首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cyclodextrin glycosyltransferase (CGTase) is an important enzyme for cyclodextrin (CD) production, and is also widely used in the biotechnology, food, and pharmaceuticals industries. Secretory CGTase production by recombinant Komagataella phaffii using defined medium is a promising approach because of low cost, less impurity protein. It was found that no CGTase was expressed using traditional defined medium (basal salt medium [BSM]) because of pH value decreasing significantly. CGTase was expressed by recombinant K. phaffii through pH maintenance in range of 5.5–7.0. β-CGTase activity increased to 122.0 U/mL after optimization of glycerol, phosphate buffer, pH value, ammonium sulfate, temperature, methanol, and additives based on BSM, establishing a modified defined medium. These results showed that it was necessary to establish recombinant K. phaffii-based special defined medium although the same host cell used for different heterologous protein expression.  相似文献   

2.
The production of a recombinant nitrilase expressed in Escherichia coli JM109/pNLE was optimized in the present work. Various culture conditions and process parameters, including medium composition, inducer, induction condition, pH and temperature, were systematically examined. The results showed that nitrilase production in E. coli JM109/pNLE was greatly affected by the pH condition and the temperature in batch culture, and the highest nitrilase production was obtained when the fermentation was carried out at 37°C, initial pH 7.0 without control and E. coli was induced with 0.2 mM isopropyl-β-d-thiogalactoside at 4.0 h. Furthermore, enzyme production could be significantly enhanced by adopting the glycerol feeding strategy with lower flow rate. The enzyme expression was also authenticated by sodium dodecyl phosphate polyacrylamide gel electrophoresis analysis. Finally, under the optimized conditions for fed-batch culture, cell growth, specific activity and nitrilase production of the recombinant E. coli were increased by 9.0-, 5.5-, and 50-fold, respectively.  相似文献   

3.
Maintenance of pH 7.0 during the fermentation period favors accumulation of high molecular weight polysaccharide-containing components called lipopolysaccharide–protein and polysaccharide–lipid complexes in the capsules and culture medium. Increased pH of the culture medium to 8.0 reduced the period of exponential growth and the yield of polysaccharide-containing complexes as compared to optimal conditions. Maintenance of pH 5.5 suppressed the culture growth and polysaccharide production. The polysaccharide–lipid complexes obtained when pH was stabilized at the level of 7.0–8.0 had relatively low molecular weights and included only acidic polysaccharides. The use of potassium gluconate instead of sodium malate as a source of carbon in the culture medium changed the polysaccharide composition and increased the content of glucosamine, which increased the affinity of polysaccharides for wheat germ agglutinin. Prolongation of Azospirillum cultivation to five days introduced new glucose-containing polysaccharide components in the capsule.  相似文献   

4.
为了提高褐藻胶降解菌株Cobetia sp.20产褐藻胶裂解酶的能力,利用响应面法优化其发酵产褐藻胶裂解酶的培养基。首先利用单因素法分别对发酵培养基中的不同碳源、碳源添加量、不同氮源、氮源添加量以及氯化钠添加量、磷酸二氢钾添加量、硫酸镁添加量和pH进行探究,研究各因素对产酶的影响。在单因素实验的基础上,通过Plackett-Burman试验确定Cobetia sp.20发酵培养基中影响产酶的主要因素。通过响应面试验建立回归方程。研究结果表明,Cobetia sp.20最优发酵培养基配方为褐藻胶15.00 g/L、硫酸铵7.50 g/L、氯化钠15.00 g/L、硫酸镁0.50 g/L、磷酸二氢钾5.30 g/L、硫酸亚铁0.01 g/L、pH值7.58。优化后酶活为142.79 U/mL,比优化前提高了26.36%。褐藻胶裂解酶活的提高,为褐藻胶裂解酶的工业化生产提供了参考。  相似文献   

5.
Novel extracellular phytase was produced by Aspergillus niger NCIM 563 under submerged fermentation conditions at 30 °C in medium containing dextrin and glucose as carbon sources along with sodium nitrate as nitrogen source. Maximum phytase activity (41.47 IU/mL at pH 2.5 and 10.71 IU/mL at pH 4.0) was obtained when dextrin was used as carbon source along with glucose and sodium nitrate as nitrogen source. Nearly 13 times increase in phytase activity was observed when phosphate in the form of KH2PO4 (0.004 g/100 mL) was added in the fermentation medium. Physic-chemical properties of partially purified enzyme indicate the possibility of two distinct forms of phytases, Phy I and Phy II. Optimum pH and temperature for Phy I was 2.5 and 60 °C while Phy II was 4.0 and 60 °C, respectively. Phy I was stable in the pH range 1.5–3.5 while Phy II was stable in the wider pH range, 2.0–7.0. Molecular weight of Phy I and Phy II on Sephacryl S-200 was approximately 304 kDa and 183 kDa, respectively. Phy I activity was moderately stimulated in the presence of 1 mM Mg2+, Mn2+, Ca2+ and Fe3+ ions and inhibited by Zn2+ and Cd2+ ions while Phy II activity was moderately stimulated by Fe3+ ions and was inhibited by Hg2+, Mn2+ and Zn2+ ions at 1 mM concentration in reaction mixture. The Km for Phy I and II was 3.18 and 0.514 mM while Vmax was 331.16 and 59.47 μmols/min/mg protein, respectively.  相似文献   

6.
Salmosin, a snake venom-derived disintegrin, was successfully expressed in the methylotrophic yeast Pichia pastoris and secreted into the culture supernatant, as a 6 kDa protein. High-cell density fermentation of recombinant P. pastoris was optimized for the mass production of salmosin. In a 5 L jar fermentor, recombinant P. pastoris was fermented in growth medium containing 5% (w/v) glycerol at the controlled pH of 5.0. After culturing for 21 h, glycerol feeding medium was fed at one time into the culture broth. After 7 h (a total of 28 h), induction medium that contained methanol was increasingly added until the culture time totaled 75 h. Finally, these optimized culture conditions produced a high cell density of recombinant P. pastoris (dry cell weight of 113.38 g/L) and led to the mass production of salmosin (a total protein concentration of 369.2 mg/L). The culture supernatant containing salmosin inhibited platelet aggregation, resulting in a platelet aggregation of 9% compared to that of 94% in the control experiment, without culture supernatant. These results demonstrate that recombinant salmosin in culture supernatant from high cell density fed-batch fermentation can serve as a platelet aggregation inhibitor.  相似文献   

7.
A gene encoding β-glucosidase was cloned and over-expressed in Escherichia coli. Validamycin A was then biotransformed into validoxylamine A by using the resting recombinant cells. The biotransformation yield reached 92% when the reaction was performed at 37°C for 1 h in the presence of 100 ml sodium phosphate buffer (0.1 M, pH 7.0), 32 mM validamycin A and 0.71 mg dry cell w/ml.  相似文献   

8.
Endostatin, a 20-kDa C-terminal fragment derived from type XVIII collagen, is a potent angiogenesis inhibitor and an antitumor factor. To improve the production of recombinant human endostatin on increasing demand in clinical practice, we constructed an artificial gene encoding its mature peptide sequence in human collagen XVIII. The synthetic gene consisted of 20 codons in preference in methylotropic yeast—Pichia pastoris and was cloned into expression vector pPICZαA; and the recombinant protein was expressed in P. pastoris strain SMD1168 and purified to near homogeneity using heparin affinity chromatography. The amount of expressed recombinant protein in cultural media using described strategy was 80 mg/l in shake flask cultivation and 435 mg/l in high-density bioreactor fermentation. Methylthiazolium assay demonstrated that human endostatin expressed in P. pastoris using artificial synthetic gene of preference in P. pastoris was able to inhibit the acidic fibroblast growth factor-induced proliferation of endothelial cells in vitro.  相似文献   

9.
Recently, we engineered a Pichia pastoris Mut+ strain to produce and secrete recombinant Litopenaeus vannamei trypsinogen. Despite the observed toxicity of the recombinant shrimp trypsinogen to the P. pastoris cell host, when high density cell cultures in shake flasks with alanine in the induction medium were used recombinant shrimp trypsinogen could be produced. To further improve the product yield, in this work, we evaluated L. vannamei trypsinogen production in P. pastoris using a bioreactor and two recombinant P. pastoris strains with different methanol utilization (Mut) phenotypes. The effect of pH and temperature during the induction step on the trypsinogen production was also evaluated. The results indicate that temperature, pH, and Mut phenotypes influence the production of the recombinant protein, with almost no observed effect on cell growth. All cultures with the Mut+ strain had significant operational difficulties, such as in lowering the induction temperature, maintaining dissolved oxygen (DO) above 20%, and maintaining the methanol concentration at a constant value, and showed a decrease in metabolic activity due to trypsinogen toxicity to the cell host. In the culture with the Muts strain, however, the temperature, methanol concentration, and DO could be more easily controlled, the temperature could be easily decreased, and the trypsinogen caused the lowest toxicity to the host cells. After 96 h of Muts strain induction (pH 6 and 25°C), about 250 mg/L recombinant trypsinogen was detected in the culture medium. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

10.
The effects of initial culture pH ranging from 5.0 to 7.5 on biomass content, precursor 3-hydroxy-2-butanone (HB) accumulation, and 2,3,5,6-tetramethylpyrazine (TTMP) formation by Bacillus subtilis CCTCC M 208157 were investigated in shake flask fermentation. Weak acidic conditions were found to favor cell growth and precursor HB accumulation, while TTMP could be synthesized more efficiently in conditions with initial pH towards neutrality. Batch bioprocess of TTMP fermentation by Bacillus subtilis CCTCC M 208157 at various controlled pH values ranging from 5.5 to 7.0 was then examined in 7.5-l fermentor. The results suggested that optimum pH for cell growth and precursor HB accumulation was 5.5 with maximum cell growth rate (Q x) and precursor HB accumulation rate (Q HB) of 0.833 g l−1 h−1 and 1.118 g l−1 h−1, respectively, while optimum pH for TTMP formation was 7.0 with maximum TTMP formation rate (Q TTMP) of 0.095 g l−1 h−1. A pH-shifted strategy was accordingly developed to improve TTMP production in bioreactor fermentation by shifting the culture pH from 5.5 to 7.0 after 48 h of cultivation. By applying the strategy, final TTMP concentration of 7.43 g l−1 was obtained, being 22.2% greater than that of constant-pH fermentation.  相似文献   

11.
A thermostable β-glucosidase (BGLI) was purified from Thermoascus aurantiacus IFO9748, and the gene (bgl1) encoding this enzyme was cloned and expressed in yeast Pichia pastoris. The deduced amino acid sequence encoded by bgl1 showed high similarity with the sequence of glycoside hydrolase family 3. The recombinant enzyme was purified and subjected to enzymatic characterization. Recombinant BGLI retained more than 70% of its initial activity after 1 h of incubation at 60°C and was stable in the pH range 3–8. The optimal temperature for enzyme activity was about 70°C and the optimal pH was about 5. P. pastoris expressing recombinant BGLI became able to utilize cellobiose as a carbon source.  相似文献   

12.
The purpose of this study was to produce a Trichoderma reesei xylanase (XYN2) in Pichia pastoris and to test its potential application for pulp bleaching. The recombinant xylanase was purified by a two-step process of ultrafiltration and gel filtration chromatography. The molecular mass of the recombinant enzyme was 21 and 25 kDa by SDS–PAGE analysis, due to different glycosylation of the native protein. The optimum pH and temperature of the recombinant XYN2 was 5.0 and 50 °C. Enzyme activity was stable at 50 °C and at pH 5.0–7.0. The bleaching ability of the recombinant xylanase was also studied at 50 °C and pH 6.0, using wheat straw pulp. Biobleaching of the xylanase produced chlorine dioxide savings of up to 60%, while retaining brightness at the control level and led to a lower kappa number and small enhancements in tensile, burst and tear strength of pulp fibers.  相似文献   

13.
The investigation of the recombinant bovine lactoferrin-derived antimicrobial protein (rBLfA) demonstrates that the inter-lobe region of bovine lactoferrin contributes to iron binding stability and antimicrobial activity against Staphylococcus aureus. rBLfA containing N-lobe (amino acid residues 1–333) and inter-lobe region (residues 334–344) was expressed in Pichia pastoris at shaking flask and fermentor level. The recombinant intact bovine lactoferrin (rBLf) and N-lobe (rBLfN) were expressed in the same system as control. The physical–chemical parameters of rBLfA, rBLfN and rBLf including amino acid residues, molecular weight, isoelectric point, net positive charge and instability index were computed and compared. The simulated tertiary structure and the calculated surface net charge showed that rBLfA maintained original structure and exhibited a higher cationic feature than rBLf and rBLfN. The three proteins showed different iron binding stability and antimicrobial activity. rBLfA released iron in the pH range of 7.0–3.5, whereas rBLfN lost its iron over the pH range of 7.0–4.0 and iron release from rBLf occurred in the pH range of 5.5–3.0. However, the minimum inhibition concentration of rBLfA against S. aureus ATCC25923 was 6.5 μmol/L, compared with 12.5 and 25 μmol/L that of rBLfN and rBLf, respectively. These results revealed that S. aureus was more sensitive to rBLfA than rBLfN and rBLf. It appeared that the strong cationic character of inter-lobe region related positively to the higher anti-S. aureus activity.  相似文献   

14.
A novel method is proposed to produce both phytase and single-cell protein in recombinant Pichia pastoris fermentation using monosodium glutamate wastewater (MSGW) as the basal medium. Recombinant P. pastoris MR33 transformed with a phytase gene (AppA-m) from Escherichia coli was constructed and showed capability to utilize ammonium as the only nitrogen source. The fermentation medium was optimized in shake flasks by single-factor test and response surface methodology. A fed-batch system containing 30% MSGW, 50 g/l glucose, 1.58 g/l CaSO4, 5.18 g/l MgSO4 and 6.67 g/l KH2PO4 was developed in a 3.7-l bioreactor. The maximum phytase activity in the MSGW medium reached 3,380 U/ml, 84.2% of that in chemically defined medium, and the dry cell weight was 136 g/l. The single-cell protein (SCP; 46.66% dry cell weight) contains a variety of amino acids and is low in fat, which is ideal for utilization in animal feed. Thus, it is feasible to use MSGW medium for the production of enzymes that can be expressed in P. pastoris.  相似文献   

15.
A 777-bp cDNA fragment encoding a mature alkaline lipase (LipI) from Penicillium cyclopium PG37 was amplified by RT–PCR, and inserted into the expression plasmid pPIC9 K. The recombinant plasmid, designated as pPIC9 K-lipI, was linearized with SalI and transformed into Pichia pastoris GS115 (his4, Mut+) by electroporation. MD plate and YPD plates containing G418 were used for screening of the multi-copy P. pastoris transformants (His+, Mut+). One transformant resistant to 4.0 mg/ml of G418, numbered as P. pastoris GSL4-7, expressing the highest recombinant LipI (rLipI) activity was chosen for optimizing expression conditions. The integration of the gene LipI into the P. pastoris GS115 genome was confirmed by PCR analysis using 5′- and 3′-AOX1 primers. SDS–PAGE and lipase activity assays demonstrated that the rLipI, a glycosylated protein with an apparent molecular weight of about 31.5 kDa, was extracellularly expressed in P. pastoris. When the P. pastoris GSL4-7 was cultured under the optimized conditions, the expressed rLipI activity was up to 407 U/ml, much higher than that (10.5 U/ml) expressed with standard protocol. The rLipI showed the highest activity at pH 10.5 and 25°C, and was stable at a broad pH range of 7.0–10.5 and at a temperature of 30°C or below.  相似文献   

16.
17.
A novel gene of thermostable phytase, phyA, was isolated by polymerase chain reaction (PCR) techniques from Aspergillus aculeatus RCEF 4894. The full-length phyA gene comprises 1,404 bp and encodes 467 amino-acid residues, including a 19-residue putative N-terminal signal peptide. The phytase of A. aculeatus was a novel addition to the histidine-acid phosphatase family, as evidenced by both the conserved motifs RHGXRXP and HD in the amino-acid sequence, and 3D structure models. The recombinant phytase was overexpressed in Pichia pastoris, and its specific activity reached 3,000 U mL−1 at the optimum pH of 5.5. This recombinant, thermostable phytase was able to withstand temperatures of up to 90 °C for 10 min, with a loss of only 13.9% of initial enzymatic activity, and showed high activity with phytic-acid sodium salt at a pH range of 2.5–6.5. The broad pH optima and high thermostability of the phytase makes it a promising candidate for feed-pelleting applications.  相似文献   

18.
A cDNA encoding a laccase enzyme was isolated from a Trametes versicolor cDNA library. The gene was subcloned into the Pichia pastoris expression vector pPIC3.5 and transformed into the P. pastoris strains KM71 and GS115. Laccase-secreting transformants were selected by their ability to oxidise the substrate ABTS. No difference in laccase activity was observed between culture supernatants from GS115 (proteolytic) and KM71 (nonproteolytic) strains. The presence of at least 200 μM copper was necessary for optimal laccase activity in the culture supernatants. During growth of P. pastoris on minimal medium the pH of the medium was reduced to <3.0. If alanine was added to the medium the pH reduction was not as pronounced and at alanine concentrations >0.6% w/v the pH was kept constant for >7 days. Cultures in which the pH was maintained by alanine metabolism produced higher levels of laccase activity than those grown in the absence of alanine. This study describes the development of a medium that allows convenient pH control of P. pastoris without the need for continuous neutralisation. Journal of Industrial Microbiology & Biotechnology (2002) 29, 55–59 doi:10.1038/sj.jim.7000268 Received 08 August 2001/ Accepted in revised form 18 April 2002  相似文献   

19.
To obtain a high cell density of recombinant Saccharomyces cerevisiae (INVSc 1 strain bearing a 2 microm plasmid, pYES2 containing a GAL1 promoter for expression of the beta-galactosidase gene), the yeast was grown with glycerol as the substrate by fed-batch fermentation. The feeding strategy was based on an on-line response of the medium pH to the consumption of glycerol. The approach was to feed excess carbon into the medium to create a benign environment for rapid biomass buildup. During cell growth in the presence of glycerol, the release of protons in the medium caused a decrease in pH and the consumption rate of ammonium phosphate served as an on-line indicator for the metabolic rate of the organism. The extent of glycerol feeding in a fed-batch mode with pH control at 5.0 +/- 0.1 was ascertained from the automatic addition of ammonium phosphate to the medium. The glycerol feeding to ammonium phosphate addition ratio was found to be 2.5-3.0. On the basis of the experiments, a maximum dry cell biomass of 140 g per liter and a productivity of 5.5 g DCW/L/h were achieved. The high cell density of S. cerevisiae obtained with good plasmid stability suggested a simple and efficient fermentation protocol for recombinant protein production.  相似文献   

20.
A high-density cell culture method to produce human angiostatin has been successfully established by constitutive expression of the protein in Pichia pastoris. The fermentation was carried out in a 20 l bioreactor with a 10 l working volume, using a high-density cell culture method by continuously feeding with 50% glycerol−0.8% PTM4 to the growing culture for 60 h at 30°C. Dissolved oxygen level was maintained at 25–30% and pH was controlled at 5 by the addition of 7 M NH4OH. Angiostatin was constitutively expressed during the fermentation by linking its expression to the P. pastoris constitutive GAP promoter (pGAP). But after 36 h of fermentation, the peak biomass growth was 305 as measured by absorption of 600 nm, while the peak angiostatin expression was 176 mg/l. Similar to the product expressed from inducible system [24], angiostatin produced from constitutive system also inhibited the angiogenesis on the CAM and suppressed the growth of B16 melanoma in C57BL/6J mouse. The above results suggest that GAP promoter is more efficient than AOX1 promoter for the expression of angiostatin in P. pastoris by shake flask culture or high-density cell fermentation and is likely to be an alternative to AOX1 promoter in large-scale expression of angiostatin and other heterologous proteins. Supported by the Natural Science Foundation of China (39670013) and “225” Science and Technology Program of Guangzhou Municipal Government of China (99-Z-004-001).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号