首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The association between HLA alleles (A, B, DRB1), haplotypes and AIDS progression in HIV-1 infected patients was investigated by analyzing and comparing the differences gene frequencies of HLA alleles (A, B, DRB1) and haplotypes in HIV-1 infected and AIDS individuals in Hubei province of China. Four hundred and twenty- four HIV-1 seropositive individuals were divided into two groups: HIV-1 infected group and AIDS patient group, according to diagnostic criteria. HLA-A, B, and DRB1 allele typing was performed using polymerase chain reaction-sequence-specific oligonucleotide (PCR-SSOP) and polymerase chain reaction-sequencing based typing (PCR-SBT) techniques. Our study revealed that B*57:01 seemed resistant to AIDS progression, and the presence of DRB1*04:05 was associated with a poor disease outcome in HIV-1 infection. These associations were independent of age, sex, and transmission route of the host. No association was observed between HLA-A, B, DRB1 homozygotes, HLA-Bw4, Bw6 serological types and AIDS progression. We concluded that HLA gene polymorphism has a significant role in HIV-1 infection/AIDS progression. This observational study may open up avenues for precision medicine in the personalized prevention and treatment of AIDS.  相似文献   

2.
Human apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (Apobec3) antiretroviral factors cause hypermutation of proviral DNA leading to degradation or replication-incompetent HIV-1. However, HIV-1 viral infectivity factor (Vif) suppresses Apobec3 activity through the Cullin 5-Elongin B-Elongin C E3 ubiquitin ligase complex. We examined the effect of genetic polymorphisms in the CUL5 gene (encoding Cullin 5 protein) on AIDS disease progression in five HIV-1 longitudinal cohorts. A total of 12 single nucleotide polymorphisms (SNPs) spanning 93 kb in the CUL5 locus were genotyped and their haplotypes inferred. A phylogenetic network analysis revealed that CUL5 haplotypes were grouped into two clusters of evolutionarily related haplotypes. Cox survival analysis and mixed effects models were used to assess time to AIDS outcomes and CD4(+) T cell trajectories, respectively. Relative to cluster I haplotypes, the collective cluster II haplotypes were associated with more rapid CD4(+) T cell loss (relative hazards [RH] = 1.47 and p = 0.009), in a dose-dependent fashion. This effect was mainly attributable to a single cluster II haplotype (Hap10) (RH = 2.49 and p = 0.00001), possibly due to differential nuclear protein-binding efficiencies of a Hap10-specifying SNP as indicated by a gel shift assay. Consistent effects were observed for CD4(+) T cell counts and HIV-1 viral load trajectories over time. The findings of both functional and genetic epidemiologic consequences of CUL5 polymorphism on CD4(+) T cell and HIV-1 levels point to a role for Cullin 5 in HIV-1 pathogenesis and suggest interference with the Vif-Cullin 5 pathway as a possible anti-HIV-1 therapeutic strategy.  相似文献   

3.
A final step in retrovirus assembly, particle release from the cell, is modulated by a small motif in the Gag protein known as a late domain. Recently, human immunodeficiency virus type 1 (HIV-1) and Moloney murine leukemia virus (M-MuLV) were shown to require components of the cellular vacuolar protein sorting (VPS) machinery for efficient viral release. HIV-1 interacts with the VPS pathway via an association of HIV-1 Gag with TSG101, a component of the cellular complexes involved in VPS. Equine infectious anemia virus (EIAV) is unique among enveloped viruses studied to date because it utilizes a novel motif, YPDL in Gag, as a late domain. Our analysis of EIAV assembly demonstrates that EIAV Gag release is blocked by inhibition of the VPS pathway. However, in contrast to HIV-1, EIAV Gag release is insensitive to TSG101 depletion and EIAV particles do not contain significant levels of TSG101. Finally, we demonstrate that fusing EIAV Gag directly with another cellular component of the VPS machinery, VPS28, can restore efficient release of an EIAV Gag late-domain mutant. These results provide evidence that retroviruses can interact with the cellular VPS machinery in several different ways to accomplish particle release.  相似文献   

4.
Efficient human immunodeficiency virus type 1 (HIV-1) budding requires an interaction between the PTAP late domain in the viral p6(Gag) protein and the cellular protein TSG101. In yeast, Vps23p/TSG101 binds both Vps28p and Vps37p to form the soluble ESCRT-I complex, which functions in sorting ubiquitylated protein cargoes into multivesicular bodies. Human cells also contain ESCRT-I, but the VPS37 component(s) have not been identified. Bioinformatics and yeast two-hybrid screening methods were therefore used to identify four novel human proteins (VPS37A-D) that share weak but significant sequence similarity with yeast Vps37p and to demonstrate that VPS37A and VPS37B bind TSG101. Detailed studies produced four lines of evidence that human VPS37B is a Vps37p ortholog. 1) TSG101 bound to several different sites on VPS37B, including a putative coiled-coil region and a PTAP motif. 2) TSG101 and VPS28 co-immunoprecipitated with VPS37B-FLAG, and the three proteins comigrated together in soluble complexes of the correct size for human ESCRT-I ( approximately 350 kDa). 3) Like TGS101, VPS37B became trapped on aberrant endosomal compartments in the presence of VPS4A proteins lacking ATPase activity. 4) Finally, VPS37B could recruit TSG101/ESCRT-I activity and thereby rescue the budding of both mutant Gag particles and HIV-1 viruses lacking native late domains. Further studies of ESCRT-I revealed that TSG101 mutations that inhibited PTAP or VPS28 binding blocked HIV-1 budding. Taken together, these experiments define new components of the human ESCRT-I complex and characterize several TSG101 protein/protein interactions required for HIV-1 budding and infectivity.  相似文献   

5.
Human APOBEC3 cytidine deaminases are intrinsic resistance factors to HIV-1. However, HIV-1 encodes a viral infectivity factor (Vif) that degrades APOBEC3 proteins. In vitro APOBEC3F (A3F) anti-HIV-1 activity is weaker than A3G but is partially resistant to Vif degradation unlike A3G. It is unknown whether A3F protein affects HIV-1 disease in vivo. To assess the effect of A3F gene on host susceptibility to HIV- acquisition and disease progression, we performed a genetic association study in six well-characterized HIV-1 natural cohorts. A common six-Single Nucleotide Polymorphism (SNP) haplotype of A3F tagged by a codon-changing variant (p. I231V, with allele (V) frequency of 48% in European Americans) was associated with significantly lower set-point viral load and slower rate of progression to AIDS (Relative Hazards (RH) = 0.71, 95% CI: 0.56, 0.91) and delayed development of pneumocystis pneumonia (PCP) (RH = 0.53, 95% CI: 0.37–0.76). A validation study in the International Collaboration for the Genomics of HIV (ICGH) showed a consistent association with lower set-point viral load. An in vitro assay revealed that the A3F I231V variant may influence Vif mediated A3F degradation. Our results provide genetic epidemiological evidence that A3F modulates HIV-1/AIDS disease progression.  相似文献   

6.
Human apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (Apobec3) antiretroviral factors cause hypermutation of proviral DNA leading to degradation or replication-incompetent HIV-1. However, HIV-1 viral infectivity factor (Vif) suppresses Apobec3 activity through the Cullin 5-Elongin B-Elongin C E3 ubiquitin ligase complex. We examined the effect of genetic polymorphisms in the CUL5 gene (encoding Cullin 5 protein) on AIDS disease progression in five HIV-1 longitudinal cohorts. A total of 12 single nucleotide polymorphisms (SNPs) spanning 93 kb in the CUL5 locus were genotyped and their haplotypes inferred. A phylogenetic network analysis revealed that CUL5 haplotypes were grouped into two clusters of evolutionarily related haplotypes. Cox survival analysis and mixed effects models were used to assess time to AIDS outcomes and CD4+ T cell trajectories, respectively. Relative to cluster I haplotypes, the collective cluster II haplotypes were associated with more rapid CD4+ T cell loss (relative hazards [RH] = 1.47 and p = 0.009), in a dose-dependent fashion. This effect was mainly attributable to a single cluster II haplotype (Hap10) (RH = 2.49 and p = 0.00001), possibly due to differential nuclear protein–binding efficiencies of a Hap10-specifying SNP as indicated by a gel shift assay. Consistent effects were observed for CD4+ T cell counts and HIV-1 viral load trajectories over time. The findings of both functional and genetic epidemiologic consequences of CUL5 polymorphism on CD4+ T cell and HIV-1 levels point to a role for Cullin 5 in HIV-1 pathogenesis and suggest interference with the Vif-Cullin 5 pathway as a possible anti-HIV-1 therapeutic strategy.  相似文献   

7.
Apoptosis has been suggested as a major mechanism for the CD4+ T-lymphocyte depletion observed in patients infected with human immunodeficiency virus 1 (HIV-1). To evaluate the impact of genetic variations to apoptosis during progression of acquired immunodeficiency syndrome (AIDS), we have performed an extensive genetic analysis of Fas and Fas ligand (FasL) genes. The coding regions and promoters of these genes were resequenced in a cohort of 212 HIV-1-seropositive patients presenting extreme disease phenotypes and 155 healthy controls of Caucasian origin. Overall, 33 single nucleotide polymorphisms (SNPs) with an allele frequency >1% were identified and evaluated for their association with disease progression. Among them, 14 polymorphisms were newly characterized. We did not find any statistically significant association of Fas and FasL polymorphisms and haplotypes with AIDS progression.  相似文献   

8.
We tested the association of MHC ancestral haplotypes with rapid or slow progression to AIDS by comparing their frequencies in the French genetics of resistance/susceptibility to immunodeficiency virus cohort with that reported in a control French population. Seven ancestral haplotypes were identified in the genetics of resistance/susceptibility to immunodeficiency virus cohort with a frequency >1%. The 8.1 (odds ratio (OR) = 3, p = 0.006), 35.1 (OR = 5.7, p = 0.001), and 44.2 (OR = 3.4, p = 0.007) ancestral haplotypes were associated with rapid progression, whereas the 35.2 (OR = 3.6, p = 0.001), 44.1 (OR = 5.4, p < 10(-4)), and 57.1 (OR = 5.8, p < 10(-4)) ancestral haplotypes were associated with slow progression to AIDS. Although the frequency of each ancestral haplotype is low in the population, the OR were quite higher than those previously obtained for single HLA allele associations, with some p values as low as 10(-4). The analysis of the recombinant fragments of these haplotypes allowed the identification of the MHC regions in the 35.1, 35.2, and 44.2 haplotypes associated with rapid progression to AIDS and the MHC regions of the 44.1 and 57.1 haplotypes associated with slow progression to AIDS. Previous studies have identified single HLA alleles associated with disease progression. Our results on recombinant fragments confirm the direct role of HLA-B35 in rapid progression. Associations with HLA-A29 and -B57 might be due to linkage disequilibrium with other causative genes within the MHC region.  相似文献   

9.
Natural killer (NK) cells are regulated by interactions between polymorphic killer immunoglobulin-like receptors (KIR) and human leukocyte antigens (HLA). Genotypic combinations of KIR3DS1/L1 and HLA Bw4-80I were previously shown to influence HIV-1 disease progression, however other KIR genes have not been well studied. In this study, we analyzed the influence of all activating and inhibitory KIR, in association with the known HLA inhibitory KIR ligands, on markers of disease progression in a West African population of therapy-naïve HIV-1 infected subjects. We observed a significant association between carriage of a group B KIR haplotype and lower CD4+ T cell counts, with an additional effect for KIR3DS1 within the frame of this haplotype. In contrast, we found that individuals carrying genes for the inhibitory KIR ligands HLA-Bw4 as well as HLA-C1 showed significantly higher CD4+ T cell counts. These associations were independent from the viral load and from individual HIV-1 protective HLA alleles. Our data suggest that group B KIR haplotypes and lack of specific inhibitory KIR ligand genes, genotypes considered to favor NK cell activation, are predictive of HIV-1 disease progression.  相似文献   

10.
Human leukocyte antigen (HLA) class I alleles can be grouped into supertypes according to their shared peptide binding properties. We examined alleles of the HLA-B58 supertype (B58s) in treatment-na?ve human immunodeficiency virus type 1 (HIV-1)-seropositive Africans (423 Zambians and 202 Rwandans). HLA-B and HLA-C alleles were resolved to four digits by a combination of molecular methods, and their respective associations with outcomes of HIV-1 infection were analyzed by statistical procedures appropriate for continuous or categorical data. The effects of the individual alleles on natural HIV-1 infection were heterogeneous. In HIV-1 subtype C-infected Zambians, the mean viral load (VL) was lower among B*5703 (P = 0.01) or B*5703-Cw*18 (P < 0.001) haplotype carriers and higher among B*5802 (P = 0.02) or B*5802-Cw*0602 (P = 0.03) carriers. The B*5801-Cw*03 haplotype showed an association with low VL (P = 0.05), whereas B*5801 as a whole did not. Rwandans with HIV-1 subtype A infection showed associations of B*5703 and B*5802 with slow (P = 0.06) and rapid (P = 0.003) disease progression, respectively. In neither population were B*1516-B*1517 alleles associated with more favorable responses. Overall, B58s alleles, individually or as part of an HLA-B-HLA-C haplotype, appeared to have a distinctive impact on HIV-1 infection among native Africans. As presently defined, B58s alleles cannot be considered uniformly protective against HIV/AIDS in every population.  相似文献   

11.
Retrovirus budding is greatly stimulated by the presence of Gag sequences known as late or L domains. The L domain of human immunodeficiency virus type 1 (HIV-1) maps to a highly conserved Pro-Thr-Ala-Pro (PTAP) sequence in the p6 domain of Gag. We and others recently observed that the p6 PTAP motif interacts with the cellular endosomal sorting protein TSG101. Consistent with a role for TSG101 in virus release, we demonstrated that overexpressing the N-terminal, Gag-binding domain of TSG101 (TSG-5') suppresses HIV-1 budding by blocking L domain function. To elucidate the role of TSG101 in HIV-1 budding, we evaluated the significance of the binding between Gag and TSG-5' on the inhibition of HIV-1 release. We observed that a mutation in TSG-5' that disrupts the Gag/TSG101 interaction suppresses the ability of TSG-5' to inhibit HIV-1 release. We also determined the effect of overexpressing a panel of truncated TSG101 derivatives and full-length TSG101 (TSG-F) on virus budding. Overexpressing TSG-F inhibits HIV-1 budding; however, the effect of TSG-F on virus release does not require Gag binding. Furthermore, overexpression of the C-terminal portion of TSG101 (TSG-3') potently inhibits budding of not only HIV-1 but also murine leukemia virus. Confocal microscopy data indicate that TSG-F and TSG-3' overexpression induces an aberrant endosome phenotype; this defect is dependent upon the C-terminal, Vps-28-binding domain of TSG101. We propose that TSG-5' suppresses HIV-1 release by binding PTAP and blocking HIV-1 L domain function, whereas overexpressing TSG-F or TSG-3' globally inhibits virus release by disrupting the cellular endosomal sorting machinery. These results highlight the importance of TSG101 and the endosomal sorting pathway in virus budding and suggest that inhibitors can be developed that, like TSG-5', target HIV-1 without disrupting endosomal sorting.  相似文献   

12.

Background

Previous studies have demonstrated an association between polymorphisms in the regulatory regions of Cyclophilin A (CypA) and susceptibility to both HIV-1 infection and disease progression. Here we studied whether these polymorphisms are associated with susceptibility to HIV-1 infection and disease progression in the Amsterdam Cohort on HIV-1 infection and AIDS (ACS) in a group of men having sex with men (MSM) and drug users (DU).

Methodology/Principal Findings

We screened participants of the ACS for the C1604G and A1650G polymorphisms in the regulatory regions of CypA. The prevalence of the 1650G allele was significantly higher in high risk seronegative MSM than in HIV-1 infected MSM. However, C1604G or A1650G were not associated with the clinical course of infection in MSM of the ACS. Interestingly, participants of the ACS-DU who carried the 1604G allele showed a significantly accelerated progression when viral RNA load above 104.5 copies per ml plasma was used as an endpoint in survival analysis.

Conclusion/Significance

The results obtained in this study suggest that the A1650G polymorphism in the regulatory region of the CypA gene may be associated with protection from HIV-1 infection, while the 1604G allele may have a weak association with the clinical course of infection in DU.  相似文献   

13.
14.
15.
CD8+ T lymphocytes have been shown to produce unidentified soluble factors active in suppressing HIV-1 replication. In this study, we purified an HIV-1 suppressing activity from the culture supernatant of an immortalized CD8+ T cell clone, derived from an HIV-1 infected long-term nonprogressor, and identified this activity as the amino-terminal fragment (ATF) of urokinase-type plasminogen activator (uPA). ATF is catalytically inactive, but suppresses the release of viral particles from the HIV-1 infected cell lines via binding to its receptor CD87. In contrast, cell proliferation and the secretion of an HIV-1 LTR driven reporter gene product were not affected by ATF. These findings suggest that ATF may inhibit the assembly and budding of HIV-1, which provides a novel therapeutic strategy for AIDS.  相似文献   

16.
The cellular ESCRT pathway functions in membrane remodeling events that accompany endosomal protein sorting, cytokinesis, and enveloped RNA virus budding. In the last case, short sequence motifs (termed late domains) within human immunodeficiency virus type 1 (HIV-1) p6(Gag) bind and recruit two ESCRT pathway proteins, TSG101 and ALIX, to facilitate virus budding. We now report that overexpression of the HECT ubiquitin E3 ligase, NEDD4L/NEDD4-2, stimulated the release of HIV-1 constructs that lacked TSG101- and ALIX-binding late domains, increasing infectious titers >20-fold. Furthermore, depletion of endogenous NEDD4L inhibited the release of these crippled viruses and led to cytokinesis defects. Stimulation of virus budding was dependent upon the ubiquitin ligase activity of NEDD4L and required only the minimal HIV-1 Gag assembly regions, demonstrating that Gag has ubiquitin-dependent, cis-acting late domain activities located outside of the p6 region. NEDD4L stimulation also required TSG101 and resulted in ubiquitylation of several ESCRT-I subunits, including TSG101. Finally, we found that TSG101/ESCRT-I was required for efficient release of Mason-Pfizer monkey virus, which buds primarily by using a PPXY late domain to recruit NEDD4-like proteins. These observations suggest that NEDD4L and possibly other NEDD4-like proteins can ubiquitylate and activate ESCRT-I to function in virus budding.  相似文献   

17.
We characterized the nucleotide sequences of PCR-amplified mitochondrial COI fragments of 147 silkworm (Bombyx mori) strains that have been maintained in the National Institute of Agrobiological Sciences. Coding sequences (714 bp) of the 147 COI fragments were classified into eight haplotypes based on nucleotide differences at eight segregating sites. No length variation was identified in this region. The 5'-noncoding region showed different features, wherein changes in the number of Ts in the T-stretch, together with two base substitutions, were observed. As a result, the 147 COI noncoding sequences were classified into six haplotypes. Combining the coding and noncoding regions, we identified 14 haplotypes. One of the 14 haplotypes, Hap1A was exclusively abundant in the Japanese native strain class, while this haplotype was less frequent in the other three native strain classes. This finding suggests that the Japanese strain class underwent significant genetic differentiation from the Chinese, European, and moltinism classes, when the each class is regarded as a population. Comparison of the nucleotide sequences to those of B. mandarina (which inhabits Japan) revealed changes that are significantly larger than those within either B. mori or B. mandarina. Furthermore, we detected no common haplotypes between them, which suggests the concept of suppressed gene flow between the two species.  相似文献   

18.
The innate antiviral factor TRIM5alpha restricts the replication of some retroviruses through its interaction with the viral capsid protein, leading to abortive infection. While overexpression of human TRIM5alpha results in modest restriction of human immunodeficiency virus type 1 (HIV-1), this inhibition is insufficient to block productive infection of human cells. We hypothesized that polymorphisms within TRIM5 may result in increased restriction of HIV-1 infection. We sequenced the TRIM5 gene (excluding exon 5) and the 4.8-kb 5' putative regulatory region in genomic DNA from 110 HIV-1-infected subjects and 96 exposed seronegative persons, along with targeted gene sequencing in a further 30 HIV-1-infected individuals. Forty-eight single nucleotide polymorphisms (SNPs), including 20 with allele frequencies of >1.0%, were identified. Among these were two synonymous and eight nonsynonymous coding polymorphisms. We observed no association between TRIM5 polymorphism in HIV-1-infected subjects and their set-point viral load after acute infection, although one TRIM5 haplotype was weakly associated with more rapid CD4(+) T-cell loss. Importantly, a TRIM5 haplotype containing the nonsynonymous SNP R136Q showed increased frequency among HIV-1-infected subjects relative to exposed seronegative persons, with an odds ratio of 5.49 (95% confidence interval = 1.83 to 16.45; P = 0.002). Nonetheless, we observed no effect of individual TRIM5alpha nonsynonymous mutations on the in vitro HIV-1 susceptibility of CD4(+) T cells. Therefore, any effect of TRIM5alpha polymorphism on HIV-1 infection in primary lymphocytes may depend on combinations of SNPs or on DNA sequences in linkage disequilibrium with the TRIM5alpha coding sequence.  相似文献   

19.
20.
Humans differ substantially with respect to susceptibility to human immunodeficiency virus type 1 (HIV-1). We evaluated variants of nine host genes participating in the viral life cycle for their role in modulating HIV-1 infection. Alleles were assessed ex vivo for their impact on viral replication in purified CD4 T cells from healthy blood donors (n = 128). Thereafter, candidate alleles were assessed in vivo in a cohort of HIV-1-infected individuals (n = 851) not receiving potent antiretroviral therapy. As a benchmark test, we tested 12 previously reported host genetic variants influencing HIV-1 infection as well as single nucleotide polymorphisms in the nine candidate genes. This led to the proposition of three alleles of PML, TSG101, and PPIA as potentially associated with differences in progression of HIV-1 disease. In a model considering the combined effects of new and previously reported gene variants, we estimated that their effect might be responsible for lengthening or shortening by up to 2.8 years the period from 500 CD4 T cells/mul to <200 CD4 T cells/mul.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号