首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously identified Rho-associated protein kinase (Rho-kinase) as a specific effector of Rho. In this study, we identified collapsin response mediator protein-2 (CRMP-2), as a novel Rho-kinase substrate in the brain. CRMP-2 is a neuronal protein whose expression is up-regulated during development. Rho-kinase phosphorylated CRMP-2 at Thr-555 in vitro. We produced an antibody that specifically recognizes CRMP-2 phosphorylated at Thr-555. Using this antibody, we found that Rho-kinase phosphorylated CRMP-2 downstream of Rho in COS7 cells. Phosphorylation of CRMP-2 was observed in chick dorsal root ganglion neurons during lysophosphatidic acid (LPA)-induced growth cone collapse, whereas the phosphorylation was not detected during semaphorin-3A-induced growth cone collapse. Both LPA-induced CRMP-2 phosphorylation and LPA-induced growth cone collapse were inhibited by Rho-kinase inhibitor HA1077 or Y-32885. LPA-induced growth cone collapse was also blocked by a dominant negative form of Rho-kinase. On the other hand, semaphorin-3A-induced growth cone collapse was not inhibited by a dominant negative form of Rho-kinase. Furthermore, overexpression of a mutant CRMP-2 in which Thr-555 was replaced by Ala significantly inhibited LPA-induced growth cone collapse. These results demonstrate the existence of Rho-kinase-dependent and -independent pathways for growth cone collapse and suggest that CRMP-2 phosphorylation by Rho-kinase is involved in the former pathway.  相似文献   

2.
3.
The collapsin response mediator proteins (CRMPs) are highly expressed in the vertebrate nervous system. CRMP2 has been shown to function in Semaphorin and lysophosphatidic acid induced growth cone collapse. Correspondingly, the highest levels of CRMP2 protein are found in the distal portion of growing axons. To understand the role of CRMP2 during embryonic development we have documented its expression pattern in zebrafish embryos at multiple stages. We find that CRMP2 is expressed in the major neural clusters of the embryonic brain during the primary stages of neurogenesis. From 20 somites through 30 hpf CRMP2 is expressed in the dorsal rostral cluster of the telencephalon, the ventral rostral cluster of the diencephalon, the ventral caudal cluster of the mesencephalon, and the hindbrain clusters. CRMP2 is also expressed in the trigeminal sensory ganglia and the Rohon Beard cells of the neural tube from 15 somites. By 48 hpf, we find expression of CRMP2 throughout the developing brain, trigeminal sensory ganglia, and Rohon Beard cells. CRMP2 is also detected in the retinal ganglion cell layer of the eye, and in the otic vesicle. Finally, we have compared the expression of CRMP2 to PlexinA4, a Semaphorin receptor expressed in sensory neurons, and find that their expression partially overlaps.  相似文献   

4.
The semaphorin-signaling transducer collapsin response mediator protein 2 (CRMP2) has been identified in the nervous system where it mediates Sema3A-induced growth cone navigation. In the present study, we provide first evidence that CRMP2 is present in the immune system and plays a critical role in T lymphocyte function. CRMP2 redistribution at the uropod in polarized T cells, a structural support of lymphocyte motility, suggests that it may regulate T cell migration. This was evidenced in primary T cells by small-interfering RNA-mediated CRMP2 gene silencing and blocking Ab, as well as CRMP2 overexpression in Jurkat T cells tested in a chemokine- and semaphorin-mediated transmigration assay. Expression analysis in PBMC from healthy donors showed that CRMP2 is enhanced in cell subsets bearing the activation markers CD69+ and HLA-DR+. Heightened expression in T lymphocytes of patients suffering from neuroinflammatory disease with enhanced T cell-transmigrating activity points to a role for CRMP2 in pathogenesis. The elucidation of the signals and mechanisms that control this pathway will lead to a better understanding of T cell trafficking in physiological and pathological situations.  相似文献   

5.
Axonal growth cone guidance is a central process in nervous system development and repair. Collapsin response mediator protein 2 (CRMP-2) is a neurite extension-promoting neuronal cytosolic molecule involved in the signalling of growth inhibitory cues from external stimuli, such as semaphorin 3A and the myelin-associated glycoprotein. We have determined the crystal structure of human tetrameric CRMP-2, which is structurally related to the dihydropyriminidases; however, the active site is not conserved. The wealth of earlier functional mapping data for CRMP-2 are discussed in light of the three-dimensional structure of the protein. The differences in oligomerisation interfaces between CRMP-1 and CRMP-2 are used to model CRMP-1/2 heterotetramers.  相似文献   

6.
Elevated glycogen synthase kinase-3 (GSK-3) activity is associated with Alzheimer disease. We have found that collapsin response mediator proteins (CRMP) 2 and 4 are physiological substrates of GSK-3. The amino acids targeted by GSK-3 comprise a hyperphosphorylated epitope first identified in plaques isolated from Alzheimer brain. Expression of wild type CRMP2 in primary hippocampal neurons or SH-SY5Y neuroblastoma cells promotes axon elongation. However, a GSK-3-insensitive CRMP2 mutant has dramatically reduced ability to promote axon elongation, a similar effect to pharmacological inhibition of GSK-3. Hence, we propose that phosphorylation of CRMP proteins by GSK-3 regulates axon elongation. This work provides a direct connection between hyperphosphorylation of these residues and elevated GSK-3 activity, both of which are observed in Alzheimer brain.  相似文献   

7.
Ena/VASP proteins play important roles in axon outgrowth and guidance. Ena/VASP activity regulates the assembly and geometry of actin networks within fibroblast lamellipodia. In growth cones, Ena/VASP proteins are concentrated at filopodia tips, yet their role in growth cone responses to guidance signals has not been established. We found that Ena/VASP proteins play a pivotal role in formation and elongation of filopodia along neurite shafts and growth cone. Netrin-1-induced filopodia formation was dependent upon Ena/VASP function and directly correlated with Ena/VASP phosphorylation at a regulatory PKA site. Accordingly, Ena/VASP function was required for filopodial formation from the growth cone in response to global PKA activation. We propose that Ena/VASP proteins control filopodial dynamics in neurons by remodeling the actin network in response to guidance cues.  相似文献   

8.
9.
Collapsin response mediator proteins (CRMPs also known as TUC, Drp, Ulip, TOAD-64) are cytosolic phosphoproteins that are involved in signal transduction during axon growth and in cytoskeletal dynamics. Here we report cloning and mRNA expression patterns of CRMP-1, -2, -3, -4 and, owing to a genome duplication in teleosts, two homologs of CRMP-5 (CRMP-5a and -5b) in embryonic zebrafish at 16 and 24 h post-fertilization (hpf). CRMPs are evolutionarily conserved and zebrafish CRMPs show amino acid identities of 76–90% with their homologs in humans, with the exception of CRMP-3, which shows only 67% homology. Between 16 and 24 hpf, expression of CRMPs generally increased in many regions of the CNS undergoing neuronal differentiation and axonogenesis, but not in the proliferative ventricular zone. Structures that were typically labeled by most, but not all the CRMP probes were the telencephalon, the nucleus of the tract of the post-optic commissure, the epiphysis, the nucleus of the medial longitudinal fascicle, clusters of hindbrain neurons, cranial ganglia, as well as Rohon-Beard neurons. No expression of CRMP mRNAs was observed outside the nervous system. Thus, expression patterns of different CRMP family members correlate with neuronal differentiation and axonogenesis in embryonic zebrafish.  相似文献   

10.
Collapsin response mediator protein-2 (CRMP-2) is a member of the CRMP/TOAD/Ulip/DRP family of cytosolic phosphoproteins involved in neuronal differentiation and axonal guidance. CRMP-2 mediates the intracellular response to collapsin 1/semaphorin 3A, a repulsive extracellular guidance cue for axonal outgrowth. The mutation of UNC-33, a Caenorhabditis elegans homolog of CRMP-2, results in abnormality of microtubules in neurites, but the mechanism of CRMP-2 action remains to be clarified. Here, we report that overexpression of human CRMP-2 in Neuro2a cells, a mouse neuroblastoma cell line, results in blebbing of the cytoplasm. Furthermore, some cells exhibited intranuclear inclusions, which were labeled with antibodies to CRMP-2 and tubulin. CRMP-2 was found to be associated with microtubule bundles in the spindles at the metaphase and in the midbodies at the late telophase in mitotic cells. Thus, it is most likely that failure of complete disassembly of the spindle microtubules during mitosis is responsible for the formation of these intranuclear inclusions. We suggest that CRMP-2 functions by regulating the dynamics of microtubules.  相似文献   

11.
F-actin networks are important structural determinants of cell shape and morphogenesis. They are regulated through a number of actin-binding proteins. The function of many of these proteins is well understood, but very little is known about how they cooperate and integrate their activities in cellular contexts. Here, we have focussed on the cellular roles of actin regulators in controlling filopodial dynamics. Filopodia are needle-shaped, actin-driven cell protrusions with characteristic features that are well conserved amongst vertebrates and invertebrates. However, existing models of filopodia formation are still incomplete and controversial, pieced together from a wide range of different organisms and cell types. Therefore, we used embryonic Drosophila primary neurons as one consistent cellular model to study filopodia regulation. Our data for loss-of-function of capping proteins, enabled, different Arp2/3 complex components, the formin DAAM and profilin reveal characteristic changes in filopodia number and length, providing a promising starting point to study their functional relationships in the cellular context. Furthermore, the results are consistent with effects reported for the respective vertebrate homologues, demonstrating the conserved nature of our Drosophila model system. Using combinatorial genetics, we demonstrate that different classes of nucleators cooperate in filopodia formation. In the absence of Arp2/3 or DAAM filopodia numbers are reduced, in their combined absence filopodia are eliminated, and in genetic assays they display strong functional interactions with regard to filopodia formation. The two nucleators also genetically interact with enabled, but not with profilin. In contrast, enabled shows strong genetic interaction with profilin, although loss of profilin alone does not affect filopodia numbers. Our genetic data support a model in which Arp2/3 and DAAM cooperate in a common mechanism of filopodia formation that essentially depends on enabled, and is regulated through profilin activity at different steps.  相似文献   

12.
Directed outgrowth of neural processes must involve transmission of signals from the tips of filopodia to the central region of the growth cone. Here, we report on the distribution and dynamics of one possible element in this process, actin, in live growth cones which are reorienting in response to in situ guidance cues. In grasshopper embryonic limbs, pioneer growth cones respond to at least three types of guidance cues: a limb axis cue, intermediate target cells, and a circumferential band of epithelial cells. With time-lapse imaging of intracellularly injected rhodamine-phalloidin and rhodamine-actin, we monitored the distribution of actin during growth cone responses to these cues. In distal limb regions, accumulation of actin in filopodia and growth cone branches accompanies continued growth, while reduction of actin accompanies withdrawal. Where growth cones are reorienting to intermediate target cells, or along the circumferential epithelial band, actin selectively accumulates in the proximal regions of those filopodia that have contacted target cells or are extending along the band. Actin accumulations can be retrogradely transported along filopodia, and can extend into the central region of the growth cone. These results suggest that regulation and translocation of actin may be a significant element in growth cone steering.  相似文献   

13.
The collapsin response mediator protein 2 (CRMP-2) is a central molecule regulating axonal growth cone guidance. It interacts with the cytoskeleton and mediates signals related to myelin-induced axonal growth inhibition. CRMP-2 has also been characterized as a constituent of neurofibrillary tangles in Alzheimer's disease. CD spectroscopy and thermal stability assays using the Thermofluor method indicated that Ca2+ and Mg2+ affect the stability of CRMP-2 and prevent the formation of beta-aggregates upon heating. Gel filtration showed that the presence of Ca2+ or Mg2+ promoted the formation of CRMP-2 homotetramers, and this was further proven by small-angle X-ray scattering experiments, where a 3D solution structure for CRMP-2 was obtained. Previously, we described a crystal structure of human CRMP-2 complexed with calcium. In the present study, we determined the structure of CRMP-2 in the absence of calcium at 1.9 A resolution. When Ca2+ was omitted, crystals could only be grown in the presence of Mg2+ ions. By a proteomic approach, we further identified a number of post-translational modifications in CRMP-2 from rat brain hippocampus and mapped them onto the crystal structure.  相似文献   

14.
To assess the role of cdc42 during neurite development, cmyc-tagged constitutively active (CA) and dominant negative (DN) cdc42 were expressed in dissociated primary chick spinal cord neurons using adenoviral-mediated gene transfer. Three days after infection, >85% of the neurons in infected cultures expressed cdc42 proteins, as detected by indirect immunofluorescence against cmyc. Growth cones of infected neurons displayed 1.83- (CAcdc42) and 1.93-fold (DNcdc42) higher cmyc immunofluorescence per square micrometer than uninfected controls. CAcdc42 expression stimulated growth cones, almost doubling growth cone size and number of filopodia, and increased neurite growth rates by 65-89%. In neurons plated onto fibronectin, the percent of growth cones with both filopodia and lamellipodia increased from 71 to 92%. Total Texas Red-phalloidin staining in these growth cones doubled, and the percent of growth cones with F-actin localized to peripheral regions increased from 52% in controls to 78% after CAcdc42 expression. Expression of DNcdc42 did not significantly alter growth cone morphology or neurite growth rates. Addition of soluble laminin to spinal cord neurons resulted in the identical phenotype as CAcdc42 expression, including changes in growth cone morphology, F-actin localization, and neurite growth rates. Significantly, expression of DNcdc42 blocked the effects of laminin on growth cones. These results show that cdc42 promotes neurite outgrowth and filopodial and lamellipodial formation in growth cones and suggests that cdc42 and laminin share a common signaling pathway during neurite development. Addition of laminin to CAcdc42-expressing neurons is inhibitory to growth cones, indicating that laminin also may activate some other pathways.  相似文献   

15.
Perinatal hypoxia and ischemia (HI) are a significant cause of mortality and morbidity. To understand the molecular mechanisms for HI-induced brain damage, here we used a proteomic approach to analyze the alteration and modification of proteins in neonatal mouse brain 24 h after HI treatment. Significant changes of collapsin response mediator proteins (CRMPs) were observed in HI brain. CRMPs are a family of cytosolic proteins involved in axonal guidance and neuronal outgrowth. We found that CRMP2, CRMP4 and CRMP5 proteins were altered post-translationally after HI treatment. Mass spectrometric and Western blot analyses detected hypophosphorylated CRMP proteins after HI. Further analysis of CRMP kinases indicated inactivation of cyclin dependent kinase 5 (CDK5), a priming kinase of CRMPs and a neuronal specific kinase that plays pivotal roles in neuronal development and survival. The reduction of CDK5 activity was associated with underexpression of its activator p35. Taken together, our findings reveal HI-induced dephosphorylation of CRMPs in neonatal brain and suggest a novel mechanism for this modification. Hypophosphorylated CRMPs might be implicated in the pathogenesis of HI-related neurological disorders.  相似文献   

16.
The trematode parasite Fasciola hepatica causes chronic infection in hosts, enabled by an immunosuppressed environment. Both host and parasite factors are known to contribute to this suggesting that avoidance of immunopathology is beneficial to both parties. We have previously characterised a parasite transforming growth factor (TGF)-like molecule, FhTLM, that interacts with host macrophages to prevent antibody-dependent cell cytotoxicity (ADCC). FhTLM is one of many described helminth TGF homologues and multiple helminths are now known to utilise host immune responses as developmental cues. To test whether, or how, F. hepatica uses FhTLM to manipulate host immunity, we initially examined its effects on the CD4 T-cell phenotype. Despite inducing IL-10, there was no induction of FoxP3 within the CD4 T-cell compartment. In addition to inducing IL-10, a wide range of chemokines were elicited from both CD4 T-cells and macrophages. However, no growth or survival advantage was conferred on F. hepatica in our co-culture system when CD4 T-cells, macrophages, or eosinophils were tested. Finally, using RNA interference we were able to verify a host-independent role for FhTLM in parasite growth. Despite the similarities of FhTLM with other described helminth TGF homologues, here we demonstrate species-specific divergence.  相似文献   

17.
Growth cones at the distal tips of growing nerve axons contain bundles of actin filaments distributed throughout the lamellipodium and that project into filopodia. The regulation of actin bundling by specific actin binding proteins is likely to play an important role in many growth cone behaviors. Although the actin binding protein, fascin, has been localized in growth cones, little information is available on its functional significance. We used the large growth cones of the snail Helisoma to determine whether fascin was involved in temporal changes in actin filaments during growth cone morphogenesis. Fascin localized to radially oriented actin bundles in lamellipodia (ribs) and filopodia. Using a fascin antibody and a GFP fascin construct, we found that fascin incorporated into actin bundles from the beginning of growth cone formation at the cut end of axons. Fascin associated with most of the actin bundle except the proximal 6--12% adjacent to the central domain, which is the region associated with actin disassembly. Later, during growth cone morphogenesis when actin ribs shortened, the proximal fascin-free zone of bundles increased, but fascin was retained in the distal, filopodial portion of bundles. Treatment with tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), which phosphorylates fascin and decreases its affinity for actin, resulted in loss of all actin bundles from growth cones. Our findings suggest that fascin may be particularly important for the linear structure and dynamics of filopodia and for lamellipodial rib dynamics by regulating filament organization in bundles.  相似文献   

18.
The generation of a functional nervous system is dependent on precise pathfinding of axons during development. This pathfinding is directed by the distribution of local and long-range guidance cues, the latter of which are believed to be distributed in gradients. Gradients of guidance cues have been associated with growth cone function for over a hundred years. However, little is known about the mechanisms used by growth cones to respond to these gradients, in part owing to the lack of identifiable gradients in vivo. In the developing grasshopper limb, two gradients of the semaphorin Sema-2a are necessary for correct neuronal pathfinding in vivo. The gradients are found in regions where growth cones make critical steering decisions. Observations of different growth cone behaviors associated with these gradients have provided some insights into how growth cones respond to them. Growth cones appear to respond more faithfully to changes in concentration, rather than absolute levels, of Sema-2a expression, whereas the absolute levels may regulate growth cone size.  相似文献   

19.
Axon initiation and growth cone regeneration in cultured motor neurons   总被引:11,自引:0,他引:11  
Axon initiation in cultured neurons from embryonic ciliary ganglia involves a process in which cell surface motile activity gradually becomes restricted to sites of growth cone formation. Once frank growth cones have commenced to move outward, away from the soma, the broad connecting isthmus of cytoplasm connecting the growth cone to the soma rounds up to form the base of the definitive axon. Motile activity usually does not occur along the sides of axons or of somas. When axons are cut using sharp blades, ruffling and microspike activity are seen on both proximal and distal stumps within times as short as 3–10 min. On rare occasions, portions of the somal surface may also display ruffling and motile activity. It is concluded that the capacity to generate new growth cones and cell surface movements characteristic of locomotion is widely distributed through axoplasm and the neuron.  相似文献   

20.
Leeches have a diverse constellation of peripheral neural elements that are challenged to extend growth cones in highly specific ways in a constantly changing embryonic environment. Two major systems are reviewed here. In one, peripheral afferents extend growth cones toward the central nervous system (CNS), forming common pathways, and then segregate into particular tracts within the CNS. A majority of these afferents depend on CNS-derived guidance cues and projections from the CNS to guide their way. However, not all of the nerves are established this way and at least one of the peripheral nerves is likely to be pioneered by sensillar sensory afferents. The distribution of particular antigens (such as the lan3–2 antigen) suggests the identity of molecules involved in homophilic adhesion along common pathways, whereas others (such as the lan4–2 and 3–6 antigens) are candidates for mediating specific pathway choices. In the second system, the myo-organizing Comb cell (C cell) projects multiple growth cones simultaneously along oblique trajectories not influenced by segmental or midline boundaries. Its parallel growth cones exhibit space-filling as well as directional growth and are guided by local cues to extend in discrete phases that are coordinated with the development of the environment. Both systems exhibit highly directed outgrowth orchestrated by a hierarchy of cues, establish patterns of neurites used to direct later migrating cells, and seem to be regulated temporally and spatially by interactions with the embryonic environment. These systems illustrate the strengths of examining neural development in vivo across several levels of analysis. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号