首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Viral matrix proteins of several enveloped RNA viruses play important roles in virus assembly and budding and are by themselves able to bud from the cell surface in the form of lipid-enveloped, virus-like particles (VLPs). Three motifs (PT/SAP, PPxY, and YxxL) have been identified as late budding domains (L-domains) responsible for efficient budding. L-domains can functionally interact with cellular proteins involved in vacuolar sorting (VPS4A and TSG101) and endocytic pathways (Nedd4), suggesting involvement of these pathways in virus budding. Ebola virus VP40 has overlapping PTAP and PPEY motifs, which can functionally interact with TSG101 and Nedd4, respectively. As for vesicular stomatitis virus (VSV), a PPPY motif within M protein can interact with Nedd4. In addition, M protein has a PSAP sequence downstream of the PPPY motif, but the function of PSAP in budding is not clear. In this study, we compared L-domain functions between Ebola virus and VSV by constructing a chimeric M protein (M40), in which the PPPY motif of VSV M is replaced by the L domains of VP40. The budding efficiency of M40 was 10-fold higher than that of wild-type (wt) M protein. Overexpression of a dominant negative mutant of VPS4A or depletion of cellular TSG101 reduced the budding of only M40-containing VLPs but not that of wt M VLPs or live VSV. These findings suggest that the PSAP motif of M protein is not critical for budding and that there are fundamental differences between PTAP-containing viruses (Ebola virus and human immunodeficiency virus type 1) and PPPY-containing viruses (VSV and rabies virus) regarding their dependence on specific host factors for efficient budding.  相似文献   

2.
Late (L) domains are required for the efficient release of several groups of enveloped viruses. Three amino acid motifs have been shown to provide L-domain function, namely, PPXY, PT/SAP, or YPDL. The retrovirus Mason-Pfizer monkey virus (MPMV) carries closely spaced PPPY and PSAP motifs. Mutation of the PPPY motif results in a complete loss of virus release. Here, we show that the PSAP motif acts as an additional L domain and promotes the efficient release of MPMV but requires an intact PPPY motif to perform its function. Examination of HeLaP4 cells expressing PSAP mutant virus by electron microscopy revealed mostly late budding structures and chains of viruses accumulating at the cell surface with little free virus. In the case of the PPPY mutant virus, budding appeared to be mostly arrested at an earlier stage before induction of membrane curvature. The cellular protein TSG101, which interacts with the human immunodeficiency virus type 1 (HIV-1) PTAP L domain, was packaged into MPMV in a PSAP-dependent manner. Since TSG101 is crucial for HIV-1 release, this result suggests that the Gag-TSG101 interaction is responsible for the virus release function of the MPMV PSAP motif. Nedd4, which has been shown to interact with viral PPPY motifs, was also detected in MPMV particles, albeit at much lower levels. Consistent with a role of VPS4A in the budding of both PPPY and PTAP motif-containing viruses, the overexpression of ATPase-defective GFP-VPS4A fusion proteins blocked both wild-type and PSAP mutant virus release.  相似文献   

3.
A PPPY motif within the M protein of vesicular stomatitis virus (VSV) functions as a late-budding domain (L-domain); however, L-domain activity has yet to be associated with a downstream PSAP motif. VSV recombinants with mutations in the PPPY and/or PSAP motif were recovered by reverse genetics and examined for growth kinetics, plaque size, and budding efficiency by electron microscopy. Results indicate that unlike the PPPY motif, the PSAP motif alone does not possess L-domain activity. Finally, the insertion of the human immunodeficiency virus type 1 p6 L-domain and flanking sequences into the PSAP region of M protein rescued budding of a PPPY mutant of VSV to wild-type levels.  相似文献   

4.
Sequence motifs (L domains) have been described in viral structural proteins. Mutations in these lead to a defect at a late stage in virus assembly and budding. For several viruses, recruitment of an endosomal sorting complexes required for transport 1 subunit (Tsg101), a component of the class E vacuolar protein sorting (EVPS) machinery, is a prerequisite for virion budding. To effect this, Tsg101 interacts with the PT/SAP L domain. We have identified candidate L-domain motifs, PSAP, PPPI, and YEIL, in the prototypic foamy virus (PFV) Gag protein, based on their homology to known viral L domains. Mutation of the PSAP and PPPI motifs individually reduced PFV egress, and their combined mutation had an additive effect. When PSAP was mutated, residual infectious PFV release was unaffected by dominant negative Vps4 (an ATPase involved in the final stages of budding), and sensitivity to dominant negative Tsg101 was dramatically reduced, suggesting that the PSAP motif functions as a conventional class E VPS-dependent L domain. Consistent with this notion, yeast two-hybrid analysis showed a PSAP motif-dependent interaction between PFV Gag and Tsg101. Surprisingly, PFV release which is dependent on the PPPI motif was Vps4-independent and was partially inhibited by dominant negative Tsg101, suggesting that PPPI functions by an unconventional mechanism to facilitate PFV egress. Mutation of the YEIL sequence completely abolished particle formation and also reduced the rate of Gag processing by the viral protease, suggesting that the integrity of YEIL is required at an assembly step prior to budding and YEIL is not acting as an L domain.  相似文献   

5.
Irie T  Harty RN 《Journal of virology》2005,79(20):12617-12622
Vesicular stomatitis virus (VSV) possesses a PPPY and a PSAP motif within the matrix (M) protein. The PPPY motif has significant L-domain activity in BHK-21 cells, whereas the PSAP motif does not. Since the core PSAP motif alone is insufficient to provide L-domain activity, we modified upstream or downstream amino acids flanking the PSAP core motif to determine their effect on L-domain activity. VSV recombinants were recovered that contained single or multiple amino acid mutations in upstream or downstream sequences flanking the PSAP core. Recombinant viruses were examined for growth kinetics, budding efficiency, and functional interactions with host proteins. We demonstrate that the composition of amino acids surrounding the L-domain core motifs are critical for efficient L-domain activity and for interactions with host proteins in the context of a VSV infection.  相似文献   

6.
Koala retrovirus (KoRV) is a unique gammaretrovirus that is currently endogenizing into its host and considered to be associated with leukemia, lymphoma and immunosuppression in koalas (Phascolactos cinereus). In this study, it was demonstrated that WWP2 or WWP2‐like E3 ubiquitin ligases possessing the WW domain closely related to WWP2 and Vps4A/B are involved in KoRV budding. These data suggest that KoRV Gag recruits the cellular endosomal sorting complex required for transport machinery through interaction of the PPPY L ‐domain with the WW domain(s) of WWP2 and that progeny virions are released from cells by utilizing the multivesicular body sorting pathway.  相似文献   

7.
Molecular characterization of feline immunodeficiency virus budding   总被引:1,自引:0,他引:1  
Infection of domestic cats with feline immunodeficiency virus (FIV) is an important model system for studying human immunodeficiency virus type 1 (HIV-1) infection due to numerous similarities in pathogenesis induced by these two lentiviruses. However, many molecular aspects of FIV replication remain poorly understood. It is well established that retroviruses use short peptide motifs in Gag, known as late domains, to usurp cellular endosomal sorting machinery and promote virus release from infected cells. For example, the Pro-Thr/Ser-Ala-Pro [P(T/S)AP] motif of HIV-1 Gag interacts directly with Tsg101, a component of the endosomal sorting complex required for transport I (ESCRT-I). A Tyr-Pro-Asp-Leu (YPDL) motif in equine infectious anemia virus (EIAV), and a related sequence in HIV-1, bind the endosomal sorting factor Alix. In this study we sought to identify and characterize FIV late domain(s) and elucidate cellular machinery involved in FIV release. We determined that mutagenesis of a PSAP motif in FIV Gag, small interfering RNA-mediated knockdown of Tsg101 expression, and overexpression of a P(T/S)AP-binding fragment of Tsg101 (TSG-5′) each inhibited FIV release. We also observed direct binding of FIV Gag peptides to Tsg101. In contrast, mutagenesis of a potential Alix-binding motif in FIV Gag did not affect FIV release. Similarly, expression of the HIV-1/EIAV Gag-binding domain of Alix (Alix-V) did not disrupt FIV budding, and FIV Gag peptides showed no affinity for Alix-V. Our data demonstrate that FIV relies predominantly on a Tsg101-binding PSAP motif in the C terminus of Gag to promote virus release in HeLa cells, and this budding mechanism is highly conserved in feline cells.  相似文献   

8.
Retroviral Gag protein plays a critical role during the late stage of virus budding and possesses a so‐called L‐domain containing PT/SAP, PPxY, YxxL or FPIV motifs that are critical for efficient budding. Mason–Pfizer monkey virus (M‐PMV) contains PSAP, PPPY, and YADL sequences in Gag. This study was performed to investigate the roles of these three L‐domain‐like sequences in virus replication in three different cell lines, 293T, COS‐7 and HeLa cells. It was found that the PPxY motif plays an essential role in progeny virus production as a major L‐domain in all three cell lines. The PSAP sequence was shown to function as an additional L‐domain in HeLa cells and to promote efficient release of M‐PMV; however, this sequence was dispensable for M‐PMV production in 293T and COS‐7 cells, suggesting that the role of the PSAP motif as an L‐domain in M‐PMV budding is cell type‐dependent. Viruses possessing multiple L‐domains appear to change the L‐domain usage to replicate in various cells. On the other hand, the YADL motif was required for M‐PMV production as a transport signal of Gag to the plasma membrane, but not as an L‐domain.  相似文献   

9.
Membrane budding is essential for the egress of many enveloped viruses, and this process shares similarities with the biogenesis of multivesicular bodies (MVBs). In eukaryotic cells, the budding of intraluminal vesicles (IVLs) is mediated by the endosomal sorting complex required for transport (ESCRT) machinery and some viruses require ESCRT machinery components or functions to bud from host cells. Baculoviruses, such as Autographa californica multiple nucleopolyhedrovirus (AcMNPV), enter host cells by clathrin-mediated endocytosis. Viral DNA replication and nucleocapsid assembly occur within the nucleus. Some progeny nucleocapsids are subsequently trafficked to, and bud from, the plasma membrane, forming budded virions (BV). To determine whether the host ESCRT machinery is important or necessary for AcMNPV replication, we cloned a cDNA of Spodoptera frugiperda VPS4, a key regulator for disassembly and recycling of ESCRT III. We then examined viral infection and budding in the presence of wild-type (WT) or dominant negative (DN) forms of VPS4. First, we used a viral complementation system, in combination with fluorescent tags, to examine the effects of transiently expressed WT or DN VPS4 on viral entry. We found that dominant negative VPS4 substantially inhibited virus entry. Entering virus was observed within aberrant compartments containing the DN VPS4 protein. We next used recombinant bacmids expressing WT or DN VPS4 proteins to examine virus egress. We found that production of infectious AcMNPV BV was substantially reduced by expression of DN VPS4 but not by WT VPS4. Together, these results indicate that a functional VPS4 is necessary for efficient AcMNPV BV entry into, and egress from, insect cells.  相似文献   

10.
Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes   总被引:28,自引:0,他引:28  
Hrs and the endosomal sorting complexes required for transport, ESCRT-I, -II, and -III, are involved in the endosomal sorting of membrane proteins into multivesicular bodies and lysosomes or vacuoles. The ESCRT complexes are also required for formation of intraluminal endosomal vesicles and for budding of certain enveloped RNA viruses such as HIV. Here, we show that Hrs binds to the ESCRT-I subunit Tsg101 via a PSAP motif that is conserved in Tsg101-binding viral proteins. Depletion of Hrs causes a reduction in membrane-associated ESCRT-I subunits, a decreased number of multivesicular bodies and an increased size of late endosomes. Even though Hrs mainly localizes to early endosomes and Tsg101 to late endosomes, the two proteins colocalize on a subpopulation of endosomes that contain lyso-bisphosphatidic acid. Overexpression of Hrs causes accumulation of Tsg101 on early endosomes and prevents its localization to late endosomes. We conclude that Hrs mediates the initial recruitment of ESCRT-I to endosomes and, thereby, indirectly regulates multivesicular body formation.  相似文献   

11.
The budding reactions of a number of enveloped viruses use the cellular machinery involved in the formation of the luminal vesicles of endosomal multivesicular bodies (MVB). Budding of these viruses is dependent on the presence of specific late-domain motifs in membrane-associated viral proteins. Such budding reactions usually involve ubiquitin and are blocked by expression of an ATPase-deficient form of VPS4, a cellular AAA+ ATPase believed to be required late in the MVB pathway for the disassembly/release of the MVB machinery. Here we examined the role of the MVB pathway in the budding of the late-domain-containing rhabdovirus vesicular stomatitis virus (VSV) and the alphavirus Semliki Forest virus (SFV). We tested early and late steps in the MVB pathway by depleting ubiquitin with the proteasome inhibitor MG-132 and by using cell lines inducibly expressing VPS4A or VPS4B protein. As previously shown, VSV budding was strongly dependent on ubiquitin. In contrast to the findings of previous studies with VPS4A, expression of ATPase-deficient mutants of either VPS4A or VPS4B inhibited VSV budding. Inhibition by VPS4 required the presence of the PPPY late domain on the VSV matrix protein and resulted in the accumulation of nonreleased VSV particles at the plasma membrane. In contrast, SFV budding was independent of both ubiquitin and the activity of VPS4, perhaps reflecting the important role of the highly organized envelope protein lattice during alphavirus budding.  相似文献   

12.
The limited coding capacity of retroviral genomes forces these viruses to rely heavily on the host-cell machinery for their replication. This phenomenon is particularly well illustrated by the interaction between retroviruses and components of the endosomal budding machinery that occurs during virus release. Here, we focus on the use of host-cell factors during HIV-1 budding and highlight recent progress in our understanding of the role of one such factor, Alix, in both viral and cellular membrane budding and fission events.  相似文献   

13.
As the important molecular machinery for membrane protein sorting in eukaryotic cells, the endosomal sorting and transport complexes (ESCRT-0/I/II/III and VPS4) usually participate in various replication stages of enveloped viruses, such as endocytosis and budding. The main subunit of ESCRT-I, Tsg101, has been previously revealed to play a role in the entry and replication of classical swine fever virus (CSFV). However, the effect of the whole ESCRT machinery during CSFV infection has not yet been well defined. Here, we systematically determine the effects of subunits of ESCRT on entry, replication, and budding of CSFV by genetic analysis. We show that EAP20 (VPS25) (ESCRT-II), CHMP4B and CHMP7 (ESCRT-III) regulate CSFV entry and assist vesicles in transporting CSFV from Clathrin, early endosomes, late endosomes to lysosomes. Importantly, we first demonstrate that HRS (ESCRT-0), VPS28 (ESCRT-I), VPS25 (ESCRT-II) and adaptor protein ALIX play important roles in the formation of virus replication complexes (VRC) together with CHMP2B/4B/7 (ESCRT-III), and VPS4A. Further analyses reveal these subunits interact with CSFV nonstructural proteins (NS) and locate in the endoplasmic reticulum, but not Golgi, suggesting the role of ESCRT in regulating VRC assembly. In addition, we demonstrate that VPS4A is close to lipid droplets (LDs), indicating the importance of lipid metabolism in the formation of VRC and nucleic acid production. Altogether, we draw a new picture of cellular ESCRT machinery in CSFV entry and VRC formation, which could provide alternative strategies for preventing and controlling the diseases caused by CSFV or other Pestivirus.  相似文献   

14.
The "class E" vacuolar protein sorting (VPS) pathway mediates sorting of ubiquitinated cargo into the forming vesicles of the multivesicular bodies (MVB), and it is essential for down-regulation of signaling by growth factors and budding of enveloped viruses such as Ebola and HIV-1. Work in yeast has identified DOA4 as a gene that is recruited by the class E machinery to remove ubiquitin from the endosomal cargo before it is incorporated into MVB vesicles, but the identity of the mammalian counterpart is unclear. Here we report the interaction of AMSH (associated molecule with the SH3 domain of STAM), an endosomal deubiquitinating enzyme, with the endodomal sorting complex required for transport (ESCRT-III) subunits CHMP1A, CHMP1B, CHMP2A, and CHMP3. We also show that a catalytically inactive AMSH inhibits retroviral budding in a dominant-negative manner and induces the accumulation of ubiquitinated forms of an endosomal cargo, namely murine leukemia virus Gag. Finally, VPS4 and AMSH compete for binding to the C-terminal regions of CHMP1A and CHMP1B, revealing a coordinated interaction with ESCRT-III. Taken together, these results are consistent with a role of AMSH in the deubiquitination of the endosomal cargo preceding lysosomal degradation.  相似文献   

15.
The ESCRT (endosomal sorting complex required for transport) machinery normally executes cargo sorting and internalization during multivesicular body biogenesis, but is also utilized by several enveloped viruses to facilitate their budding from cellular membranes. Although the mechanisms of flavivirus infectious particle assembly and release are poorly understood, the nonstructural protein NS3 has been reported to have an essential role via an undescribed mechanism. Here, we shed light on the role of NS3 by connecting it to the host factor Alix, a protein intimately connected with the ESCRT machinery. We demonstrate that NS3 and Alix interact and show that dominant negative versions of Alix inhibit YFV release. Furthermore, we show that NS3 supplied in trans rescues this effect. We propose that the interaction between NS3 and Alix contributes to YFV release.  相似文献   

16.
Retroviruses need to bud from producer cells to spread infection. To facilitate its budding, some virus hijacks the multivesicular body (MVB) pathway that is normally used to cargo and degrade ubiquitylated cellular proteins, through interaction between the late domain of Gag polyproteins and the components of MVB machinery. In this study, we demonstrated that TANK-binding kinase 1 (TBK1) directly interacted with VPS37C, a subunit of endosomal sorting complex required for transport-I (ESCRT-I) in the MVB pathway, without affecting the ultrastructure or general function of MVB. Interestingly, overexpression of TBK1 attenuated, whereas short hairpin RNA interference of TBK1 enhanced HIV-1 pseudovirus release from Vero cells in type I IFN (IFN-I)-independent manner. Down-regulation of TBK1 by short hairpin RNA in TZM-bl cells also enhanced live HIV-1 NL4-3 or JR-CSF virus budding without involvement of IFN-I induction. Furthermore, infection of TBK1-deficient mouse embryonic fibroblast cells with a chimeric murine leukemia virus/p6, whose PPPY motif was replaced by PTAP motif of HIV-1, showed that lack of TBK1 significantly enhanced PTAP-dependent, but not PPPY-dependent retrovirus budding. Finally, phosphorylation of VPS37C by TBK1 might regulate the viral budding efficiency, because overexpression of the kinase-inactive mutant of TBK1 (TBK1-K38A) in Vero cells accelerated HIV-1 pseudovirus budding. Therefore, through tethering to VPS37C of the ESCRT-I complex, TBK1 controlled the speed of PTAP-dependent retroviral budding through phosphorylation of VPS37C, which would serve as a novel mechanism of host cell defense independent of IFN-I signaling.  相似文献   

17.
I Gloger  G Arad    A Panet 《Journal of virology》1985,54(3):844-850
The replication of Moloney murine leukemia virus (MMuLV) in chronically infected mouse cells arrested at the G0/G1 phase of the cell cycle by different procedures was investigated. MMuLV production was inhibited in glutamine- and isoleucine (Gln-Ile)-deprived G0/G1 cells. In contrast, butyric acid treatment, which efficiently arrested the cells at the G0/G1 phase of the cell cycle, did not inhibit MMuLV production. Furthermore, the inhibition of MMuLV production caused by either Gln-Ile deprivation or by interferon (IFN) treatment was overcome by butyric acid treatment. Thus, the replication of MMuLV could be dissociated from cell proliferation. The inhibition of MMuLV production in Gln-Ile-deprived cell cultures was compared to the inhibitory effect of IFN, which is known to affect budding and release of the virus. Rates of MMuLV protein synthesis were not affected in both the IFN-treated and Gln-Ile-deprived cells. However, processing of the viral polyprotein Pre65gag into p30 was blocked in the Gln-Ile-deprived cells. Furthermore, whereas in IFN-treated cells, MMuLV accumulated on the cell surface and could be released upon treatment with trypsin, in Gln-Ile-deprived cells, no virions were released by such treatment. These results indicate that in cells arrested by Gln-Ile deprivation, MMuLV is inhibited at a posttranslation step. This step appears to precede the anti-MMuLV block induced by IFN.  相似文献   

18.
Endosomal sorting complex required for transport (ESCRT) machinery supports the efficient budding of Marburg virus (MARV) and many other enveloped viruses. Interaction between components of the ESCRT machinery and viral proteins is predominantly mediated by short tetrapeptide motifs, known as late domains. MARV contains late domain motifs in the matrix protein VP40 and in the genome-encapsidating nucleoprotein (NP). The PSAP late domain motif of NP recruits the ESCRT-I protein tumor susceptibility gene 101 (Tsg101). Here, we generated a recombinant MARV encoding NP with a mutated PSAP late domain (rMARVPSAPmut). rMARVPSAPmut was attenuated by up to one log compared with recombinant wild-type MARV (rMARVwt), formed smaller plaques and exhibited delayed virus release. Nucleocapsids in rMARVPSAPmut-infected cells were more densely packed inside viral inclusions and more abundant in the cytoplasm than in rMARVwt-infected cells. A similar phenotype was detected when MARV-infected cells were depleted of Tsg101. Live-cell imaging analyses revealed that Tsg101 accumulated in inclusions of rMARVwt-infected cells and was co-transported together with nucleocapsids. In contrast, rMARVPSAPmut nucleocapsids did not display co-localization with Tsg101, had significantly shorter transport trajectories, and migration close to the plasma membrane was severely impaired, resulting in reduced recruitment into filopodia, the major budding sites of MARV. We further show that the Tsg101 interacting protein IQGAP1, an actin cytoskeleton regulator, was recruited into inclusions and to individual nucleocapsids together with Tsg101. Moreover, IQGAP1 was detected in a contrail-like structure at the rear end of migrating nucleocapsids. Down regulation of IQGAP1 impaired release of MARV. These results indicate that the PSAP motif in NP, which enables binding to Tsg101, is important for the efficient actin-dependent transport of nucleocapsids to the sites of budding. Thus, the interaction between NP and Tsg101 supports several steps of MARV assembly before virus fission.  相似文献   

19.
The endosomal sorting complex required for transport (ESCRT) machinery is highly conserved and its components have been found in all five major supergroups of eukaryotes. The three ESCRT complexes and associated proteins play critical roles in receptor downregulation, retroviral budding, and other normal and pathological cellular processes. Besides monoubiquitin-dependent protein cargo recognition and sorting, the ESCRT machinery also appears to drive the formation of multivesicular bodies (MVBs). Recent advances in the determination of the function and structure of the ESCRT complexes have improved our understanding of the molecular details underlying the assembly and regulation of the ESCRT machinery.  相似文献   

20.
Late domains are short peptide sequences encoded by enveloped viruses to promote the final separation of the nascent virus from the infected cell. These amino acid motifs facilitate viral egress by interacting with components of the ESCRT (endosomal sorting complex required for transport) machinery, ultimately leading to membrane scission by recruiting ESCRT-III to the site of viral budding. PPXY late (L) domains present in viruses such as murine leukemia virus (MLV) or human T-cell leukemia virus type 1 (HTLV-1) access the ESCRT pathway via interaction with HECT ubiquitin ligases (WWP1, WWP2, and Itch). However, the mechanism of ESCRT-III recruitment in this context remains elusive. In this study, we tested the arrestin-related trafficking (ART) proteins, namely, ARRDC1 (arrestin domain-containing protein 1) to ARRDC4 and TXNIP (thioredoxin-interacting protein), for their ability to function as adaptors between HECT ubiquitin ligases and the core ESCRT machinery in PPXY-dependent budding. We present several lines of evidence in support of such a role: ARTs interact with HECT ubiquitin ligases, and they also exhibit multiple interactions with components of the ESCRT pathway, namely, ALIX and Tsg101, and perhaps with an as yet unidentified factor. Additionally, the ARTs can be recruited to the site of viral budding, and their overexpression results in a PPXY-specific inhibition of MLV budding. Lastly, we show that WWP1 changes the ubiquitination status of ARRDC1, suggesting that the ARTs may provide a platform for ubiquitination in PPXY-dependent budding. Taken together, our results support a model whereby ARTs are involved in PPXY-mediated budding by interacting with HECT ubiquitin ligases and providing several alternative routes for ESCRT-III recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号