首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
E Maas  H Bisswanger 《FEBS letters》1990,277(1-2):189-190
Bovine kidney mitochondria were separated into matrix and membrane fractions by treatment with digitonin and Lubrol PX. While malate dehydrogenase was found essentially in the matrix fraction, both the pyruvate and the alpha-oxoglutarate dehydrogenase multienzyme complexes remained bound to the inner membrane fraction and became solubilized only after repeated treatments with detergents. Thus both multienzyme complexes must be associated with the inner membrane rather than located within the matrix space.  相似文献   

3.
Signaling functions of phosphatidic acid   总被引:3,自引:0,他引:3  
Phosphatidic acid (PA) has emerged as a new class of lipid mediators involved in diverse cellular functions in plants, animals, and microorganisms. Considerable progress has been made recently on the production, cellular function, and mode of action of PA in the cell. The cellular levels of PA undergo dynamic changes in response to developmental and environmental stimuli. The production of signaling PA is mediated by families of multiple enzymes that regulate the timing, location, amount, and molecular species of PA. A number of PA target proteins have been identified, which include proteins involved in phosphorylation and dephosphorylation of proteins and lipids, as well as in G protein regulation, vesicular trafficking, and metabolism. PA mediates cellular functions through different modes of action, such as membrane tethering, modulation of enzymatic activities, and/or structural effects on cell membranes. The regulatory processes in which PA has been implicated include signaling pathways in cell growth, proliferation, reproduction, and responses to hormones and biotic and abiotic stresses.  相似文献   

4.
Immobilised 1,3-specific lipase from Rhizopus arrhizus was used as catalyst for the esterification of -glycero-3-phosphate and fatty acid or fatty acid vinyl ester in a solvent-free system. With lauric acid vinyl ester as acyl donor, aw<0.53 favored the synthesis of lysophosphatidic acid (1-acyl-rac-glycero-3-phosphate, LPA1) and the spontaneous acyl migration of the fatty acid on the molecule. Subsequent acylation by the enzyme resulted in high phosphatidic acid (1,2-diacyl-rac-glycero-3-phosphate, PA) formation and high total conversions (>95%). With oleic acid, maximum conversions of 55% were obtained at low water activities. Temperatures below melting point of the product favored precipitation and resulted in high final conversion and high product ratio [LPA/(PA+LPA)]. Thus, LPA was the only product with lauric acid vinyl ester as acyl donor at 25°C. Increased substrate ratio ( -glycero-3-phosphate/fatty acid) from 0.05 to 1 resulted in a higher ratio of LPA to PA formed, but a lower total conversion of -glycero-3-phosphate. Increased amounts of enzyme preparation did not result in higher esterification rates, probably due to high mass-transfer limitations.  相似文献   

5.
The formation of phosphatidic acid (PA) from lysophosphatidic acid (LPA), diacylglycerol, or phosphatidylcholine plays a key role in the regulation of intracellular membrane fission events, but the underlying molecular mechanism has not been resolved. A likely possibility is that PA affects local membrane curvature facilitating membrane bending and fission. To examine this possibility, we determined the spontaneous radius of curvature (R(0p)) of PA and LPA, carrying oleoyl fatty acids, using well-established X-ray diffraction methods. We found that, under physiological conditions of pH and salt concentration (pH 7.0, 150 mM NaCl), the R(0p) values of PA and LPA were -46 A and +20 A, respectively. Thus PA has considerable negative spontaneous curvature while LPA has the most positive spontaneous curvature of any membrane lipid measured to date. The further addition of Ca(2+) did not significantly affect lipid spontaneous curvature; however, omitting NaCl from the hydration buffer greatly reduced the spontaneous curvature of PA, turning it into a cylindrically shaped lipid molecule (R(0p) of -1.3 x 10(2) A). Our quantitative data on the spontaneous radius of curvature of PA and LPA at a physiological pH and salt concentration will be instrumental in developing future models of biomembrane fission.  相似文献   

6.

Background

Camouflage patterns that hinder detection and/or recognition by antagonists are widely studied in both human and animal contexts. Patterns of contrasting stripes that purportedly degrade an observer's ability to judge the speed and direction of moving prey ('motion dazzle') are, however, rarely investigated. This is despite motion dazzle having been fundamental to the appearance of warships in both world wars and often postulated as the selective agent leading to repeated patterns on many animals (such as zebra and many fish, snake, and invertebrate species). Such patterns often appear conspicuous, suggesting that protection while moving by motion dazzle might impair camouflage when stationary. However, the relationship between motion dazzle and camouflage is unclear because disruptive camouflage relies on high-contrast markings. In this study, we used a computer game with human subjects detecting and capturing either moving or stationary targets with different patterns, in order to provide the first empirical exploration of the interaction of these two protective coloration mechanisms.

Results

Moving targets with stripes were caught significantly less often and missed more often than targets with camouflage patterns. However, when stationary, targets with camouflage markings were captured less often and caused more false detections than those with striped patterns, which were readily detected.

Conclusions

Our study provides the clearest evidence to date that some patterns inhibit the capture of moving targets, but that camouflage and motion dazzle are not complementary strategies. Therefore, the specific coloration that evolves in animals will depend on how the life history and ontogeny of each species influence the trade-off between the costs and benefits of motion dazzle and camouflage.  相似文献   

7.
磷脂酸和溶血磷脂酸的生理功能   总被引:3,自引:0,他引:3  
磷脂酸(phosphatidic acid, PA)和溶血磷脂酸(lysophosphatidic acid,LPA)是细胞内和细胞外信号转导的重要磷脂信号分子.它们主要通过磷脂酶D和磷脂酶C两条途径产生,并且PA在磷脂酶A2的催化下可水解生成LPA.越来越多证据表明,PA和LPA在细胞诸多生理功能中起重要作用.本文主要介绍PA和LPA的生理功能及作用机制的研究进展.  相似文献   

8.
磷脂酸和溶血磷脂酸的生理功能   总被引:2,自引:0,他引:2  
磷脂酸(phosphatidic acid,PA)和溶血磷脂酸(lysophosphatidic acid,LPA)是细胞内和细胞外信号转导的重要磷脂信号分子。它们主要通过磷脂酶D和磷脂酶C两条途径产生,并且PA在磷脂酶A2的催化下可水解生成LPA。越来越多证据表明,PA和LPA在细胞诸多生理功能中起重要作用。本文主要介绍PA和LPA的生理功能及作用机制的研究进展。  相似文献   

9.
This paper reviews existing high-performance liquid chromatographic (HPLC) methods for the analysis of phosphatidic acid (PA) in various sample matrices. In addition to the introductory background discussion on important aspects of PA in lipid biochemistry, the review provides comprehensive coverage in the areas of derivatization techniques, detection methods, and HPLC separation techniques. Conversions of PA to suitable derivatives enhance the detection sensitivity and improve the chromatographic behavior of the analytes. Detection methods include the use of state-of-the-art detectors and are discussed in terms of sensitivity, specificity, and compatibility with analytical systems. Pertinent normal-phase and reversed-phase HPLC data for PA are compiled from published methods.  相似文献   

10.
1. The membrane-bound phosphatidate-dependent phosphatidic acid phosphatase activity of rat lung has been investigated in cytosol and microsomal fractions using as a substrate [32P]phosphatidate bound to heat inactivated rat liver microsomes. Both activities demonstrated broad pH optima with a maximum of 7.4--8 for the cytosol and a maximum of 6.5--7.5 with microsomal preparations. 2. At low concentrations (0--5 mM) Mg2+ produced a slight stimulation of the cytosol activity but at higher concentrations an inhibition was observed. Low concentrations (1.0--2.0 mM) of EDTA abolished the cytosol activity and reduced the microsomal activity to half. In both cases, the addition of Mg2+ in the presence of EDTA resulted in an activity which was more than 2-fold greater than that observed in the absence of chelator or divalent cation. 3. The cytosol activity was relatively resistant to the addition of ionic and nonionic detergents. In general, the addition of a number of phosphate esters increased rather than decreased the release of 32Pi, indicating a relative specificity for phosphate groups associated with a hydrophobic environment. The addition of aqueous dispersions of phosphatidate, lysophosphatidic acid or phosphatidylglycerophosphate markedly reduced the hydrolysis of membrane-bound [32P]phosphatidate. The cytosol activity was slightly inhibited by the addition of phosphatidylcholine. 4. In an attempt to estimate the relative contributions of the cytosol and microsomal activities in vivo, these activities were assayed using [32P]phosphatidate endogenously generated on rat lung microsomes. With the 32P-labelled microsomes, the hydrolysis remained linear over the 45 min of the experiment. Addition of high speed supernatant produced a rapid release of 32Pi during the first 10 min followed by a more gradual release similar to that oberved with the microsomes alone. The cytosol activity remained greater than the microsomal activity at all times studied. 5. When [14C]phosphatidate-labelled microsomes were incubated in the presence of nonradioactive CDPcholine, the addition of cytosol markedly stimulated the incorporation of radioactivity into phosphatidylcholine. This observation suggests that the phosphatidic acid phosphatase activity associated with the cytosol has a role in phosphatidylcholine (and presumably surfactant) biosynthesis in rat lung.  相似文献   

11.
Phospholipase D from Streptomyces chromofuscus (scPLD) hydrolyzes phosphatidylcholines (PC) to produce choline and phosphatidic acid (PA), a lipid messenger molecule within biological membranes. To scrutinize the influence of membrane structure on scPLD activity, three different substrate-containing monolayers are used as model systems: pure dipalmitoylphosphatidylcholine (DPPC) as well as equimolar mixtures of DPPC/n-hexadecanol (C(16)OH) and DPPC/dipalmitoylglycerol (DPG). The activity of scPLD toward these monolayers is tested by infrared reflection-absorption spectroscopy and exhibits different dependencies on surface pressure. For pure DPPC, the catalytic turnover drastically drops above 20 mN/m. On addition of C(16)OH, this strong decrease starts at 5 mN/m. For the DPPC/DPG system, the reaction yield linearly decreases between 5 and 25 mN/m. The difference in scPLD activity is correlated to the phase state of the monolayers as examined by x-ray diffraction, Brewster angle microscopy, and atomic force microscopy. Because the additives C(16)OH and DPG mediate the miscibility of PC and PA, only a basal activity of scPLD is observed toward the mixed systems at higher surface pressures. At pure DPPC monolayers, scPLD is activated after the segregation of initially formed PA. Furthermore, scPLD is inhibited when the lipids in the PA-rich domains adopt an upright orientation. This phenomenon offers a self-regulating mechanism for the concentration of the second messenger PA within biological membranes.  相似文献   

12.
Mitochondria, once viewed as functioning relatively autonomously in the cell, have increasingly been recognized to be involved in numerous signaling networks that impact on a wide range of cell biological processes. In addition to the many types of proteins that mediate these pathways, the importance of signaling functions regulated via lipids and lipid second messengers generated on the mitochondrial surface is also becoming well appreciated. We focus here on phosphatidic acid, a lipid second messenger produced via several different pathways that can in turn stimulate the formation of multiple other bioactive lipids. Taken together, fascinating roles for phosphatidic acid and the connected lipids in mitochondrial function and interaction with other organelles are being uncovered. These pathways present new opportunities for the development of therapeutic approaches relevant to reproduction, metabolism, and neurodegenerative disease.  相似文献   

13.
Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator possessing cyclic phosphate ring, which is necessary for its specific biological activities. To stabilize cyclic phosphate ring of cPA, we synthesized a series of cPA derivatives. We have shown that racemic 3-S-cPA, with a phosphate oxygen atom replaced with a sulfur atom at the sn-3, was a more effective autotaxin (ATX) inhibitor than cPA. In this study, we showed that racemic 3-S-cPA also had potent biological activities such as inhibition of cancer cell migration, suppression of the nociceptive reflex, and attenuation of ischemia-induced delayed neuronal cell death in the hippocampal CA1. Moreover, we synthesized both enantiomers of palmitoleoyl derivative of 3-S-cPA, and found that the chirality of 3-S-cPA is not involved in ATX inhibition. Based on these findings, racemic 3-S-cPA is suggested as an effective therapeutic compound like cPA.  相似文献   

14.
Thiophosphatidic acid (1,2-diacyl-sn-glycero-3-phosphorothioate; thioPA) was chemically synthesized from egg phosphatidylcholine-derived 1,2-diacylglycerol and PSCl3 and tested for its effects on enzymes which utilize phosphatidic acid (PA) in phospholipid biosynthesis. The compound was not a substrate for rat liver cytosolic PA phosphatase and strongly inhibited this enzyme activity. ThioPA was also a potent inhibitor of purified membrane-associated PA phosphatase from Saccharomyces cerevisiae in a competitive manner and exhibited an apparent Ki = 60 microM. In contrast, purified CDPdiacylglycerol synthase (PA:CTP cytidylyltransferase) from this organism was able to convert thioPA to CDP-diacylglycerol. The apparent Vmax for thioPA was 7-fold lower than that for PA, whereas the apparent Km for thioPA (70 microM) was 4-fold lower than that for PA. Calculation of the specificity constant (Vmax/Km) demonstrated that PA was the preferred substrate. These properties of thioPA indicate that this substance may prove useful in studies of phospholipid metabolism and function.  相似文献   

15.
Effects of phosphatidic acid (PA), a product of phospholipase D activity, on Ca2+ and H+ transport were investigated in membrane vesicles obtained from roots and coleoptiles of maize (Zea mays L.). Calcium flows were measured with fluorescent probes indo-1 and chlorotetracycline loaded into the vesicles and added to the incubation medium, respectively. Phosphatidic acid (50–500 μM) was found to induce downhill flow of Ca2+ along the concentration gradient into the plasma membrane vesicles and endomembrane vesicles (tonoplast and endoplasmic reticulum). Protonophorous functions of PA were probed with acridine orange. First, the ionic H+ gradient was created on the tonoplast vesicles by means of H+-ATPase activation with Mg-ATP addition. Then, the vesicles were treated with 25–100 μM PA, which induced the release of protons from tonoplast vesicles and dissipation of the proton gradient. Thus, PA could function as an ionophore and was able to transfer Ca2+ and H+ across plant cell membranes along concentration gradients of these ions. The role of PA in mechanisms of intracellular signaling in plants is discussed.  相似文献   

16.
Carman GM 《生物学前沿》2011,6(3):172-176
Phosphatidic acid phosphatase is a fat-regulating enzyme that plays a major role in controlling the balance of phosphatidic acid (substrate) and diacylglycerol (product), which are lipid precursors used for the synthesis of membrane phospholipids and triacylglycerol. Phosphatidic acid is also a signaling molecule that triggers phospholipid synthesis gene expression, membrane expansion, secretion, and endocytosis. While this important enzyme has been known for several decades, its gene was only identified recently from yeast. This discovery showed the importance of phosphatidic acid phosphatase in lipid metabolism in yeast as well as in higher eukaryotes including humans.  相似文献   

17.
Rhodococcus equi is a multihost, facultative intracellular bacterial pathogen that primarily causes pneumonia in foals less than six months in age and immunocompromised people. Previous studies determined that the major virulence determinant of R. equi is the surface bound virulence associated protein A (VapA). The presence of VapA inhibits the maturation of R. equi‐containing phagosomes and promotes intracellular bacterial survival, as determined by the inability of vapA deletion mutants to replicate in host macrophages. While the mechanism of action of VapA remains elusive, we show that soluble recombinant VapA32‐189 both rescues the intramacrophage replication defect of a wild type R. equi strain lacking the vapA gene and enhances the persistence of nonpathogenic Escherichia coli in macrophages. During macrophage infection, VapA was observed at both the bacterial surface and at the membrane of the host‐derived R. equi containing vacuole, thus providing an opportunity for VapA to interact with host constituents and promote alterations in phagolysosomal function. In support of the observed host membrane binding activity of VapA, we also found that rVapA32‐189 interacted specifically with liposomes containing phosphatidic acid in vitro. Collectively, these data demonstrate a lipid binding property of VapA, which may be required for its function during intracellular infection.  相似文献   

18.
Inhibition of phosphatidic acid phosphatase by palmitoyl-coA   总被引:1,自引:0,他引:1  
  相似文献   

19.
G Laroche  D Carrier  M Pézolet 《Biochemistry》1988,27(17):6220-6228
The effect of polylysine (PLL) on dimyristoylphosphatidic acid (DMPA), on dimyristoyl-phosphatidylcholine (DMPC), and on mixtures of these lipids was investigated by Raman spectroscopy. These results show that long polylysine (Mr approximately 200,000) increases the stability of the acyl chain matrix of DMPA to form a more closely packed structure with a stoichiometry of one lysine residue per PA molecule. On the other hand, short PLL (Mr 4000) destabilizes the PA bilayer, and the complex formed undergoes a gel to liquid-crystalline transition at a lower temperature than of the pure lipid. For both cases, we have observed that bound polylysine adopts a beta-sheet conformation as opposed to the alpha-helical structure previously found for dipalmitoylphosphatidylglycerol/long PLL complexes [Carrier, D., & Pézolet, M. (1984) Biophys. J. 46, 497-506]. The difference in the thermal behavior of complexes of DMPA with long and short polylysines is believed to be associated with the fact that in the complex the long polypeptide adopts the beta-sheet conformation over the whole range of temperatures investigated while the short one undergoes a change of conformation from beta-sheet of random coil upon heating. Therefore, the conformation of the lipid-bound polypeptides depends on the nature of the polar head group of the lipid, not only on its net charge, and it affects considerably the thermotropism of the lipid. On the other hand, both long and short polylysines show no affinity for phosphatidylcholine since the temperature profiles of DMPC and of DMPC/PLL complexes exhibit exactly the same behavior.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
There are ten mammalian diacylglycerol kinases (DGKs) whose primary role is to terminate diacylglycerol (DAG) signaling. However, it is becoming increasingly apparent that DGKs also influence signaling events through their product, phosphatidic acid (PA). They do so in some cases by associating with proteins and then modifying their activity by generating PA. In other cases, DGKs broadly regulate signaling events by virtue of their ability to provide PA for the synthesis of phosphatidylinositols (PtdIns).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号