首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The levels of ATP, ADP and AMP, the activity of phosphatases, and the ability for oxidative phosphorylation were studied in roots of pea (Pisum sativum) plants grown in media salinized either with NaCl or Na2SO4. In response to salinity, the ATP level in the roots decreased, whereas the ADP level increased slightly. As a result, the ADP:ATP ratio in the tissue increased with increasing salinity in the growth medium. The AMP level in the tissue was not affected by salinity.  相似文献   

2.
Lactic acid content and production, as well as lactic dehydrogenaseactivity were studied in pea root tips grown in media salinatedwith NaCl or Na2SO4. Salinity of both types depressed the lacticacid content of the tissue. Lactic dehydrogenase activity linkedto NADH was depressed by high concentrations of NaCl in thegrowth medium, but was stimulated by increasing concentrationsof Na2SO4. There was a trace of NADPH linked activity of theenzyme; this activity was not affected by chloride salinitybut was depressed by sulphate salinity. It is not yet clearhow these events are connected with the overall effect of salinityon the carbohydrate metabolism of pea root tips. (Received June 27, 1970; )  相似文献   

3.
The effect of salinity on incorporation of amino acids into root tip protein is apparently of dual nature: in presence of salts the uptake is depressed and the normal metabolic pathways are disturbed. If the roots were grown at high salt concentration, uptake and incorporation are affected even if they are carried out in the absence of salt. NaCl and Na2SO4 affect uptake, incorporation, and metabolism of 14C leucine in different ways. There are also preliminary indications that in pea roots grown at different types of salinity, different proteins may be synthesized. Kinetin was found to inhibit incorporation of amino acids into non stressed and Na2SO4 stressed roots, but promotes uptake and incorporation of amino acids into protein in NaCl stressed tissue. It seems that there are some pronounced differences between the effects of NaCl and Na2SO4 salinities on the metabolism of pea root tissue.  相似文献   

4.
Amino acid composition of the free amino acid pool and the TCA-insolubleprotein fraction were investigated in root tips of pea and Tamarixtetragyna plants grown at various levels of NaCl salinity. Salinitystress induced an increase of proline content, mainly in thefree amino acid pool in both plants, and of proline or hydroxyprolinecontent in the protein. Externally-supplied proline was absorbedand incorporated into protein, by pea roots, more effectivelythan by Tamarix roots. Salinity stress, apparently, stimulatedthe metabolism of externally-supplied labelled proline. Pearoots have a very large pool of free glutamic acid; however,70 per cent of the 14C from externally-supplied 14C-U-glutamicacid was released as CO2. Very small amounts of it were incorporatedinto protein. No measurable amount of radioactivity could bedetected in any one of the individual amino acids, either ofprotein hydrolysate or the free amino acid pool. Proline very effectively counteracted the inhibitory effectof NaCl on pea seed germination and root growth. A similar effectbut to a lesser degree was achieved with phenylalanine and asparticacid. The feasibility of proline being a cytoplasmic osmoticumis discussed.  相似文献   

5.
In hydroponically grown Lycopersicon esculentum (L.) Mill. cv.F144 the site of NO3 reduction and assimilation withinthe plant was shifted from the shoot to the root by salinity.Uptake of NO3 from the root solution was strongly inhibitedby salinization. Consequently, NO3 concentrations inthe leaf, stem and root tissues as well as the nitrate reductaseactivities of the leaves were lower in salinized than in controlplants. Lower NO3, but higher reduced-N, concentrationswere observed in the xylem sap as a result of the enhanced participationof the root in NO3 reduction in salinized plants. Lowerstem K+ concentrations and leaf malate concentrations were foundin salinized compared to control plants which indicates reducedfunctioning of the K+–shuttle in the salinized plants. Incorporation of inorganic carbon by the root was determinedby supplying a pulse of NaH14CO3 followed by extraction andseparation of the labelled products on ion exchange resins.The rate of H14CO3 incorporation was c. 2-fold higherin control than in salinized plants. In salinized plants theproducts of H14CO3 incorporation within the roots werediverted into amino acids, while the control plants divertedrelatively more 14C into organic acids. Products of inorganiccarbon incorporation in the roots of salinized plants providean anaplerotic source of carbon for assimilation of reducedNO3 into amino acids, while in control plants the productswere predominantly organic acids as part of mechanisms to maintainionic balance in the cells and in the xylem sap. Key words: Tomato, nitrate, PEPc, respiration, salinity  相似文献   

6.
Ultrastructural features and the distribution of soluble ionshave been examined in mature roots of Zea mays plants grownin both NaCl and Na2SO4 salinities. When the plants were grown in either salt, the Na concentrationincreased proximally along the root with a concomitant declinein the K concentration. Both trends were reversed in the shoot. X-ray microanalysis of deep-frozen, fully hydrated specimensshowed that in salt-treated roots Na, and Cl, or S were distributedabout stoichiometrically in the cortex and endodermis. Na wasusually less concentrated than the anion in the lumens of thevessels, but was concentrated markedly relative to either Clor S in the adjoining xylem parenchyma cells. In the older, proximal parts of seminal roots of plants grownboth without salt (controls) and in the presence of either NaClor Na2SO4, wall developments occurred in xylem parenchyma cellsat the half-bordered pits in which the cell wall became markedlythicker and possessed a loosely packed fibrillar structure.These structures were not comparable with the transfer-celltype of protuberances reported in the roots of other species. In the xylem parenchyma of plants grown in the presence of Na2SO4there were dramatic increases in the quantities of rough endoplasmicreticulum, ribosomes, and mitochondria relative both to controlsand NaCl treatments. The results are discussed in relation to the possible functionof the xylem parenchyma of the mature root in the reabsorptionof Na from the xylem sap, which may mitigate adverse effectsof salinity in salt-sensitive glycophytes.  相似文献   

7.
Non-selected and Na2SO-, K2SO4- or KCl-selected callus culturesof Vaccinium corymbosum L. cv. Blue Crop were grown on mediasupplemented with 0, 25 and 50 mM Na2SO4 (non-selected and Na2SO(-selectedonly), 0, 25 and 50mMK2SO4 (non-selected and K2SO4-selectedonly) or 0, 50 and 100 mM KCl (non-selected and KCl-selectedonly). On all media, growth of selected callus (on a fresh-weightor dry-weight basis) was greater than that of non-selected callus,and selected callus grew optimally on the level and type ofsalt on which it was selected. Selected callus was friable andmaintained a higher f. wt:d. wt ratio. Tissue water potentialin selected callus was more negative than in non-selected callus. Flame photometry and chloridometry showed Na+, K+ and Claccumulated in callus to concentrations equal to or greaterthan the initial concentration in the medium. Turbidometry showedthat tissue SO42- concentration was lower than the concentrationin the medium. In most cases selected callus accumulated moreNa+, Ksup, SO42– or Cl than non-selected callus.Vacuolar ion concentration was measured by electronprobe X-raymicroanalysis, and on most media selected callus had highervacuolar ion concentrations than non-selected callus. SO42–and Cl were accumulated in the vacuoles at concentrationshigher than the external medium, but vacuolar Na+ concentrationdid not reach external concentration on Na2SO4 and on potassiumsalts was maintained between 12 and 17 mM. Vacuolar K+ concentration(approx. 142–191 mM on no salt) decreased on Na2SO4 andincreased on K2SO4 and KCl. There was no precise correlation between total or specific ionaccumulation (Na+, K+, SO42– and Cl and fresh-weightyield. Results suggest that selection results in adaptationin response to decreased water potential of the medium. Vaccinium corymbosum, blueberry, electronprobe X-ray microanalysis, callus, in vitro selection, salt tolerance, KCl, K2SO4, Na2SO4  相似文献   

8.
JOHN  C. D.; LAUCHLI  A. 《Annals of botany》1980,46(4):395-400
Respiratory gas exchange and incorporation of 14C-leucine intoprotein were studied in proximal root segments from 25-day-oldmaize plants grown for the last ten days in 50 mM Na2SO4. 14C-leucineincorporation, and oxygen uptake in the presence of glucose,were as large in Na2SO4-grown tissues tested under saline conditionsas in tissues exposed to non-saline solutions throughout Thisadaptation was attributed to an increased metabolic capacityof Na2SO4-treated tissues, because these tissues, when returnedto non-saline solutions, evolved oxygen and incorporated 14C-leucinefaster than tissues exposed continuously to non-saline solutions. These changes are interpreted as a ‘compensation’for the inhibitory effects found when non-adapted tissues wereexposed to 50 mM Na2SO4. Moreover, we have related them to ultrastructuralchanges observed previously in xylem parenchyma cells of thesetissues, and to the possible involvement of these xylem parenchymacells in the re-absorption of sodium from the ascending xylemfluid Zea mays L., maize, salt-stress, respiration, protein synthesis  相似文献   

9.
Ricinus communis L. (castor bean) plants were grown in the absence(control) and in the presence of 100molm–3NaCl with areciprocal split-root system, in which K+ was supplied to oneand NO3 to the other part of the root system. In theseplants shoot and, to a lesser extent, total root growth wereinhibited compared to plants with non-split roots. Without andwith NaCl, growth of roots receiving NO3 but noK+ (‘minusK/plus N-roots’) was substantially more vigorous thanunder the reverse conditions (‘plus K/minus N-roots1).100mol m–3 NaCl inhibited growth of minus K/plus N-roots1to the same extent as that of non-split roots, indicating thatexternally supplied K+ was not required for root growth undersaline conditions. In growth media without added K+ the rootdepleted the external low K + levels resulting from chemicalsdown to a minimum value Cmln (1.0 to 1.4 mmol m–3); inthe presence of 100 mol m–3 NaCl, Cmin, was higher (10–18mmol m–3) and resulted from an initial net loss of K +.Cmin, was pH-dependent The distribution of K+, Na+ and Mg2+along the root was measured. In meristematic root tissues, K+ concentrations were scarcely affected by external K+ or byNaCl, where Na + concentrations were low, but somewhat elevatedat low external K+ and/or high NaCl. In differentiated, vacuolatedtissues K + concentrations were low and Na+ concentrations high,if K + was not supplied externally and/or NaCl was present.The longitudinal distribution of ions within the root was usedto estimate cytoplasmic and vacuolar ion concentrations. Thesedata showed a narrow homoeostasis of cytoplasmic K+ concentrations(100–140 mol m–3) independent of external K + supplyeven in the presence of 100 mol m –3 NaCl. CytoplasmicNa + concentrations were maintained at remarkably low levels.Hence, external K+ concentrations above Cmin, were not requiredfor maintaining K/Na selectivity, i.e. for controlling Na+ entry.The results are discussed with regard to mechanisms of K/Naselectivity and to the importance of phloem import of K+ forsalt tolerance of roots and for cytoplasmic K+ homoeostasis. Key words: Ricinus communis, nitrate, potassium, root (split-root), salt tolerance, phloem transport  相似文献   

10.
The growth of garden orache, A triplex hortensis was studiedunder conditions of mild NaCl or Na2SO4 salinity. Growth, drymatter production and leaf size were substantially stimulatedat 10 mM and 50 mM Na+ salts. Increased growth, however, appearedto be due to a K+-sparing effect of Na+ rather than to salinityper se. The distribution of K+ and Na+ in the plant revealeda remarkable preference for K+ in the roots and the hypocotyl.In the shoot the K/Na ratio decreased strongly with leaf age.However, the inverse changes in K+ and Na+ content with leafage were dependent on the presence of bladder hairs, which removedalmost all of the Na+ from the young leaf lamina. Measurementsof net fluxes of K+ and Na+ into roots and shoots of growingAtriplex plants showed a higher K/Na selectivity of the netion flux to the root compared to the shoot. With increasingsalinity the selectivity ratio SK, Na* of net ion fluxes tothe roots and to the shoots was increased. The data suggestthat recirculation of K+ from leaves to roots is an importantlink in establishing the K/Na selectivity in A. hortensis plants.The importance of K+ recirculation and phloem transport forsalt tolerance is discussed. Key words: Atriplex hortensis, Salinity, Potassium, Sodium, K+ retranslocation, Bladder hairs, Growth stimulation  相似文献   

11.
Phaseolus vulgaris L. grown at a range of external concentrationsof NaCl (0 to 80 mM) responded differently to gaseous anaerobiosis(N2 gas) in nutrient solution or stagnant waterlogging of theroot-zone. With similar patterns of distribution of Na+ andCl- occurring in the plants with comparable NaCl treatments,and similar final concentrations of Na+ and Cl- in plants grownunder both root-zone conditions, rates of uptake of Na+ andCl- were much higher in plants with the stagnant waterloggedrootzones. After 72 h stagnant waterlogging, plant tops fromplants grown at 40 mM NaCl contained 1.42 per cent Na+ and 3.44per cent Cl- (d. wt basis) while after 9 days exposure to NaClwith gaseous anaerobiosis, leaf tissue contained 1.49 per centNa+ and 4.28 per cen Cl- (d. wt basis). Plants exposed to 40mM external NaCl were severely damaged within 72 h when grownwith stagnant waterlogged root-zones; those grown with N2 anaerobiosiscontinued growth and development over the 9 d period. Plantsgrown in nutrient solution showed changes in distribution andconcentration of Na+ and Cl- when oxygen concentration was reducedbelow 21 per cent O2 (full aeration). Phaseolus vulgaris. L., bean, mineral salt distribution, anaerobiosis, salinity, waterlogging  相似文献   

12.
Dark fixation of 14CO2 was followed in potato disks under varyingsalt treatments at 0° C and 25° C. It is shown thatthe specific activity of the 14CO2 supplied is heavily dilutedby endogenously produced CO2 and that the apparently greaterfixation of 14CO2, at 0° C as compared with that at 25 °C is due to the lower respiration rate at 0° C, with consequentlyless dilution of the 14CO2. supplied. At 25° C organic acidformation in response to different salt treatments fulfils thecommon expectation, 14CO2 fixation increasing in the presenceof K2SO4 and decreasing in CaCl2 relative to that in KCl. Therole of organic acids in maintaining ionic balance within thecell at 25° C is thereby indicated but at 0° C organicacid adjustments did not follow the normal pattern. At 25°C but not at o° C increasing external concentration of KCIresulted in an increased level of 14CO2 fixation.  相似文献   

13.
Dunaliella tertiolecta grew in a medium that contained MgSO4(MgSO4 medium), while this alga did not grow at all in mediathat contained MgCl2 or Mg(NO3)2. The growth in the MgSO4mediumwas inhibited in comparison with that in media that containedsodium salts, such as NaCl, NaNO3, and Na2SO4. The energy chargeobtained from measurements of levels of adenine nucleotidesby HPLC were almost constant in Na- and Mg-containing media(about 0.87), indicating that the failure of growth in MgCl2medium and Mg(NO3)2 medium was not directly related to.changesin the energy metabolism. K+ and Mg2+ were the dominant intracellularcations not only in Na-containing media (Na-media) but alsoin Mg-cohtaining media (Mg-media). The intracellular concentrationof Ca2+ was lower in Mg-media (1.6 mM) than that in Na-media(6mM). The concentrations of HPO42– in cells incubatedin Mg-media were lower (less than 60 mM) than those in Na-media(greater than 110 mM). By contrast, the intracellular concentrationof SO42– was higher in a MgSO4 medium (26 mM) than thatin a Na2SO4 medium (4 mM) which, at least, compensated by 40%for the decrease in HPO42–. The ability to grow in a MgSO4medium may be related to the high intracellular concentrationof SO42–. (Received September 20, 1990; Accepted March 22, 1991)  相似文献   

14.
The response of two speciality vegetable crops, New Zealandspinach (Tetragonia tetragonioides Pall.) and red orach (Atriplexhortensis L.), to salt application at three growth stages wasinvestigated. Plants were grown with a base nutrient solutionin outdoor sand cultures and salinized at 13 (early), 26 (mid),and 42 (late) d after planting (DAP). For the treatment saltconcentrations, we used a salinity composition that would occurin a typical soil in the San Joaquin Valley of California usingdrainage waters for irrigation. Salinity treatments measuringelectrical conductivities (ECi) of 3, 7, 11, 15, 19 and 23 dSm-1were achieved by adding MgSO4, Na2SO4, NaCl and CaCl2to thebase nutrient solution. These salts were added to the base nutrientsolution incrementally over a 5-d period to avoid osmotic shockto the seedlings. The base nutrient solution without added saltsserved as the non-saline control (3 dS m-1). Solution pH wasuncontrolled and ranged from 7.7 to 8.0. Both species were saltsensitive at the early seedling stage and became more salt tolerantas time to salinization increased. For New Zealand spinach,the salinity levels that gave maximal yields (Cmax) were 0,0 and 3.1 dS m-1and those resulting in a 50% reduction of biomassproduction (C50) were 9.1, 11.1 and 17.4 dS m-1for early, midand late salinization dates, respectively. Maximal yield ofred orach increased from 4.2 to 10.9 to 13.7 dS m-1as the timeof salinization increased from 13, to 26, to 42 DAP, respectively.The C50value for red orach was unaffected by time of salt imposition(25 dS m-1). Both species exhibited high Na+accumulation evenat low salinity levels. Examination of K-Na selectivity dataindicated that K+selectivity increased in both species withincreasing salinity. However, increased K-Na selectivity didnot explain the increased salt tolerance observed by later salinization.Higher Na-Ca selectivity was determined at 3 dS m-1in New Zealandspinach plants treated with early- and mid-salinization plantsrelative to those exposed to late salinization. This correspondedwith lower Cmaxand C50values for those plants. Lower Ca uptakeselectivity or lower Ca levels may have inhibited growth inyoung seedlings. This conclusion is supported by similar resultswith red orach. High Na-Ca selectivity found only in the early-salinizationplants of red orach corresponded to the lower Cmaxvalues measuredfor those plants. Copyright 2000 Annals of Botany Company New Zealand spinach, Tetragonia tetragonioides Pall., red orach, Atriplex hortensis L., salinity, stage of growth, ion accumulation, selectivity, plant nutrition  相似文献   

15.
Growth Response to Salinity at High Levels of Carbon Dioxide   总被引:6,自引:0,他引:6  
Plants of the C3 species Phaseolus vulgaris and Xanthium strumariumand of the C4 salt-sensitive Zea mays and the C4 halophyte Atriplexhalimus were grown with and without NaCl salt-stress at normal(340 µl I–1) and at high (2500 µl I–1)ambient CO2. In all four species growth (dry weight increment)was enhanced by CO2 supplementation. The relative response wasgreater in the salinized than in the control plants. Plant topsresponded more to CO, than the roots. CO2 supplementation appearsto increase plant tolerance of low levels of salinity. Key words: Salinity, CO2, Growth  相似文献   

16.
Gould, R. P. and Mansfield, T. A. 1988. Effects of sulphur dioxideand nitrogen dioxide on growth and translocation in winter wheat.—J. exp. Bot 39: 389–99 Winter wheat (Triticum aestivum L. cv. Avalon) was grown undersimulated autumn conditions for 4 weeks and exposed to a mixtureof SO2 and NO2. Biomass was measured after 2, 3 and 4 weeksand the flag leaves of sample plants were labelled with 14CO2.Biomass yields revealed an increase in shoot-to-root ratiosunder polluted conditions. The labelling experiments showedthat less assimilate was transported to the roots, whilst morewas allocated to the younger components of the plant. It appearedthat NO2 and SO2 also caused labelled photosynthate to be retainedin the labelled leaf. Reducing the photon flux exacerbated theeffects of SO2 and NO2 as indicated by changes in biomass andby the distribution of 14C. Key words: Wheat, SO2, NO2, growth, translocation  相似文献   

17.
Sorghum bicolor L. Moench, RS 610, was grown in liquid media salinized with NaCl, KCl, Na2SO4, K2SO4 or with variable mixtures of either NaCl/KCl or Na2SO4/K2SO4 at osmotic potentials ranging from 0 to -0.8 MPa. The purpose was to study the effects of different types and degrees of salinity in growth media on growth and solute accumulation. In 14-day-old plants the severity of leaf growth inhibition at any one level of osmotic potential in the medium increased according to the following order: NaCl < Na2SO4 < KCl = K2SO4. Inhibition of growth by mixtures of Na+ and K+ salts was the same as by K+ salts alone. Roots responded differently. Root growth was not affected by Na+ salts in the range of 0 to -0.2 MPa while it was stimulated by K+ salts. The major cation of leaves was K+ because S. bicolor is a Na+-excluder, while Na+ was the major cation in roots except at low Na+/K+ ratios in media. Anions increased in tissues linearly in relation to total monovalent cation, but not with a constant anion/cation ratio. This ratio increased as the cation concentrations in tissues increased. Sucrose in leaf tissue increased 75 fold in Chloride-plants (plants growing in media in which the only anion of the salinizing salts was Cl?) and 50 fold in Sulphate-plants (the only anion of the salinizing salts was SO42-). Proline increased 60 and 18 fold in Chloride- and Sulphate-plants, respectively, as growth media potentials decreased from 0 to -0.8 MPa. The concentrations of both sucrose and proline were directly proportional to the amount of total monovalent cation in the tissue. Sucrose concentrations began increasing when total monovalent cations exceeded 100 μmol (g fresh weight)?1 (the monovalent cation level in non-stressed plants), but proline did not start accumulating until monovalent cation concentrations exceeded 200 μmol (g fresh weight)?1. Therefore, sucrose seemed to be the solute used for osmotic adjustment under mild conditions of saline stress while proline was involved in osmotic adjustment under more severe conditions of stress. Concentrations of inorganic phosphate, glucose, fructose, total amino acids and malic acid fluctuated in both roots and leaves in patterns that could be somewhat correlated with saline stress and, sometimes, with particular salts in growth media. However, the changes measured were too small (at most a 2–3 fold increase) to be of importance in osmotic adjustment.  相似文献   

18.
Enzyme levels in pea seedlings grown on highly salinized media   总被引:6,自引:6,他引:0       下载免费PDF全文
The levels of 18 enzymes were determined in leaves, stems, and roots of 11-day-old pea seedlings grown in a liquid medium or in the same medium containing, in addition, 5 atmospheres of either NaCl, KCl, Na2SO4, or K2SO4. Though the plants grown in saline media were stunted, the specific activities of the enzymes were the same in the given tissues of all plants. Also, the electrophoretic pattern of isozymes of malate dehydrogenase was not altered by growth of the plants in a saline medium. However, the isozyme pattern of peroxidase from roots of salt-grown plants was altered in that two of the five detectable isozymes migrated a little more slowly than those in extracts from nonsaline plant tissues.  相似文献   

19.
Tolerance to NaCl was studied in cell suspension cultures ofKosteletzkya virginica (L.) Presl. (Malvaceae), a dicotyledonoushalophyte that grows in tidal marshes of the eastern UnitedStates. Growth of salinized cultures was significantly inhibitedat high (255 mol m–3 NaCl), but not at lower externalsalinities. Adjustment of cell suspensions to Nacl was rapid,with the duration of the normal growth cycle unaffected by salinity.Maximum biomass was attained when cultures were exposed to NaClduring early log growth. Patterns of inorganic ion accumulationreflected the utilization of both Na+ and K+ as osmotica, withNa+ content substantially increasing when cells were grown atan external salinity sufficient to reduce growth. K+ uptakeselectivity was high and Na+/K+ ratios were low in salt-treatedcultures even though K+ content was somewhat lower comparedto unsalinized cultures. Free proline and microsomal lipid contentincreased in salt-treated cell cultures. Key words: Kosteletzkya virginica, halophyte, salt tolerance, cell suspension culture  相似文献   

20.
Effect of Sudden Salt Stress on Ion Fluxes in Intact Wheat Suspension Cells   总被引:4,自引:0,他引:4  
Although salinity is one of the major problems limiting agriculturalproduction around the world, the underlying mechanisms of highNaCl perception and tolerance are still poorly understood. Theeffects of different bathing solutions and fusicoccin (FC),a known activator of plasma membrane ATPase, on plasma membranepotential (Em) and net fluxes of Na+, K+and H+were studied inwheat suspension cells (Triticum aestivum) in response to differentNaCl treatments. Emof cells in Murashige and Skoog (MS) mediumwas less negative than in cells exposed to a medium containing10 mM KCl + 0.1 m M CaCl2(KSM) and to a basic salt medium (BSM),containing 1 m M KCl and 0.1 m M CaCl2. Multiphasic Na+accumulationin cells was observed, peaking at 13 min after addition of 120m M NaCl to MS medium. This time scale was in good agreementwith net Na+flux changes measured non-invasively by moving ion-selectivemicroelectrodes (the MIFE system). When 120 m M NaCl was addedto all media studied, a quick rise of Na+influx was reversedwithin the first 20 min. In both 120 and 20 m M NaCl treatmentsin MS medium, net Na+efflux was observed, indicating that activeNa+transporters function in the plant cell response to saltstress. Lower external K+concentrations (KSM and BSM) and FCpre-treatment caused shifts in Na+fluxes towards net influxat 120 m M NaCl stress. Copyright 2000 Annals of Botany Company Sodium, potassium, proton, membrane potential, fusicoccin, salt stress, wheat, Triticum aestivum  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号