtii by the phenylcarbamic esters.  相似文献   

20.
Ten different acetyl phenyl-thiosemicarbazone derivatives of chitosan were synthesized. Their structures were characterized by FT-IR and elemental analysis. The antimicrobial behaviors of CS and its derivatives against four species of bacteria and four crop-threatening pathogenic fungi were investigated in this paper. The results indicated that the antimicrobial activities of acetyl phenyl-thiosemicarbazone derivatives are much better than that of pure CS. The minimum value of MIC and MBC of the derivatives against Escherichia coli was 7.03 and 225 μg mL(-1), respectively. All of the derivatives had significant inhibiting effect on the investigated fungi in the concentration of 50-500 μg mL(-1), and the maximum inhibitory index was 93.10%. The bioactivities of the derivatives have relationship with the grafted groups with different inductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号